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Margoliash et al. produce a framework for

including short tandem repeat (STR)

genetic variants in complex trait analysis.

Using two fine-mapping methods, they

estimate that STRs account for 5.2%–

7.6%of causal variants identifiable for the

studied traits and highlight 119 candidate

causal STR-trait associations, resolving

some of the strongest associations for

multiple phenotypes. This study suggests

that STRs play an important role in

complex traits and demonstrates the

need to include a more complete set of

genetic variation in genome-wide

association studies.
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SUMMARY
Short tandem repeats (STRs) are genomic regions consisting of repeated sequences of 1–6 bp in succession.
Single-nucleotide polymorphism (SNP)-based genome-wide association studies (GWASs) do not fully cap-
ture STR effects. To study these effects, we imputed 445,720 STRs into genotype arrays from 408,153 White
British UK Biobank participants and tested for association with 44 blood phenotypes. Using two fine-map-
ping methods, we identify 119 candidate causal STR-trait associations and estimate that STRs account
for 5.2%–7.6% of causal variants identifiable from GWASs for these traits. These are among the strongest
associations formultiple phenotypes, including a coding CTG repeat associatedwith apolipoprotein B levels,
a promoter CGG repeat with platelet traits, and an intronic poly(A) repeat with mean platelet volume. Our
study suggests that STRs make widespread contributions to complex traits, provides stringently selected
candidate causal STRs, and demonstrates the need to consider a more complete view of genetic variation
in GWASs.
INTRODUCTION

Genome-wide association studies (GWASs) are an indispensable

tool for identifying which genes and non-coding regions in the

genome influence complex human traits, yet biological investiga-

tion of those regions remains challenging.1 A major limitation is

that typical GWAS pipelines only consider single-nucleotide

polymorphisms (SNPs) and short insertions or deletions (indels).

However, detailed follow-upof individualGWASsignals hasoften

revealed complex variants absent from the original analysis, such

as repeats2,3 or structural variants,4,5 to be the causal drivers of

those signals. Indeed, a recent study showed that polymorphic

protein-coding variable number tandem repeats (VNTRs) likely

drive some of the strongest GWAS signals for multiple traits.2

Short tandem repeats (STRs, also known as microsatellites)

are a type of complex variant consisting of repeat units between

1 and 6 base pairs duplicated multiple times in succession. Over

1 million STRs occur in the human genome,6 each spanning tens

to thousands of base pairs. STRs frequently mutate, resulting in

gains or losses of repeat units,7 with average per-locus mutation

rates orders of magnitude higher than rates for SNPs8 or indels.9

Large repeat expansions at STRs are known to result in Mende-

lian diseases such as Huntington’s, muscular dystrophies, he-

reditary ataxias, and intellectual disorders.10,11

Recent evidence suggests thatmodest but ubiquitous variation

at multi-allelic non-coding STRs is also relevant. We and others

have associated STR lengths with both gene expression3,12,13
Cell
This is an open access article under the CC BY-N
andsplicing.14,15The impactofnon-codingSTRsongeneexpres-

sion is hypothesized to be mediated by a variety of mechanisms

including modulating nucleosome positioning,16 altering methyl-

ation,12,17 affecting transcription factor recruitment,3 and impact-

ing non-canonical secondary DNA18,19 and RNA20,21 structure

formation. This suggests that STRs potentially play an important

role in shaping complex traits in humans.

Despite this, STRs are largely excluded from reference haplo-

type panels22–24 and downstream GWAS analyses, as STRs are

not directly genotyped by microarrays and are challenging to

analyze from whole-genome sequencing (WGS) data. While

some STRs are in high linkage disequilibrium (LD) with nearby

SNPs, many are highly multi-allelic and imperfectly tagged by in-

dividual commonSNPs,which are typically biallelic. Thus, effects

driven by repeat-length variation have likely not been fully

captured, especially for highly multi-allelic STRs.

Recent advances now enable incorporation of STRs into

GWASs. We and others have created bioinformatics tools to ge-

notype STRs directly from WGS by statistically accounting for

the noise inherent in STR sequencing.6,25–29 Using one of these

tools, we developed a reference haplotype panel consisting of

both SNP and STR genotypes that allows for imputing STRs

into genotype array data30 from samples lacking WGS data. In

that study we found that all but the most highly polymorphic

STRs are amenable to imputation in European cohorts, with an

average per-locus concordance of 97% between imputed and

WGS genotypes.
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Figure 1. Genome-wide association tests identify STRs and SNPs associated with blood and biomarker traits in the UKB

(A) Schematic overview of this study. STRs are imputed into phased variants obtained from genotype arrays. GWASs are performed on SNPs and STRs in parallel.

Regions with significant signals are identified and then fine-mapped using two methods each under multiple scenarios, resulting in candidate causal STRs.

(B) Distribution of the number of common alleles at imputed STRs. We define common alleles as alleles with estimated frequency R1% (STAR Methods). For

clarity, we omitted the 237 imputed STRs with only a single common allele.

(C and D) Representative association results. Manhattan plots are shown for (C) total bilirubin (an example moderately polygenic trait) and (D) platelet count (an

example highly polygenic trait). Large diamonds represent the lead variants (pruned to include at most one variant per 10Mb for visualization).�log10 p values are

truncated at 100. Blue, SNPs; orange, STRs.

(E) Summary of signals identified per trait. Bars show the number of peaks per phenotype. Blue denotes peaks only containing genome-wide significant SNPs,

and purple denotes peaks containing both significant SNPs and STRs. Peaks only containing significant STRs are too few to be visible in this display.

(legend continued on next page)
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Here, we leveraged that reference panel to impute 445,720

genome-wide STRs into SNP array data from 408,153 White

British individuals in the UK Biobank (UKB) for which deep

phenotype information is available.31 Whereas a recent publica-

tion studied the effects of 118 protein-coding VNTRs (with repeat

units of 7+ base pairs) on complex traits,2 our study focuses on

genome-wide STRs (namely with repeat units of 1–6 bp), most of

which are non-coding. We tested for association between

imputed STR lengths and 19 blood cell count and 25 biomarker

traits. These traits provide multiple advantages: they are broadly

and reliably measured, continuous, and highly polygenic and

have variants with relatively large effect sizes, thus enabling

well-powered association testing.

We performed fine-mapping on these associations and esti-

mate that STRs account for 5.2%–7.6% of signals identified by

GWASs for these traits. We observed that some fine-mapping re-

sults are substantially influenced by the choice of fine-mapper or

are sensitive to data-processing choices and fine-mapper insta-

bilities, and thus require careful interpretation. After restricting to

signals that consistently fine-mapped across multiple fine-map-

pers and settings, we identified 93 unique STRs strongly pre-

dicted to be causal for at least one trait. We highlight STRs from

this set, whichwe predict drive some of the strongest hits for mul-

tiple traits, including apolipoprotein B and platelet traits. Overall,

our study demonstrates the widespread role of polymorphic tan-

dem repeats and highlights the need to consider a broad range of

variant types in GWASs and fine-mapping.

RESULTS

Performing genome-wide STR association studies in 44
traits
We imputed genotypes for 445,720 autosomal STRs into phased

genotype array data from 408,153 UKB White British individuals

using Beagle32 in combination with our published SNP-STR

reference haplotype panel30 (Figure 1A, STARMethods, and Fig-

ure S1). This imputation yielded genotypes broadly similar to

those of WGS (see below). Compared to common SNPs, which

are typically biallelic, the imputed STRs are highly multi-allelic

(Figure 1B). We tested STRs for association with 44 quantitative

blood cell count and other biomarker traits (Table S1), which

were available for between 304,658 and 335,585 genetically un-

related individuals. To facilitate this and other STR association

studies, we developed associaTR (see key resources table), an

open-source software package for identifying associations be-

tween STR lengths (measured by the number of repeat units)

and phenotypes.

For eachSTR-trait pair, we used associaTR to test for linear as-

sociation between STR dosage (the sum of the imputed allele

length dosages of both chromosomes) and the trait measure-

ment (Figures 1C and 1D). We used plink33 to perform similar as-

sociation tests for 70,698,786 SNP and short indel variants that

were imputed into the same individuals31 (hereafter referred to
(F) Comparison between lead SNP and STR p values at each peak. If there are no

are capped at 1e�300, the maximum precision of our pipeline. Color shading rep

left tile (which only contains peaks whose lead SNP and STR variants fall in the lea

See also Table S1; Figures S1 and S2.
collectively as SNPs for brevity). For all associations, we included

as covariates SNP-genotype principal components, genetic sex,

and age (STARMethods). Additional covariateswere included on

a per-trait basis (Table S1). We compared the output of our SNP

analysis pipeline to results reported by Pan UKBB34 and found

that our pipeline produced similar results, with slightly weaker

p values, likely due to not using a linear mixed model (Figure S2).

We compared signals identified by SNPs to those identified by

STRs. For each trait wedefinedpeaks as non-overlapping 250-kb

intervals centeredon the lead genome-widesignificant variant (an

SNP or STR with p < 5e�8) in that interval (STAR Methods). We

identified 389 peaks per trait on average, with blood cell count

traits generally more polygenic than other biomarkers (Figure 1E).

Of thesepeaks, 65.9%containedbothasignificantSTRandasig-

nificant SNP, 32.5% contained only significant SNPs, and 1.7%

contained only significant STRs. The majority of strong peaks

(containing any variant with p < 1e�100) were identified by both

STRs and SNPs, in that they contain both an STR and an SNP

with p < 1e�80. No new strong peaks were identified only by

STRs (Figure 1F), which is unsurprising, since the STRs were

imputed from SNP genotypes. Overall, p values of the lead SNP

and lead STR were similar for most peaks. Thus, we focused on

fine-mapping to determine which variants might be causally

driving the identified signals.

Fine-mapping suggests that 5.2%–7.6% of signals are
driven by STRs
We applied statistical fine-mapping to identify causal variants

that may be driving the GWAS signals detected above. We

used two fine-mapping methods, SuSiE35 and FINEMAP.36

These methods differ in their modeling assumptions and thus

provide partially orthogonal predictions. For each trait we

divided its genome-wide significant variants (SNPs and STRs)

and nearby variants into non-overlapping regions of at least

250 kb (STAR Methods). This resulted in 14,491 fine-mapping

trait regions (Table S2), with some trait regions containing multi-

ple nearby peaks. To compare outputs between fine-mappers in

downstream analyses, we defined the causal probability (CP) of

each variant for each fine-mapper to be the fine-mapper’s pre-

diction of that variant’s chance of being causal. We defined a

variant’s FINEMAP CP to be the posterior inclusion probability

FINEMAP calculated for that variant. We defined a variant’s

SuSiE CP to be the maximal SuSiE alpha value for that variant

across pure credible sets (Figures S3 and S4). We further explain

these choices in Note S1.

We used two approaches to study the contribution of STRs vs.

SNPs to fine-mapped signals. First, we focused on the genome-

wide significant variants (STRs or SNPs) with CP R 0.8 (these

accounted for a minority of the 21,045 pure signals detected

by SuSiE and the 33,756 signals detected by FINEMAP). SuSiE

identified 4,494 such variants and FINEMAP identified 5,170.

Of these, 7.4% (range 1.3%–13.0% across traits; SuSiE) and

7.6% (range 1.4%–14.0%; FINEMAP) are STRs. Among the
STRs in a peak, the y coordinate is set to zero (equivalently for SNPs). p values

resents the number of peaks falling at each position on the graph. The bottom-

st significant bin) has been removed so as not to not skew the color bar’s scale.

Cell Genomics 3, 100458, December 13, 2023 3
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subset of variants identified by both methods (3,961), 5.4%

(range 1.0%–11.1%) are STRs. Second, we considered the

sum of CPs from all genome-wide significant variants in all trait

regions, thereby accounting for the many signals not resolved

to a single variant. STRs make up 5.2% (range 1.1%–6.8%

across traits) of the total SuSiE CP sum and 7.4% (range

2.9%–9.0%) of the total FINEMAP CP sum. A potential limitation

of this second metric is that variants with small CPs (CP % 0.1)

represent a large fraction (29.3%, SuSiE; 35.1%, FINEMAP) of

these totals (Figure S5). Additionally, our results below suggest

that a sizable subset of variant CPs are either discordant be-

tween fine-mappers or unstable, particularly for STRs (Notes

S2 and S3), impacting both metrics. Nevertheless, these results

suggest that 5.2%–7.6% of causal variants identifiable from

GWASs can be attributed to an STR, regardless of the fine-map-

ping method or metric. This is comparable to the percentage of

non-major alleles per person and is roughly half the percentage

of per-person base-pair variation, accounted for by STR lengths

as compared to SNPs in our study (Table S3). Table S4 reports

the 511 genome-wide significant STR associations across 409

distinct STRs with either FINEMAP or SuSiE CP R 0.8, and

Table S5 shows a subset of those that pass stringent threshold-

ing (see below).

To evaluate the reliability of our approach for determining the

relative contributions of STRs vs. SNPs, we performed fine-map-

ping simulations assuming a simple additive model. We used

two strategies for simulating phenotypes, in each case simu-

lating only causal SNPs, and assessed to what extent STRs

were incorrectly identified by SuSiE or FINEMAP as contributing

to the underlying signals. For the first strategy, we randomly

chose between one and three causal SNPs for a total of 1,644

simulations. For the second, we chose the causal variants to

be those indicated by SuSiE as being potentially causal for a

representative real trait (platelet count), thereby attempting to

simulate properties of truly causal variants, for a total of 1,374

simulations. These procedures and rationales are described in

STAR Methods, Table S6, and Figure S6.

In simulations with randomly chosen causal SNPs, STRs

comprised between 0% and 0.46% of genome-wide significant

variants with CPR 0.8. In contrast, using phenotypes simulated

from the second strategy, 1.4%–3.2% were STRs (Table S7). Of

the total CP assigned by SuSiE or FINEMAP to genome-wide

significant variants, 0.50%–0.95% and 3.1%–3.2% were as-

signed to STRs in the first and second simulation strategies,

respectively (Table S8). These numbers are uniformly lower

than the 5.2%–7.6% contribution estimate above. This suggests

that if the 44 traits studied here have genetic architectures similar

to the simulated phenotypes, the results above are unlikely to be

fully explained by systematic bias of fine-mapping in favor of

STRs. However, we expect there are complexities of the genetic

architecture of blood traits that we did not simulate, and we

cannot rule out the possibility that they cause such bias. These

results also suggest that some fine-mapped STRs likely are false

positives. On the other hand, we observed that a large fraction

(66%–81%) of simulated causal SNPs are not assigned CP R

0.8 by fine-mapping and observed a similar lack of sensitivity

in limited simulations including causal STRs (Table S7). We

expect this low sensitivity is a greater source of uncertainty
4 Cell Genomics 3, 100458, December 13, 2023
regarding the relative contribution of variant types than the

false-positive rates.

We evaluated imputation quality at the 409 STRs in Table S4

by comparing imputed genotypes to genotypes obtained from

recently released WGS data for 200,025 UKB individuals. At

each locus we computed the Pearson r2 between imputed

length dosages and WGS length sums, in addition to other met-

rics (Table S4). Per-locus r2 values are greater than 0.9 for

78.7% of these STRs and greater than 0.8 for 92.7%. Other

imputation concordance measurements perform comparably

(Figure S7 and STAR Methods). Overall, they suggest that

fine-mapping with imputed data is unlikely to systematically

differ from fine-mapping with hard-called genotypes for these

loci. Results below are based on imputed genotypes unless

otherwise stated.

Identifying and characterizing confidently fine-mapped
STRs
We performed additional analyses to identify high-confidence

causal STR candidates. First, we noticed that SuSiE and

FINEMAP assigned highly discordant CPs to a subset of variants

(Note S2 and Figures S8–S10). Thus, we conservatively narrowed

our focus to the 167 candidate STR associationswith association

p values <1e�10 andwith CPR 0.8 in both FINEMAPand SuSiE.

Second, to confirm that the fine-mappers’ settings did not appre-

ciably influence our results, we reranSuSiE andFINEMAPunder a

range of alternative settings (STAR Methods). These additional

runs tended to produce concordant results, but again for some

STRsproducedhighly inconsistent CPs (FiguresS11–S14),which

wemostly attribute to imputation uncertainty andFINEMAP insta-

bility (Note S3). Thus, we further restricted our focus to the 118

(70.7%) of the 167 STR-trait associations that also maintained

CP R 0.8 across these additional runs. We refer to the STR-trait

associations meeting these criteria as confidently fine-mapped

STR associations. Lastly, we added an association with an STR

in theAPOB gene to this set, as it only failed tomeet these criteria

because the STR was simultaneously represented in both our

imputed STRs and in the SNP and indel set (Note S4). In total,

we report 119 confidently fine-mapped STR-trait associations

corresponding to 93 distinct STRs, which we display in Figure 2

and Table S5.

We evaluated these results by measuring their replication

rates in populations besides White British individuals, with the

expectation that causal associations replicate at higher fre-

quencies in other populations than non-causal associations,

due to shared biological functionality. The UKB includes self-

identified groups of 8,043 Black, 7,952 South Asian, 1,568 Chi-

nese, 12,957 Irish, and 16,051 Other White participants who

passed quality control, noting that we have chosen to use the

population labels that participants saw and self-ascribed to in

the UKB intake survey (STAR Methods). About 40% of each

population has WGS data, similar to the White British popula-

tion. Using that WGS data we validated the imputed genotypes

of those populations for the STRs in Table S4, finding that

78.2% and 93.9% of per-locus dosage r2 values are greater

than 0.8 and 0.6, respectively, in the South Asian population,

45.5% and 84.8% in the Black population, and 64.3% and

84.8% in the Chinese population (Figure S7). These metrics



(legend on next page)
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are weaker than in the White British population; this is expected

given our largely European reference haplotype panel. Never-

theless, our results suggest that imputed genotypes are suffi-

ciently accurate across these groups for downstream analysis.

For each trait, for each fine-mapping region for that trait iden-

tified amongWhite British individuals, we tested each STR in that

region for association with that trait in each of the other popula-

tions (Table S9; individual loci in Tables S4 and S5). As expected,

signals replicate at a higher rate in the groups most closely

related to our discovery cohort (Irish and Other White). Encour-

agingly, fine-mapped associations replicate at higher rates

than non-fine-mapped associations in the Black, South Asian,

and Chinese populations, even after stratifying by the discovery

p value (Figures 3 and S15). To quantitatively measure this trend,

for each population we fit a logistic regression model using

whether signals replicated in that population as the outcome,

those associations’ fine-mapping statuses as the independent

variable, and their�log10 p value in the discovery cohort as a co-

variate. Those regressions further support that fine-mapped as-

sociations replicate at higher rates (Table S10). Additionally, the

models predict that confidently fine-mapped STR associations

replicate at higher rates than STR associations fine-mapped by

either fine-mapper alone, although only a subset of those predic-

tions reached nominal significance, likely due to the small num-

ber of fine-mapped STR associations.

Next, we sought to characterize the confidently fine-mapped

STRs. This set contains 62 poly(A) repeats, 11 poly(AC) repeats,

5 poly(CCG) repeats, and 15 repeats with other units. Twelve of

these overlap coding or untranslated regions (UTRs) (Tables 1

and S11; the two protein-coding repeats are described in Note

S4 and Figure S16). Compared to genome-wide significant

STRs, confidently fine-mapped STRs were more likely to be

exonic trinucleotide STRs, in 50 UTR regions or in non-protein-

coding genes (two-sided two-sample test of difference between

proportions: p = 2e�26, 1e�3, and 2e�4, respectively) (Fig-

ure S17 and STAR Methods). No other annotations showed

significant signal after multiple hypothesis correction, likely due

to the small number of confidently fine-mapped STRs. Lastly,

we observed that 18 confidently fine-mapped STRs are signifi-

cant cis expression quantitative trait loci (QTLs) and 12 are signif-

icant cis DNA methylation QTLs in the Genotype-Tissue Expres-

sion (GTEx) dataset37 (Figure 2, Tables S12–S14, Figure S18,

and STAR Methods). We note that the GTEx analyses were un-

derpowered due to low sample sizes, particularly for relevant

tissue types (e.g., kidney and liver).
Figure 2. STRs are confidently fine-mapped to causally impact many t

Only STRs with a confidently fine-mapped association are shown. Triangles repre

fine-mapped; red-brown, CPR 0.8 in either initial FINEMAP or SuSiE run; light ta

indicates the sign of the association between STR length and the trait. Triangle size

and light-gray bands. STRs are grouped on the y axis according to the traits to w

genes (protein-coding genes preferred), intergenic STRs by chromosomal locati

mapped STRs and appear twice. Light-blue rows indicate (from left to right): whic

Table S12), associated with the methylation of a nearby CpG site (Table S14), rep

STARMethods), repeat unit, and the number of common alleles (defined in Figure

expression QTLs although they failed WGS call-rate filters in GTEx, as the TAOK1

Methods) and the RHOT1 STR was associated with RHOT1 expression in the G

Tables S4, S5, S12, and S14.
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Fine-mapped STRs capture known associations
We identified multiple fine-mapped STRs previously demon-

strated to have functional roles, supporting the validity of our

pipeline. For instance, our confidently fine-mapped set impli-

cates a protein-coding CTG repeat (Table S11) to be causal for

one of the strongest apolipoprotein B signals (two-sided associ-

ation t test, p = 1e�279; in one of four apolipoprotein B peaks

with minimal p value exceeding our numeric precision). Apolipo-

protein B forms the backbone of low-density lipoprotein (LDL)

cholesterol lipoproteins,38 and this locus is also one of the stron-

gest LDL signals (p = 6e�236; fifth most significant peak), with

this STR marked as causal in eight of nine LDL fine-mapping

runs. This repeat is biallelic in the UKB cohort, with a three-

residue deletion (Leu-Ala-Leu) in the signal peptide in the first

exon of the apolipoprotein B gene as the alternative allele.39 It

is an imperfect deletion in the CTG repeat, with sequence

CTGGCGCTG. In agreement with previous findings,40 we found

the short allele to be associated with higher levels of both analy-

tes. We discuss this locus further in Note S4.

As another example, our initial fine-mapping implicates a

multi-allelic AC repeat (Table S11) 6 bp downstream of exon 4

ofSLC2A2 (also known asGLUT2, a genemost highly expressed

in liver) as causally impacting bilirubin levels (p = 9e�18). How-

ever, this repeat was not confidently fine-mapped due to its

FINEMAP CP of 0.61 not passing our 0.8 threshold, despite its

SuSiE CP of 0.99. The potential link between SLC2A2 and bili-

rubin is described in Note S5. Previous studies in HeLa and

HEK293T cell lines showed that inclusion of exon 4 of SLC2A2

is repressed by the binding of mRNA processing factor hnRNP

L to this repeat,41,42 implicating this STR in SLC2A2 splicing.

Notably, these studies did not investigate the impact of varying

repeat copy number. We examined this STR in GTEx liver sam-

ples and did not find a significant linear association between

repeat count and exon 4 splicing, although we did find evidence

for association with exon 6 splicing (Figure S19).

A trinucleotide repeat in CBL regulates platelet traits
Most confidently fine-mapped STR associations identified here

have, to our knowledge, not been previously reported. This in-

cludes positive associations between the length of a highly

polymorphic CGG repeat in the promoter of the gene CBL and

both platelet count (p = 4e�83) and platelet crit (p = 6e�103;

11th most significant platelet-crit peak; Figures 4A and 4B;

Table S11; Figure S20). This finding fits the trend of CG-rich re-

peats in promoter and 50 UTR regions being strongly implicated
raits

sent STR-trait association with association p value <1e�10. Black, confidently

n, all other associations with p values <1e�10. Triangle direction (up or down)

represents association p value. Similar traits are grouped on the x axis bywhite

hich they were confidently fine-mapped. STRs in genes are labeled by those

on and nearest gene. CCDC26 and TFDP2 each contain two confidently fine-

h STRs are associated with the expression of a nearby gene (adjusted p < 0.05;

licate with the same direction of effect in other populations (adjusted p < 0.05;

1; see scale beneath). Additionally, we mark the STRs in TAOK1 and RHOT1 as

STR was associated with TAOK1 expression when imputed into GTEx (STAR

euvadis dataset (STAR Methods). The data summarized here are available in



Figure 3. Concordance of White British STR effect directions in Black, South Asian, and Chinese populations

The y axis gives the fraction of STR associations measured in the White British discovery population that have the same effect direction when measured in the

replication population (regardless of p value). Parentheses beneath the x axis denote the binning of discovery �log10 p values. Brown, genome-wide significant

associations (discovery p < 5e�8); orange, FINEMAP STR associations (discovery p < 5e�8 and FINEMAP CP R 0.8); teal, SuSiE STR associations (discovery

p < 5e�8 and SuSiE CP R 0.8); purple, confidently fine-mapped STR associations. Annotations above each bar indicate the number of STR-trait associations

considered. We required confidently fine-mapped STR associations to have p values <1e�10; thus, they do not appear in the leftmost bin. This figure is

somewhat sensitive to the choice of p-value bin boundaries, so we additionally analyze these data using logistic models (Table S10). See also Figure S15.
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in transcriptomic regulation,13 often via epigenomic regula-

tion.43,44 This repeat’s associationwithmeansphered cell volume

is also confidently fine-mapped (p = 7e�16; Figure S21), but that

signal is weaker andwe do not discuss it. For both the platelet crit

and platelet count phenotypes, SuSiE and FINEMAP identify two

genome-wide significant signals in this region, one of which they

both localize to this STR. After conditioning on a lead variant from

the other signal (rs2155380), this STR becomes the lead variant in

the region by a widemargin (Figures 4C and 4D). Conditioning on

both rs2155380 and this STR accounts for all the signal in the re-

gion (Figure 4E), supporting the fine-mappers’ prediction that

there are two signals in this region, one of which is driven by

this STR.

This STR contains a common imperfection, rs7108857, which

changes the second CGG copy to TGG. That variant is in weak

LD with the length of the STR (r2 in imputed genotypes between

0.023 [White British] and 0.175 [Chinese]) (Figure 4A) and in

strong LD with the lead variant of the other signal (rs2155380,

White British r2 = 97.8%). While rs7108857 is more strongly

associated with the platelet traits than the STR’s length (platelet

count p = 9e�86, platelet crit p = 4e�98) and is associated with

CBL expression in the GTEx cohort (minimum p = 2.04e�18 in

esophagus muscularis), given the fine-mappers’ results that

the STR length association is an independent signal, it is unsur-

prising that the STR-length association remains after stratifying

on this imperfection (Figure 4F). This suggests that imperfections

and repeat lengths are different characteristics of STRs and may

have distinct associations.

The imputation of this STR displays relatively modest levels of

concordance with WGS data (r2 = 0.582 between imputation

length dosages and WGS length sums; Table S5). Yet, reassur-

ingly, hard-called genotypes from WGS show similar trends

with both platelet traits (Figures 2B, S20A, S20C, and S20D).

Further, this STR’s allele length distributions in the UKB are

highly concordant with those in the 1000 Genomes Project

(Figures 4A and S22).

CBL codes for a protein in the RING finger subfamily of E3

ubiquitin ligases—a class of proteins, each with specific target

molecule(s), that ubiquitinate their targets,priming themfordown-

stream degradation. CBL targets the thrombopoietin receptor

MPL,45 thereby downregulating thrombopoietin signaling.46 As
thrombopoietin is the primary positive regulator of platelet pro-

duction,47 this implicates CBL as a negative regulator of platelet

production. As further evidence, controlled experiments in mice

demonstrate that loss of CBL function in megakaryocytes, the

bonemarrowplatelet progenitor cells, results in increasedplatelet

counts.48 Further, we observed that increased CGG length is

negatively associated with CBL expression in three GTEx cohort

tissues37 (p values <0.05 after multiple hypothesis correction;

Figure 4G and Table S12) and in European individuals in the Geu-

vadis cohort49 (p = 0.007; Figure 4H). Combined, all these data

lead to an overall hypothesis that longer CGG repeat alleles

contribute to increased platelet count by decreasingCBL expres-

sion (Figure 4I).

Additional confidently fine-mapped STR-trait
associations
We observe a 50 UTR CCG repeat in BCL2L11 (also known as

BIM) that is confidently fine-mapped to eosinophil percentage

(p = 6e�75) and eosinophil count (p = 5e�58) (Table S11). This

repeat is the most strongly associated variant in the region for

both traits, and conditioning on it accounts for the entire signal

in this region (Figure S23).BCL2L11 is a pro-apoptotic regulatory

protein and is required in the tightly regulated lifespan of myeloid

lineage cells,50 which include eosinophils. One mouse-model

study showed that loss of repression ofBCL2L11 lowered eosin-

ophil counts,51 and another showed that BCL2L11 knockout

increased granulocyte counts, a class of cells including eosino-

phils.52 This implicates BCL2L11 in the regulation of eosinophil

count, supporting the connection we observe between eosino-

phil count and this STR’s length.

While exonic repeats are easier to interpret, most of our confi-

dently fine-mapped STRs fall in intronic regions. We resolve one

of the strongest signals for mean platelet volume (p < 1e�300;

one of 12 peaks with p values exceeding our numeric precision)

to a multi-allelic poly(A) STR in an intron of the gene TAOK1

(Table S11 and Figure S24A). Conditioning on this STR’s length

demonstrates that it explains most of the signal in this region

(Figure S24B). The same STR also shows a strong association

with platelet count, with p = 2e�181 and a SuSiE CP of 1.

TAOK1 is a protein kinase that plays a role in regulating micro-

tubule dynamics,53 and microtubule function is known to be
Cell Genomics 3, 100458, December 13, 2023 7



Table 1. Confidently fine-mapped STRs are identified in coding regions and UTRs

STR coordinate

(hg19 chr:pos) Reference allele Repeat unit Trait

Association

p value Association Z score Gene (annotation)

Transcription

direction

1:204527033 (TAA)9 AAT platelet crit 5.76e�17 �8.37 MDM4 (30 UTR) +

2:21266752 (CAG)6(CGCAGGCAG)

[CGC(CAG)2]2CGC

CTG

(polyleucine)

apolipoprotein B 1.37e�279 �35.76 APOB (coding) �

2:106510441 (AC)6GTG(CA)10C(TA)7T AC mean platelet volume 6.93e�29 �11.15 NCK2 (30 UTR) +

2:111878544 (CGC)(CGCTGC)2(CGC)13C CCG eosinophil count;

eosinophil percent

4.96e�58;

5.88e�75

+16.06;

+18.32

BCL2L11 (50 UTR) +

2:204311891 T4CT4CT3CT18 T IGF-1 3.97e�11 �6.61 ABI2 (30 UTR*)
ENST00000295851.10 (1)

+

6:90121977 (TC)7 TC cystatin C 1.24e�16 +8.28 RRAGD (30 UTR) �
11:119077000 (CGG)11C CGG mean sphered cell volume;

platelet count; platelet crit

6.88e�16;

3.77e�83;

6.07e�103

�8.07;

+19.32;

+21.55

CBL (50 UTR*)
ENST00000634586.1 (5)

+

15:40312923 T16 T red blood cell count 2.27e�20 +9.25 EIF2AK4 (not protein coding*)

ENST00000558743.1 (2)

+

16:67229794 (CAG)13(CAA)(CAG)(TAA)(CAG)3 AGC

(polyserine)

mean sphered cell volume;

red blood cell count; mean

corpuscular haemoglobin;

mean corpuscular volume

3.07e�23;

1.08e�13;

2.83e�23;

9.27e�26

+9.93; �7.43;

+9.94; +10.49

E2F4 (coding) +

17:30469471 (CCG)16CC CCG red blood cell distribution

width

6.57e�13 +7.19 RHOT1 (50 UTR) +

17:33871548 T17 A mean platelet volume 4.30e�62 �16.63 SLFN14 (30 UTR) �
20:32971954 A20 A shbg 6.37e�15 �7.80 Y RNA

ENST00000364628.1 (3)

�

Imputed alternative alleles and rsIDs are provided in Table S11. Here repeat units are calculated as in STAR Methods, except that they are required to be in the direction of transcription of the

containing gene. For STRs fine-mapped tomultiple traits, we list those traits and their corresponding p values and Z scores separated by semicolons. We denote with asterisks the STRs that only

appear in non-canonical transcripts for their genes from Ensembl release 106. Additionally, two STRs in this list only appear in transcripts or genes that are not protein coding. For all those STRs,

we provide Ensembl transcript numbers followed by parentheses containing the Ensembl transcript support level, a number from 1 to 5, with larger numbers indicating lower levels of evidence.

The protein-coding repeats in APOB and E2F4 are further analyzed in Note S4. See also Table S5.
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Figure 4. A polymorphic CGG repeat in the promoter of CBL influences platelet traits

(A) Distribution of STR alleles across populations. The x axis gives STR length (in number of full repeat unit lengths, using WGS data), and the y axis gives the

population frequency. The hatched portion of each bar corresponds to those alleles that include a TGG imperfection at the second repeat (rs7108857). We label

the ultra-rare alleles with T imperfections at other locations as ‘‘perfect’’ for these analyses. Colors denote different populations. Allele lengths 3–6, 21–33, 36, and

37 each have frequency less than 1% in all populations and are omitted.

(B) STR length vs. platelet count. STR-length sums were calculated fromWGS data on (potentially related) White British participants that passed quality control.

Error bars correspond to 95% confidence intervals. Only allele length sums with a frequency of 0.1% or greater are displayed. Rounded population-wide counts

are displayed for each sum.

(C–E) Association of variants at the CBL locus with platelet crit. Association plots in the White British population are shown before conditioning (C), after con-

ditioning on rs2155380 (D), and after conditioning on both rs2155380 and STR length (E). Light blue, SNPs; orange, STRs. Red line, genome-wide significance

threshold; black circles, the (CGG)n STR and rs2155380.

(F) STR length vs. platelet count conditioned on the TGG imperfection rs7108857. STR-length sumswere calculated as in (B). Blue, individuals homozygous for no

imperfection (n = 86,974); orange, individuals homozygous for the imperfection (n = 11,778). For each category, only length sums with a frequency of 0.2% or

greater in that category are displayed.

(G and H) STR length vs.CBL expression. Associations are shown for cultured fibroblasts fromGTEx (n = 393) (G) and LCLs fromGeuavdis (n = 447) (H). Black, all

available GTEx data regardless of population; yellow, African; blue, European. Only allele length sums with at least five corresponding participants are displayed.

(I) Proposed pathway for the effect of STR length on platelet traits. The arrow denotes a positive association, and the capped lines denote negative associations.

Interactions are captioned by their information sources.

See also Figures S20–S22.
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critical to platelet generation.54 The STR is in an intron of the ca-

nonical TAOK1 transcript but lies immediately downstream of a

non-protein-coding transcript of TAOK1 (ENST00000577583,

which contains a retained intron) and is approximately 2.4 kb up-

stream of a differentially spliced exon. The STR also bears the

hallmarks of a regulatory element: it is located in a DNase hyper-

sensitivity cluster and overlaps an ERS1 transcription factor

binding site (STAR Methods). Although this STR was filtered
from our initial GTEx callset due to low call rate (11%), we

imputed it into SNP data from that cohort (STARMethods). While

we did not identify significant associations between repeat

length and splicing of any nearby exons, STR lengths showed

significant negative correlation with TAOK1 expression in five

tissues (strongest p value 8e�6 in thyroid; Figures S24C and

S24D). The repeat also showed significant associations with

the expressions of nearby genes ANKRD13B and TP53I13,
Cell Genomics 3, 100458, December 13, 2023 9
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although their potential role in platelet regulation is less clear

(Table S12).

Another confidently fine-mapped example identifies an asso-

ciation between a GTTT repeat in an intron of estrogen receptor

beta (ESR2) and haemoglobin concentration (p = 1e�24), red

blood cell count (p = 3e�24), and haematocrit (p = 1e�26),

where additional repeat copies correspond to lower measure-

ments of all three traits (Note S5, Figure S25, and Table S11).

Despite the weak discovery p value and differing allele

distribution with the White British population (Figure S25C),

these associations replicate in the Black population with p values

<0.05. Further, consistent with these associations, ESR2 ligand

17b-estradiol has been implicated in the regulation of red

blood cell production.55,56 We found significant negative associ-

ations between STR length and ESR2 expression in two GTEx

tissues (p values <0.05 after multiple hypothesis correction;

Table S12). The expected direction of the effect of ESR2 on

red blood cell production is unclear given the highly tissue-spe-

cific isoform usage and functions of this gene (Note S5). Never-

theless, our results support a role for this STR in red blood cell

production through regulation of ESR2.

We observed many additional interesting associations among

the confidently fine-mapped STRs. For example, we findmultiple

confidently fine-mapped AC repeats that also significantly asso-

ciate with expression of nearby genes. This includes a polymor-

phic AC repeat located in the 30 UTR of NCK2 that is associated

withmeanplatelet volume (p=7e�29; FigureS26andTableS11).

This repeat overlaps a binding site for the transcription factor

PABPC1 and has a significant negative association with NCK2

expression in multiple GTEx tissues (strongest p = 5e�7;

Table S12). Separately, we find a highly polymorphic CCG repeat

in the 50 UTR of RHOT1 that is associated with red blood cell dis-

tribution width (p = 7e�13; Table S11). WGS data show that our

imputation of this locus is poor. Nonetheless, the effect of this

STR is biologically plausible—it overlaps a CTCF binding site, is

located within a nucleosome-depleted region of a H3K27ac

peak in lymphoblastoid cell lines (LCLs), and shows strong

association with the expression of RHOT1 in LCLs in the Geuva-

dis dataset (p = 2e�44 in Europeans, p = 0.035 in Africans; Fig-

ure S27). Finally, many STRs in our fine-mapped set consist of

poly(A) repeats. While traditionally these have been particularly

challenging to genotype,57many suchSTRs, including poly(A) re-

peats in MYO9B, DENND4A, and NRG4, show strong statistical

evidence of causality (Figure S2). Taken together, these loci

exemplify the large number of confidently fine-mapped STRs

our analysis provides for future study.

DISCUSSION

In this study, we imputed 445,720 STRs into the genomes of

408,153 UKB participants and associated their lengths with 44

blood cell and other biomarker traits. Using fine-mapping, we es-

timate that STRs account for 5.2%–7.6% of causal variants for

these traits that can be identified by GWASs. We stringently

filtered the fine-mapping output to produce 119 confidently

fine-mappedSTR-trait associationswith strongevidence for cau-

sality, including some of the strongest signals for apolipoprotein

B and platelet traits. These confidently fine-mapped STRs repli-
10 Cell Genomics 3, 100458, December 13, 2023
cated in the Black, South Asian, and Chinese UKB populations

at higher rates than non-fine-mapped STRs (each p < 0.02). A

subset of these STRs is associatedwith the expression of nearby

genes, explaining their effects via their plausible impact on regu-

latory processes.

Broadly,wehighlight the importance of includingmore types of

genetic variants in complex trait analysis. It has been proposed

that STRs may represent an important source of the ‘‘missing

heritability’’ in SNP-based GWASs.58,59 Indeed, STRs, as well

as VNTRs,2 copy-number variants,4 human leukocyte antigen

types,60 and some structural variants,61 are often highly multi-

allelic and only imperfectly tagged by individual SNPs, suggest-

ing that analyses omitting these variants may overlook important

sources of causal variants and heritability. Further, we expect

that incorporation of additional sources of causal variants, which

often exhibit population-specific allele distributions, will improve

applications such as polygenic risk scores, particularly in con-

structing scores that are transferable across populations.
Limitations of the study
While our results uncover many candidate causal STR variants,

these findings are not exhaustive. Our fine-mapping procedure

was exceptionally conservative and excluded hundreds of

STR-trait associations strongly predicted to be causal in some

but not all settings tested. Further, whereas we performed asso-

ciation tests with a fixed-effects model, using a linear mixed

model would increase power to detect additional associations.

Additionally, computing constraints limited our analysis to a small

number of traits. We hope that follow-up studies will extend this

analysis to a wide variety of medically actionable traits.

Another limitation is that our study is based on imputed geno-

types. Our SNP-STR reference panel only included 27.5% of the

1.6 million STRs in the HipSTR reference panel (see key re-

sources table), due to the exclusion of STRs with low heterozy-

gosity, non-autosomal STRs, most long repeats such as those

implicated in pathogenic expansion disorders, and many STR

alleles common only in non-European populations.30 Further,

imputed genotypes are inherently noisy, especially in non-Euro-

pean populations. Despite these limitations, analysis of WGS

data released for 200,025 UKB participants62 during the course

of this study validated associations seen in imputed data. Subse-

quently, calls at 2.5 million STRs were released for 150,000

participants with WGS data.62 Future studies performing STR-

based GWASs solely using WGS datasets such as this will avoid

these limitations.
Current challenges in statistical fine-mapping
Importantly, our study highlights that fine-mapping results are in

some cases highly sensitive to the choice of fine-mapping tool

and to a lesser extent to data-processing choices and fine-map-

per instabilities, where one fine-mapping run would identify a

variant as highly likely to be causal but a second would identify

it as having no chance of causal impact. Further, our simulations

suggest that fine-mappers have low sensitivity rates even when

sample sizes are large and all model assumptions are met. This

suggests that statistical fine-mapping results should be inter-

preted cautiously and evaluated for sensitivity to model choices



Article
ll

OPEN ACCESS
and that further work is needed to make statistical fine-mapping

more robust.

Although fine-mapping inconsistencies existed for SNPs and

STRs, they were more prevalent for STRs. While this may in

part be due to STR imputation noise, more research is needed

to evaluate the performance of fine-mapping tools on regions

containing STRs. Additionally, there is need for fine-mapping

tools that can model the effects of multi-allelic variants. In theory

existing frameworks can handle linear repeat-length associa-

tions, but we hypothesize that more detailed modeling of LD

between SNPs and individual STR alleles may enable more ac-

curate model fitting. Similarly, existing tools often iteratively fit

models by trading one causal variant for another variant in close

LD, but greater accuracy may be obtained by trading a single,

potentially causal, multi-allelic variant formultiple simultaneously

causal biallelic variants.

Future directions
Methodological advances are needed to support the study of

STRs. Here we developed associaTR, an open-source pipeline

enabling studies to conduct STR-length-based association tests.

However, integrating support for complex variants, including

STR-length-based testing, intowidely usedGWAS toolkitswould

enable more routine analysis of the full spectrum of human ge-

netic variation. Improvements to our models are also likely to

reveal new insights. Here we only modeled linear associations

between STR lengths and traits. Visualizations of the associa-

tions we identify suggest that linear models only partially approx-

imate those signals and that they may be best described by

non-linear models, such as quadratic or sigmoid relationships

between repeat copy numbers and traits. However, fitting non-

linear models requires modeling the effects of the two alleles at

each locus separatelywhile simultaneously controlling for overfit-

ting and is a topic of ongoing work. We also only tested for asso-

ciations with STR lengths. However, inspection of individual loci

reveals that complex repeat structures are common (Tables 1

and S11). Systematic evaluation of potential epistasis between

repeat imperfections and STR lengths, and between the lengths

of neighboring repeats, would potentially improve our under-

standing of STR impacts.

Overall, our study provides a framework for incorporating hun-

dreds of thousands of tandem repeat variants into GWASs,

either via imputation or using WGS genotypes such as the newly

released62 UKB callset. Our study identifies dozens of candidate

variants for future mechanistic studies and demonstrates that

STRs likely make widespread contributions to complex traits.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

STR association testing results,

by population and phenotype

This paper https://gymreklab.com/science/2023/09/08/Margoliash-

et-al-paper.html or as a dataset frozen at the time of publication

on Dryad at the DOI https://doi.org/10.5061/dryad.z612jm6jk

Fine-mapping results by phenotype This paper https://gymreklab.com/science/2023/09/08/Margoliash-

et-al-paper.html or as a dataset frozen at the time of publication

on Dryad at the DOI https://doi.org/10.5061/dryad.z612jm6jk

1000 Genomes individuals Auton et al.23 https://www.internationalgenome.org/data-portal/sample

using the ‘‘Download the list’’ tab

1000 Genomes WGS data Byrska-Bishop et al.63 https://www.internationalgenome.org/data-portal/data-

collection/30x-grch38

Beagle-provided human

genetic maps

Browning et al.32 https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/

GENCODE 38 (hg19) Frankish et al.64 http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/

release_38/GRCh37_mapping/gencode.v38lift37.annotation.gff3.gz

Geuvadis Lappalainen et al.49 https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/

files/analysis_results/?ref=E-GEUV-1

GTEx data portal The GTEx Consortium37 https://www.gtexportal.org/home/datasets

GTEx expression data,

exon read counts

The GTEx Consortium37 https://storage.googleapis.com/gtex_analysis_v8/

rna_seq_data/GTEx_Analysis_2017-06-05_v8_

RNASeQCv1.1.9_exon_reads.parquet

GTEx expression data, junction

read counts

The GTEx Consortium37 https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/

GTEx_Analysis_2017-06-05_v8_STARv2.5.3a_junctions.gct.gz

GTEx expression data, TPM The GTEx Consortium37 https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/

GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz

GTEx expression STRs,

previously released

Fotsing et al.13 https://www.nature.com/articles/s41588-019-0521-9#Sec23

GTEx methylation data Oliva et al.65 NCBI GEO database accession number GSE213478

GTEx methylation overview Oliva et al.65 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213478

GTEx methylation CpG locations Oliva et al.65 https://www.ncbi.nlm.nih.gov/geo/download/?

acc=GSE213478&format=file

GTEX WGS data The GTEx Consortium37 dbGaP accession number phs000424.v8.p2

HipSTR STR reference Willems et al.6 https://github.com/HipSTR-Tool/HipSTR-references/

raw/master/human/

LiftOver chain file Hinrichs et al.66 https://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/

hg19ToHg38.over.chain.gz

LiftOver chain file Hinrichs et al.66 ftp://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/

hg38ToHg19.over.chain.gz

Methylation-STR dataset

for validation

Martin-Trujillo et al.17 https://genome.cshlp.org/content/33/2/184.short

Pan-UKB manifest Pan-UKB team34 https://docs.google.com/spreadsheets/d/

1AeeADtT0U1AukliiNyiVzVRdLYPkTbruQSk38DeutU8

Pan-UKB overview Pan-UKB team34 https://pan.ukbb.broadinstitute.org/downloads

Pan-UKB summary statistics

for bilirubin

Pan-UKB team34 https://pan-ukb-us-east-1.s3.amazonaws.com/sumstats_

flat_files/biomarkers-30840-both_sexes-irnt.tsv.bgz

Pan-UKB summary statistics

index for bilirubin

Pan-UKB team34 https://pan-ukb-us-east-1.s3.amazonaws.com/sumstats_

flat_files_tabix/biomarkers-30840-both_sexes-irnt.tsv.bgz.tbi

SNP-STR reference panel Saini et al.30 https://gymreklab.com/2018/03/05/snpstr_imputation.html

UKB data showcase search page Sudlow et al.67 https://biobank.ctsu.ox.ac.uk/crystal/search.cgi

(Continued on next page)
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UKB genotypes, microarray and

phased, release version 2

Bycroft et al.31 https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/

ukbgene_instruct.html

UKB genotypes, imputed,

release version 3

Bycroft et al.31 https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/

ukbgene_instruct.html

UKB genotypes, whole genome

sequencing

Halldorsson et al.62 https://ukbiobank.dnanexus.com/ under Bulk/Whole genome

sequences/Whole genome CRAM files

UKB sample quality control file Bycroft et al.31 European Genome-Phenome Archive accession

EGAF00001844707

Software and algorithms

AssociaTR, published as part of the

TRTools68 package

This paper https://trtools.readthedocs.io/ and frozen at the time of publication

on Zenodo at the DOI https://zenodo.org/records/10056105

Code for performing most of the

analyses and generating most

of the figures in this paper

This paper https://github.com/LiterallyUniqueLogin/ukbiobank_strs/ and

frozen at the time of publication on Zenodo at the DOI

https://doi.org/10.5281/zenodo.8436632

Beagle v5.1 (build 25Nov19.28days) Browning et al.32 https://faculty.washington.edu/browning/beagle/b5_1.html

Beagle v5.2 (beagle.28Jun21.220.jar) Browning et al.32 https://faculty.washington.edu/browning/beagle/b5_2.html

bedtools Quinlan et al.69 https://bedtools.readthedocs.io/en/latest/index.html

bgen-reader 4.0.8 Horta70 https://bgen-reader.readthedocs.io/en/latest/index.html

cyvcf2 0.30.14 Pedersen71 http://brentp.github.io/cyvcf2/

FINEMAP Benner et al.36 http://christianbenner.com/

fusera The MITRE Corporation https://github.com/ncbi/fusera

h5py v3.6.0 Collette et al.72 https://github.com/h5py/h5py

HDF5 The HDF Group73 https://www.hdfgroup.org/HDF5/

HipSTR Willems et al.6 https://github.com/gymrek-lab/HipSTR

Integrative Genomics Viewer Robinson et al.74 https://igv.org/

LiftOver Hinrichs et al.66 https://genome.ucsc.edu/cgi-bin/hgLiftOver

accessed on 2023/03/09

PEER v1.0 Stegle et al.75 https://github.com/PMBio/peer/wiki/

plink v.1.90b3.44 Chang et al.33 https://www.cog-genomics.org/plink2/

plink2 v2.00a3LM

(build AVX2 Intel 28 Oct 2020)

Chang et al.33 https://www.cog-genomics.org/plink/2.0/

PRIMUS v1.9.0 Staples et al.76 https://primus.gs.washington.edu/primusweb/

rhdf5 v2.38.0 Fischer et al.77 https://www.bioconductor.org/packages/release/

bioc/html/rhdf5.html

Scipy.stats v1.7.3 Virtanen et al.74 https://docs.scipy.org/doc/scipy/reference/stats.html

smartpca included in

EIGENSOFT v6.1.4

Price et al.78 https https://github.com/DReichLab/EIG

Statsmodels v0.13.2 Seabold et al.79 https://www.statsmodels.org/stable/index.html

SuSiE v0.11.42 Wang et al.35 https://stephenslab.github.io/susieR/index.html

TRTools v4.2.1 (including

CompareSTR,

DumpSTR and MergeSTR)

Mousavi et al.80 https://trtools.readthedocs.io/en/latest/

UCSC genome browser Kent et al.81 https://genome.ucsc.edu/index.html

ukbgene utility (ver Jan 28 2019

14:09:15 - using Glibc2.28(stable))

UK Biobank https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/

ukbgene_instruct.html
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Lead contact
Further information and requests for resources should be directed to Melissa Gymrek (mgymrek@ucsd.edu).

Materials availability
This study did not generate new reagents.
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Data and code availability
d Original code has been deposited publicly on GitHub at https://github.com/LiterallyUniqueLogin/ukbiobank_strs and is avail-

able as a repository frozen at the time of publication on Zenodo at the DOI: https://doi.org/10.5281/zenodo.8436632

d STR association summary statistics and raw fine-mapping data have been deposited at https://gymreklab.com/science/

2023/09/08/Margoliash-et-al-paper.html and are available as a dataset frozen at the time of publication on Dryad at the

DOI: https://doi.org/10.5061/dryad.z612jm6jk.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Selection of UK Biobank participants
We downloaded the fam file and sample file for version 2 of the phased SNP array data (referred to in the UKB documentation as the

‘haplotype’ dataset) using the ukbgene utility (ver Jan 28 2019 14:09:15 - using Glibc2.28(stable)) described in UKBData Showcase67

Resource ID 664 (see key resources table). The IDs from the sample file already excluded 968 individuals previously identified as

having excessive principal component-adjusted SNP array heterozygosity or excessive SNP array missingness after call-level

filtering31 indicating potential DNA contamination. We further removed withdrawn participants, indicated by non-positive IDs in

the sample file as well as by IDs in e-mail communications from the UKB access management team. After the additional filtering,

data for 487,279 individuals remained.

We downloaded the sample quality control (QC) file (described in the sample QC section of UKB Data Showcase Resource ID

531 (see key resources table)) from the European Genome-Phenome Archive (accession EGAF00001844707) using pyEGA3.82

We subsetted the non-withdrawn individuals above to the 408,870 (83.91%) participants identified as White British by column

in.white.British.ancestry.subset of the sample QC file. This field was computed by the UKB team to only include individuals whose

self-reported ethnic background wasWhite British and whose genetic principal components were not outliers compared to the other

individuals in that group.31 In concordance with previous analyses of this cohort31 we additionally removed data for:

(1) 2 individuals with an excessive number of inferred relatives, removed due to plausible SNP array contamination (participants

listed in sample QC file column excluded.from.kinship.inference that had not already been removed by the UKB team prior to

phasing)

(2) 308 individuals whose self-reported sex did not match the genetically inferred sex, removed due to concern for sample

mislabeling (participants where sample QC file columns Submitted.Gender and Inferred.Gender did not match)

(3) 407 additional individuals with putative sex chromosome aneuploidies removed as their genetic signals might differ signifi-

cantly from the rest of the population (listed in sample QC file column putative.sex.chromosome.aneuploidy)

Following these additional filters the data for 408,153 individuals remained (99.82% of the White British individuals considered

above).

SNP and indel dataset preprocessing
We obtained both phased hard-called and imputed SNP and short indel genotypes made available by the UKB. These variants were

provided in reference genome hg19 coordinates, and all analyses in this study, unless otherwise specified, were performedwith hg19

coordinates.

Phased hard-called genotypes: We downloaded the bgen files containing the hard-called SNP and indel haplotypes (release

version 2) and the corresponding sample and fam files using the ukbgene utility (UKB Data Showcase Resource 664 (see key re-

sources table)). These variants had been genotyped using microarrays and phased using SHAPEIT383 with the 1000 genomes phase

3 reference panel.23 Variants genotyped on the microarray were excluded from phasing and downstream analyses if they failed QC

on more than one microarray genotyping batch, had overall call-missingness rate greater than 5% or had minor allele frequency less

than 0.01%. Of the resulting 658,720 variants, 99.5%were single nucleotide variants, 0.2%were short indels (average length 1.9bp,

maximal length 26bp), and 0.2% were short deletions (average length 1.9bp, maximal length 29bp).

Imputed genotypes: We similarly downloaded imputed SNP data using the ukbgene utility (release version 3). Variants had

been imputed with IMPUTE431 using the Haplotype Reference Consortium panel,22 with additional variants from the

UK10K24 and 1000 Genomes phase 323 reference panels. The resulting imputed variants contain 93,095,623 variants, consist-

ing of 96.0% single nucleotide variants, 1.3% short insertions (average length 2.5bp, maximum length 661bp), 2.6% short de-

letions (average length 3.1bp, maximum length 129bp). This set does not include the 11 classic human leukocyte antigen alleles

imputed separately.

We used bgen-reader70 4.0.8 to access the downloaded bgen files in python. We used plink233 v2.00a3LM (build AVX2 Intel 28

Oct 2020) to convert bgen files from both hard-called and imputed SNPs to the plink2 format for downstream analyses. For hard-

called genotypes, we used plink to set the first allele to match the hg19 reference genome. Imputed genotypes already matched

the reference. Unless otherwise noted, our pipeline worked with imputed genotypes as non-reference allele dosages, i.e.,

PrðheterozygousÞ+ 2�Prðhomozygous alternateÞ for each individual.
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STR imputation
Wepreviously published a reference panel containing phased haplotypes of SNP variants alongside 445,720 autosomal STR variants

in 2,504 individuals from the 1000 Genomes Project23,30 (see key resources table). This panel focuses on STRs ascertained to be

highly polymorphic and well-imputed in European individuals. Notably, this excludes many STRs known to be implicated in repeat

expansion diseases, STRs that are primarily polymorphic only in non-European populations, or STRs that are too mutable to be in

strong linkage disequilibrium (LD) with nearby SNPs.

The IDs listed in the ‘str’ column of Table S2 at that URL describe which variants in the reference panel are STRs and which are

other types of variants. That produces a list of 445,715 unique variant IDs and 5 IDs which are each assigned to four separate variants

in the reference panel VCFs. For the IDs with multiple assignments, we selected the variant that appeared first in the VCF and

discarded the others, leaving 445,720 unique STR variants each with unique IDs.

While our analyses with these STRs were performed using hg19 coordinates unless otherwise stated, we also provide hg38 refer-

ence coordinates for these STRs in the supplemental tables. We obtained those coordinates using LiftOver66 which resulted in iden-

tical coordinates as in HipSTR’s6 hg38 STR reference panel (see key resources table). All STRs successfully lifted over to hg38

coordinates.

To select shared variants for imputation, we note that 641,582 (97.4%) of SNP and indel variants that were hard-called and phased

in the UKB participants were present in our SNP-STR reference panel. As a quality control step, we filtered variants that had highly

discordant minor allele frequencies between the 1000 Genomes European subpopulations (see key resources table) and White

British individuals from the UKB.We first took amaximal unrelated set of theWhite British individuals (see PhenotypeMethods below)

and then visually inspected the alternate allele frequency of the overlapping variants (Figure S1) and chose to remove the 110 variants

with an alternate allele frequency difference of more than 12%.

We used Beagle32 v5.1 (build 25Nov19.28days) with the tool’s provided human genetic maps (see key resources table) and

non-default flag ap=true to impute STRs into the remaining 641,472 SNPs and indels from the SNP-STR panel into the hard-

called SNP haplotypes. Though we performed the above comparison between reference panel Europeans and UKB White

British individuals, we performed this STR imputation into all UKB participants using all the individuals in the reference panel.

We chose Beagle because it can handle multi-allelic loci. Due to computational constraints, we ran Beagle per chromosome on

batches of 1000 participants at a time with roughly 18GB of memory. We merged the resulting VCFs across batches and ex-

tracted only the STR variants. Lastly, we added back the INFO fields present in the SNP-STR reference panel that Beagle

removed during imputation.

Unless otherwise noted, our pipeline worked with these genotypes as length dosages for each individual, defined as the sum

of length of each of the two alleles, weighted by imputation probability. Formally, dosage =
P
a ˛A

lenðaÞ � ½Prðhap1 = =

aÞ +Prðhap2 = = aÞ�, where A is the set of all possible STR alleles at the locus, lenðaÞ is the length of allele a, and Prðhapi = = aÞ is
the probability that the allele on the i th haplotype is a, output by Beagle in the AP1 and AP2 FORMAT fields of the VCF file.

Estimated allele frequencies (Figure 1B) were computed as follows: for each allele length L for each STR, we summed the imputed

probability of the STR on that chromosome to have length L over both chromosomes of all unrelated participants. That sum is divided

by the total number of chromosomal copies considered (equaling twice the number of unrelated participants) to obtain the estimated

frequency of each allele.

Inferring repeat units
Each STR in the SNP-STR reference panel was previously annotated with a repeat period - the length of its repeat unit - but not the

repeat unit itself. We inferred the repeat unit of each STR in the panel as follows: we considered the STR’s reference allele and given

period. We then took each k-mer in the reference allele where k is the repeat period, standardized those k-mers, and took their

counts. We define the standardization of a k-mer to be the sequence produced by looking at all cyclic rotations of that k-mer and

choosing the first one lexicographically. For example, the standardization of the k-mer CAG would be AGC. If the most common

standardized k-mer was less than twice as frequent as the second most common standardized k-mer, we did not call a repeat

unit for that STR (11,962 STRs; 2.68%). Otherwise, the most common standardized k-mer was labeled as the forward-strand (based

on the reference genome) repeat unit for that STR. To infer the strand-independent repeat unit for the STRwe looked at all rotations of

the forward-strand repeat unit in both the forward and reverse-complement directions and chose whichever comes first lexicograph-

ically. For example the repeat unit for the STR TGTGTGTG would be AC, while the forward-strand repeat unit would be GT. In the

large majority of cases the repeat unit identified by this approach is the unit which is duplicated or deleted in alternate alleles, but

this method of identifying repeat units does not consider alternate alleles and so does not make that guarantee.

Phenotypes and covariates
IDs listed in this section refer to the UKB Data Showcase67 (see key resources table).

We analyzed a total of 44 blood traits measured in the UKB. 19 phenotypes were chosen fromCategory Blood Count (Data Field ID

100081) and 25 from Category Blood Biochemistry (Data Field ID 17518). We refer to them as blood cell count and biomarker

phenotypes respectively. The blood cell counts weremeasured in fresh whole bloodwhile all the biomarkers weremeasured in serum

except for glycated haemoglobin which was measured in packed red blood cells (details in Resource ID 5636). The phenotypes we
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analyzed are listed in Table S1, along with the categorical covariates specific to each phenotype that were included during associ-

ation testing.

We analyzed all the blood cell count phenotypes available except for the nucleated red blood cell, basophil, monocyte, and retic-

ulocyte phenotypes. Nucleated red blood cell percentage was omitted from our study as any value between the bounds of 0% and

2%was recorded as exactly either 0% or 2%making the data inappropriate for study as a continuous trait. Nucleated red blood cell

count was omitted similarly. Basophil andmonocyte phenotypes were omitted as those cells deteriorate significantly during the up to

24 hours between blood draw andmeasurement. This timing likely differed consistently for different clinics, and different clinics drew

from distinct within-White British ancestry groups, which could lead to confounding with true genetic effects. See Resource ID 1453

for more information. Reticulocytes were excluded from our initial pipeline. This left us with 19 blood cell count phenotypes. For each

blood cell count phenotype we included themachine ID (1 of 4 possible IDs) as a categorical covariate during the association tests to

account for batch effects.

Biomarker measurements were subject to censoring of values below and above the measuring machine’s reportable range

(Resource IDs 1227, 2405). Table S1 includes the range limits and the number of data points censored in each direction. Five bio-

markers (direct bilirubin, lipoprotein(a), oestradiol, rheumatoid factor, testosterone) were omitted from our study for having

>40,000 censored measurements across the population (approximately 10% of all data), since those would require analysis with

models that take censoring into account. The remaining biomarkers had less than 2,000 censored measurements. We excluded

censored measurements for those biomarkers from downstream analyses as they consisted of a small number of data points. For

each serum biomarker we included aliquot number (0–3) as a categorical covariate during association testing as an additional

step to mediate the dilution issue (described in Resource ID 5636). Glycated haemoglobin was not subject to the dilution issue, being

measured in packed red blood cells and not serum, so no aliquot covariate was published in the UKB showcase or included in our

analysis.

For each phenotype we took the subset of the 408,153 individuals above that had a measurement for that phenotype during the

initial assessment visit or the first repeat assessment visit, preferentially choosing the measurement at the initial assessment for par-

ticipants having measurements taken at both visits. We include a binary categorical covariate in association testing to distinguish

between phenotypes measured at the initial assessment and those measured at the repeat assessment. Each participant’s age

at their measurement’s assessment was retrieved from Data Field ID 21003.

The initial and repeat assessment visits were the only times the biomarkers were measured. The blood cell count phenotypes were

additionally measured for those participants who attended the first imaging visit. We did not use those measurements and for each

phenotype excluded the <200 participants whose only measurement for that phenotype was taken during the first imaging visit as we

could not properly account for the batch effect of a group that small (Table S1).

No covariate values were missing. Before each association test we checked that each category of each categorical covariate was

obtained by at least 0.1%of the tested participants. We excluded the participants with covariate values notmatching this criterion, as

those quantities would be too small to properly account for batch effects. In practice, this meant that for each biomarker phenotype

we excluded the <100 participants that were measured using aliquot 4, and that for 8 of the biomarker phenotypes we additionally

excluded the %125 participants that were measured using aliquot 3 (Table S1).

For each phenotype we then selected a maximally-sized genetically unrelated subset of the remaining individuals using PRIMUS76

v1.9.0. When multiple such maximal subsets existed (for instance, wherever a single individual needed to be chosen from a family of

two), one subset was chosen arbitrarily, thus introducing some lack of reproducibility. Precomputedmeasures of genetic relatedness

between participants (described in UKB paper supplement section 3.7.131) were downloaded using ukbgene (Resource ID 664). We

ran PRIMUSwith non-default options --no_PR -t 0.04419417382where the t cutoff is equal to 0:59, chosen so that two individuals are

considered to be related if they are relatives of third degree or closer. This left between 304,658 and 335,585 unrelated participants

per phenotype (Table S1).

Genetic sex and ancestry principal components (PCs) were included as covariates for all phenotypes. Participant sex was ex-

tracted from the fam file (described in the Participants Methods section above). The top 40 ancestry PCs were extracted from the

corresponding columns of the sample QC file (see the Participants Methods section above).

We then rank-inverse-normalized phenotype values for association testing. The remaining unrelated individuals for each pheno-

type were ranked by phenotype value from least to greatest (ties broken arbitrarily) and the phenotype value for association testing

for each individual was taken to be normal quantile
�
sample rank+0:5

n samples

�
. We use rank-inverse normalization as it is standard practice,

though it does not have a strong theoretical foundation84 and only moderate empirical support.68,85–87

For each phenotype and its remaining unrelated individuals we standardized all covariates to have mean zero and variance one for

numeric stability.

Association testing
Weperformed STR and SNP association testing separately. We developed associaTR to streamline performing association tests be-

tween STR length and quantitative traits. While our approach relies on a standard linear model, linear mixed models based on STR

length dosages would likely result in increased power and will be considered in future studies. As our downstream analyses required

STR and SNP associations to be comparable, we also used a standard linear model for SNP association testing.
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For STR association testing, the imputed VCFs produced by Beagle were accessed in python with cyvcf271 0.30.14 and v4.2.1 of

our TRTools library.80 In line with plink’s recommendation for SNPGWAS,88 6 loci with non-major allele dosage <20 were filtered. For

each STR, we fit the linear model y! = g
!� bg +C � bC

�!
+ e!where y! is the vector of rank-inverse-normalized phenotype values per

individual, g! is the vector of STR length dosage genotypes per individual, bg is the effect size of this STR, C is the matrix of stan-

dardized covariates, bC
�!

is the vector of covariate effect sizes, and e! is the vector of errors between the model predictions and

the outcomes. Models were fit using the regression.linear_model.OLS function of the Python statsmodels library v0.13.2.79 Per

GWAS best-practices, we used imputation dosage genotypes instead of best-guess genotypes.89

We used plink233 v2.00a3LM (build AVX2 Intel 28 Oct 2020) for association testing of imputed SNPs and indels. For each analysis,

plink first converts the input datasets to its pgen file format. To avoid performing this operation for every invocation of plink, we first

used plink to convert the SNP and indel bgen files to pgen files a single time. We invoked plink once per chromosome per phenotype.

We used the plink flag --mac 20 to filter loci with minor allele dosage less than 20. Plink calculates minor allele counts across all

individuals before subsetting to individuals with a supplied phenotype, so this uniformly filtered 22,396,837 (24.1%) of the input

loci from each phenotype’s association test leaving 70,698,786 SNPs and indels. Plink fit the same linear model described above

in the STR associations, except that g! is the vector of dosages of the non-reference SNP or indel allele.

For conditional regressions, we fit themodel y! = g!� bg + f
!� bf +C � bC

�!
+ e!where all the terms are as described above, except

f
!

is the vector of per-individual genotypes of the variant being conditioned on, and bf is its effect size.

p values calculated from association testing are two-sided.

Comparison with Pan-UKB pipeline
We compared the results of our pipeline to results available on the PanUKBB34Website (see key resources table) using bilirubin as an

example trait. We matched variants between datasets on chromosome, position, reference and alternate alleles, excluding variants

not present in both pipelines. We found our pipeline produced largely similar but somewhat less significant p values than those re-

ported for European participants in Pan UKBB (Figure S2).

Defining significant peaks
Given a peak width w (bp), we selected variants to center peaks on in the following manner:

(1) Order all variants (of all types) from most to least significant. For variants which exceed our pipeline’s precision (p < 1e�300),

order them by their chromosome and base pair from first to last. (These variants will appear at the beginning of the list of all

variants).

(2) For each variant: If the variant has p valueR 5e�8, break. If there is a variant in either direction less thanw bp awaywhich has a

lower p value, continue. Otherwise, add this variant to the list of peak centers.

We define peaks to be the w (base pair) width regions centered on each selected variant. The statistics given in the results are

calculated using w = 250kb. The identification of peaks in Figures 1C and 1D was made with w = 10mb for visualization purposes.

Note that peaks centered on variants within w=2 bp of the end of a chromosome will necessarily be smaller than w bp in width.

Identifying indels which are STR alleles
Some STR variant alleles are represented both as alleles in our SNP-STR reference panel and as indel variants in the UKB imputed

variants panel. We excluded the indel representations of those alleles from fine-mapping, as they represent identical variants and

could confound the fine-mapping process. For each STR we constructed the following interval:� ðstart -- 3; end + 3Þ; period = 1
ðstart -- 2�period; end + 2�periodÞ; period > 1

where period is the length of the repeat unit and start and end give the coordinates of the STR in base pairs. We call an indel an STR-

indel if it only represents either a deletion of base pairs from the reference or an insertion of base pairs into the reference (not both),

overlaps only a single STR based on the interval above, and represents an insertion or deletion of full copies of that STR’s repeat unit.

We conservatively did not mark any STR-indels for STRs whose repeat units were not called (see above) or for which the insertion or

deletion was not a whole number of copies of any rotation of the repeat unit.

Fine-mapping
For each phenotype, we selected contiguous regions to fine-map in the following manner:

(1) Choose a variant (SNP or indel or STR) with p value < 5e�8 not in the major histocompatibility complex (MHC) region

(chr6:25e6-33.5e6).

(2) While there is a variant (SNP or indel or STR) with p value < 5e�8 not in theMHC region andwithin 250kb of a previously chosen

variant, include that variant in the region and repeat.
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(3) This fine-mapping region is (min variant bp – 125kb, max variant bp + 125kb).

(4) Start again from step 1 to create another region, starting with any variant with p value < 5e�8 not already in a fine-mapping

region.

This is similar to the peak selection algorithm above but is designed to produce slightly wider regions so that we could fine-map

nearby peaks jointly. We excluded theMHCbecause it is known to be difficult to effectively fine-map. Note that peakswithin 125kb of

the end of a chromosome will necessarily be smaller than the minimum 125kb width in that direction.

This produced 14,494 trait-regions. Due to computational challenges during fine-mapping (see below), we excluded three regions

(urate 4:8165642-11717761, total bilirubin 12:19976272-22524428 and alkaline phosphatase 1:19430673-24309348) from down-

stream analyses (see below), leaving 14,491 trait-regions.

We used two fine-mapping methods to analyze each region:

SuSiE35: For each fine-mapping trait-region, for each STR and SNP and indel variant in that region that was not filtered before as-

sociation testing, was not an STR-indel variants (see above) and had p value% 5e�4 (chosen to reduce computational burden), we

loaded the dosages for that variant from the set of participants used in association testing for that phenotype. For those regions we

also loaded the rank-inverse-normalized phenotype values and covariates corresponding to that phenotype. We separately re-

gressed the covariates out of the phenotype values and out of each variant’s dosages and streamed the residual values to HDF5

arrays73 using h5py v3.6.0.72 We used rhdf5 v2.38.077 to load the h5 files into R. We used an R script to run SuSiE v0.11.42 on

that data with non-default values min_abs_corr = 0 and scaled_prior_variance = 0.005. min_abs_corr = 0 forced SuSiE to output

all credible sets it found so that we could determine the appropriate minimum absolute correlation filter threshold in downstream

analyses.We set scaled_prior_variance to 0.005whichwe considered is amore realistic guess of the per-variant percentage of signal

explained than the default of 20%, although we determined that this parameter had no effect on the results (Note S3). The SuSiE

results for some regions did not converge within the default number of iterations (100) or produced the default maximum number

of credible sets (10) and all those credible sets seemed plausible (minimumpairwise absolute correlationR0.2 or size%50).We reran

those regions with the additional parameters L = 30 (maximum number of credible sets) and max_iter = 500. No regions failed to

converge in under 500 iterations. We re-analyzed several loci that produced 30 plausible credible sets again with L = 50. No regions

produced 50 plausible credible sets. SuSiE failed to finish for two regions (urate 4:8165642-11717761, total bilirubin 12:19976272-

22524428) in under 48 hours; we excluded those regions from downstream analyses. A prior version of our pipeline had applied a

custom filter to some SuSiE fine-mapping runs that caused SNPs with total minor allele dosage less than 20 across the entire pop-

ulation to be excluded. For consistency, any regions runwith that filter which produced STRs included in our confidently fine-mapped

set were rerun without that filter. Results from the rerun are reported in Table S4.

SuSiE calculates credible sets for independent signals and calculates an alpha value for each variant for each signal – the

probability that that variant is the causal variant in that signal. We used each variant’s highest alpha value from among credible

sets with purity R0.8 as its causal probability (CP) in our downstream analyses (or zero if it was in no such credible sets). See

Note S1.

FINEMAP36: We selected the STR and SNP and indel variants in each fine-mapping region that were not filtered before association

testing and had p value <0.05 (chosen to reduce computational burden). We excluded STR-indels (see above). We constructed a

FINEMAP input file for each region containing the effect size of each variant and the effect size’s standard error. All MAF values

were set to nan and the ref and alt columns were set to nan for STRs as this information is not required. We then took the unrelated

participants for the phenotype, loaded their dosage genotypes for those variants and saved them to an HDF5 array73 with h5py

v3.6.0.72 To construct the LD input file required by FINEMAP, we computed the Pearson correlation between dosages of each

pair of variants. We then ran FINEMAP v1.4 with non-default options --sss –n-causal-snps 20. In regions which FINEMAP gave

non-zero probability to their being 20 causal variants, we reran FINEMAP with the option –n-causal-snps 40 and used the results

from the rerun. FINEMAP did not suggest 40 causal variants in any region. FINEMAP caused a core dumpwhen running on the region

alkaline phosphatase 1:19430673-24309348 so we excluded that region from downstream analyses. (For convenience, for the re-

gions containing no STRs, we directly ran FINEMAP with –n-causal-snps 40, unless those regions contained less than 40 variants

in which case we ran FINEMAP with –n-causal-snps <#variants>).

We used FINEMAP’s posterior inclusion probability (PIP) output for each variant in each region as its CP in downstream analyses.

Alternative fine-mapping conditions
We reran SuSiE and FINEMAP using alternative settings on trait-regions that contained one or more STRs with p value < 1e�10 and

CP R 0.8 in both the original SuSiE and FINEMAP runs. Each new run differed from the original run in exactly one condition. We

restricted our set of high-confidence fine-mapped STRs (Table S5) to those that had p value < 1e�10 and CP R 0.8 in the original

runs and maintained CP R 0.8 in a selected set of those alternate conditions.

For SuSiE, we evaluated using best-guess genotypes vs. genotype dosages as input. For FINEMAP, we tested varying the p value

threshold, choice of non-major allele frequency threshold, effect size prior, number of causal variants per region, and stopping

threshold. Additionally, we reran FINEMAP with no changed settings to examine potential FINEMAP instability.

See Note S3 for a more detailed discussion of these various settings and their impact on fine-mapping results.
Cell Genomics 3, 100458, December 13, 2023 e7



Article
ll

OPEN ACCESS
Fine-mapping simulations
We simulated phenotypes under additive genetic models and fine-mapped those phenotypes separately at individual regions. Our

simulations used real genotypes from White British UKB participants and focused on regions originally identified by our GWAS to

maintain realistic LD patterns observed at regions with true signals. We used regions associated with platelet count as it was the

phenotype with the maximal number of fine-mapping regions (n = 548).

Strategies for choosing causal variants and effect sizes

We applied three different strategies for choosing causal variants from these regions and choosing their effect sizes. For each strat-

egy, we simulated phenotypes from those variants, ran SuSiE and FINEMAP on all SNPs and STRs in the region against the simulated

phenotypes and determined whether the fine-mappers correctly identified the variants simulated to be causal.

For the first strategy we chose causal SNPs and indels at random, weighting by minor allele frequency (MAF). For this strategy, we

did not simulate causal STRs. To begin, we took all SNPs/indels in all platelet count regions that had either FINEMAP CP R 0.5 or

SuSiE CPR 0.5 and binned them byMAF (bin boundaries = [0.01%, 0.1%, 10%, 50%]), excluding all variants with MAF <0.01%.We

assigned each bin a relative weight by the proportion of causal variants in that bin vs. in all bins as compared to the proportion of all

variants in that bin vs. all bins, noting that these weights were relatively consistent across bins (within a factor of 2, Table S6). Using

those bin weights, for each fine-mapping region, we then drew causal SNPs/indels at random from all SNPs/indels in the region, with

each variant’s chance of being drawn weighted by the bin that its MAF corresponds to. For each bin, we also collected all observed

effect sizes of all variants falling in that bin, noting that as expected the effect sizes for common variants were smaller than those for

rarer variants (Figure S6). For each variant chosen to be causal, we drew an effect size from the correspondingMAF bin. This strategy

is designed so that the distributions of MAFs and effect sizes of causal variants in our simulations are similar to those observed for

fine-mapped variants for the real phenotype. We repeated this strategy nine times for each simulation region, three times each

choosing sets of one, two and three causal variants.

While the first strategy allows for a wide range of simulations by drawing causal variants at random, it may not capture systematic

differencesbetween the LDpatterns of causal variants and the LDpatterns of non-causal variants in causal regions. To address this, for

the second strategy we chose variants fine-mapped by SuSiE for platelet count for simulating as causal as these may more closely

capture LD patterns of truly causal variants. Specifically, we ran SuSiE on all the SNPs and indels in the fine-mapping region with

p < 0.0005 against real platelet count data. Note that by only running SuSiE against the SNP and indel variants in the region, we forced

SuSiE to give us the most plausibly causal set of SNPs/indels in the region under the condition that no STRs are causal. We discarded

non-pure credible sets (thosewith variants in less than 0.8 r2) as we expect them to be less reliable in identifying truly causal variants. In

the 458/548 regionswhere therewere any pure credible sets remaining,we took the top variant fromeach of the remaining credible sets

to use as causal for simulations, using their effect sizes measured against the real platelet count trait as their effect sizes for simulation.

For each region, we used its causal variant set to simulate three phenotypes (which are distinct due to different noise terms).

While this second strategy may capture more realistic causal LD patterns compared to choosing causal variants at random, it has

the drawback that it relies on the accuracy of fine-mapping to choose the causal variants, which is what we are trying to assess.

Strategy one relies on fine-mappers as well, but to a much lesser extent, using them only to identify causal variant MAF and effect

size distributions. A second caveat to strategy two is that by restricting to pure credible sets, we likely omit real signals which SuSiE

could not resolve well.

For our third strategy, we paralleled our second strategy, except instead of fine-mapping platelet count against only SNPs and

indels, we fine-mapped it against all the variants in the region (including STRs), thus allowing it to select STRs as causal for simulation.

We continued with simulations as in the second strategy for the 52/548 regions where SuSiE identified a causal STR. This third strat-

egy is the only strategy we performed which simulated causal STRs. As the number of simulations performed with this third strategy

was limited, we only use it to contribute briefly to our discussion in the main text.

Simulating phenotypes

Let V represent the set of causal variants for a region. For each variant v˛V let gv
�!

represent a vector of participant genotype dos-

ages and bv denote the variant’s chosen effect size. Assuming additive and independent contributions of each variant, we simulated a

vector of phenotypes ( y!) as y! =
P

v˛V gv
�! � bv + e!, where e!� Nð0;diagð1 �P

v˛Vb
2
vVar½ gv

�!�ÞÞ so that similarly to the real,

normalized, phenotypes used for our GWASs, the resulting phenotypes have mean 0 and variance 1.

Evaluating fine-mapping on simulated phenotypes

For each simulated phenotype and region we performed association testing of the variants in that region using the same methods as

in the main analysis, excepting that we included no covariates and that the phenotypes were not subjected to rank-inverse normal-

ization. We then ran FINEMAP and SuSiE against the variants in the region as described above (in particular, FINEMAP runs were

restricted to variants with p < 0.05, SuSiE runs to variants with p < 0.0005), with the difference that the fine-mapping region was

not recalculated from the simulated phenotype GWAS statistics but instead exactly matched to the causal region determined

from the platelet count GWAS. Once fine-mappers were run, we calculated STR contribution statistics as for fine-mapping runs

on the UKB blood traits (Tables S7 and S8).

Simulation caveats

Many choices in the design of these simulations affect the interpretation of their results. Notably, these simulated phenotypes make

standard assumptions of additive genetic architectures, including no non-linear effects, no epistasis between variants, and that the
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environmental contribution to each phenotype is both independent of an individual’s genotypes and normally distributed. These sim-

ulations also assume that there are no confounding covariates. Additionally, these simulations choose the effect sizes of causal var-

iants from effect sizes calculated in our platelet count GWAS. As effect sizes calculated in the GWASweremeasured in mono-variant

regressions against platelet count, they will bemis-estimated according to the corresponding variant’s LD to all causal variants in the

region in which it resides.

Further, we note that not recalculating the fine-mapping regions may artificially inflate the rate at which strategy one identifies

causal variants, as when causal variants in strategy one were randomly chosen to fall near the edges of the region, there would

be fewer variants in LD with those variants and fine-mapping them would be easier. This may contribute to the observation in

Table S7 that both fine-mappers select STRs in simulation strategy two much more than in simulation strategy one. We also spec-

ulate that STRs truly causal for platelet count would contribute to that observation: if those STRs are well tagged by SNPs, strategy

two’s run of SuSiE would likely select those tagging SNPs for causal simulation. Then fine-mapping of those simulated phenotypes

would have a relatively high chance of confusing those SNPs with the STRs they tag.

Lastly, we observe that FINEMAPmostly identifies variants with low p values, while a p value cutoff is necessary for accurate SuSiE

results. Once a p value cutoff is applied, we see that the fine-mappers’ results are almost entirely consistent with one another, in large

distinction from how they performwhen applied to real datasets, suggesting that there are some features of the architectures of blood

traits are not captured by these simulations.

WGS validation of imputed fine-mapped STRs
We worked with WGS CRAM files for 200,025 UKB participants62 on the UKB Research Analysis Platform cloud solution provided

by DNA Nexus. This data was aligned to reference genome hg38. HipSTR was unable to load the index files for the CRAM files of

10 participants, possibly due to file corruption. Removing those participants left us with 200,015 participants. We inadvertently

truncated the participant list, leaving 200,000 participants. From that participant list we called genotypes of the 409 STRs in

Table S4 using HipSTR6 in batches of 500 participants, using the flag --min-reads 10 and allowing HipSTR to estimate stutter-error

models from the data. We merged batches using MergeSTR.80 We performed call level filtering using DumpSTR80 with the flags

--hipstr-min-call-Q 0.9 --hipstr-min-call-DP 10 --hipstr-max-call-DP 10000 --hipstr-min-supp-reads 2 --hipstr-max-call-stutter

0.15 --hipstr-max-call-flank-indel 0.1. After calling all 200,000 individuals we summarized their genotypes separately per population,

noting that 166,638 individuals were in our set of QC’ed (potentially related) White British UKB participants, accounting for 40.8% of

the QC’ed White British participants.

We did not apply any locus-level filters, such as Hardy-Weinberg equilibrium, to our WGS results. We report per-locus WGS call

rates for QCed (potentially related) individuals in each population. We used LiftOver66 to lift the hg38WGS calls to the hg19 reference

genome (see key resources table). To compare the WGS calls to the imputed STR calls, we used CompareSTR from TRTools80

branch compareSTR_upgrade using the flags --ignore-phasing --balanced-accuracy --vcf2-beagle-probabilities. We report multi-

ple metrics at each locus, specifically concordance, the mean absolute summed-length difference, r2 and dosage r2.

For the following definitions, let X be the set of all samples, A be the set of all possible STR length alleles at a locus, let S =

fa1 + a2ja1; a2 ˛Ag be the set of all summed-lengths possible at a locus (including the case of homozygous individuals when

a1 = a2), for x˛X let sx;WGS be the summed-length call for sample x from WGS data, and for x˛X; s˛S let Prx;impðsÞ be the prob-

ability that sample x has a summed imputation length of s as output by the Beagle AP1 and AP2 FORMAT fields in the imputed

VCF file.

We report (summed-length) per-locus concordances as Ex˛X ½Prx;impðsx;WGSÞ�. Thismetric has the advantage of being intuitive but is

biased upwards for loci with a single very common allele and so should be interpreted cautiously for such loci. We also report mean

absolute summed length differences as Ex˛X ½
P

s˛S Prx;impðsÞ$
��sx;WGS � s

���. This metric has similar caveats as the concordance

metric. However, for highly multi-allelic loci where concordance is low, this metric can help quantify how close (or not) imputed calls

are to the actual genotypes.We calculated r2 as the square of theweighted Pearson correlation between sx;WGS and s for each sample

x˛X and all possible summed-lengths s˛S (so that there are jXj$jSj total values being correlated), weighting by the imputation prob-

abilities Prx;impðsÞ. This correlationmeasure is more comparable across loci with different numbers of alleles than concordance. It has

the downside of being less intuitive and of being more sensitive to theWGS-vs-imputation concordance of rare long and short alleles

than theWGS-vs-imputation concordance of common average-length alleles. We report dosage r2 as the square of the Pearson cor-

relation between sx;WGS and the dosage
P

s˛Ss$Prx;impðsÞ for each sample x˛X. Dosage r2 is strictly greater than or equal to the

weighted r2 measure. While the weighted r2 measure more directly measures the concordance of individual imputation probabilities

with the WGS calls, the dosage r2 measure better estimates how analyses like GWASs, which condense imputed probabilities into

dosages, will perform.

Lastly, at each locus we report the frequency of each summed-length according to WGS calls, and for all samples with each WGS

summed-length we report the probability that imputation concurs with that length: EXjsx;WGS = s½Prx;impðsx;WGSÞ�.

Replication in other populations
We separated the participants not in theWhite British group into population groups using the self-reported ethnicities summarized by

UKB showcase data field 21000 (see key resources table). This field uses UKB showcase data coding 1001.We defined the following
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five populations based on those codings (counts give the maximal number of unrelated QC’ed participants, ignoring per-phenotype

missingness):

(1) Black (African and Caribbean, n = 7,562, codings 4, 4001, 4002, 4003)

(2) South Asian (Indian, Pakistani and Bangladeshi, n = 7,397, codings 3001, 3002, 3003)

(3) Chinese (n = 1,525, coding 5)

(4) Irish (n = 11,978, coding 1002)

(5) Other White (White non-Irish non-British, n = 15,838, coding 1003)

Self-reported ethnicities were collected from participants at three visits (initial assessment, repeat assessment, first imaging). The

above groups also exclude participants who self-reported ethnicity at more than one visit and where their answers corresponded to

more than one population (after ignoring ‘prefer not to answer’ code = �3 responses). We did not include any participants who were

neither in the White British population nor any of the above populations. Unlike for the determination of White British participants,

genetic principal components were not used as filters for these categories.

For the association tests in these populations we applied the same procedures for sample quality control, unrelatedness filtering,

phenotype transformations, and preparing genotypes and covariates as in the White British group. The only changes in procedure

were that (a) we removed categorical covariate values where there were fewer than 50 participants with that value, (in which case we

also removed those participants from analysis, as that would be too few to properly control for batch effects), whereas for White

British individuals we used a cutoff of 0.1% instead and (b) we also applied this cutoff to the visit of measurement categorical covar-

iate, resulting in some association tests that excluded individuals whose first measurement of the phenotype occurred outside the

initial assessment visit. See Table S9 for details.

STRs were marked as replicating in another population (Figure 2) if any of the traits confidently fine-mapped to that STR share the

same direction of effect as the White British association and reached association p value <0.05 after multiple hypothesis correction

(i.e., if there are three confidently fine-mapped traits, then an STR is marked as replicating in the Black population if any of them has

association p value <0.05/3 = 0.0167 in the Black population).

We validated imputation STR lengths usingWGS data in these populations as was done in the White British population, and report

these results in Tables S4 and S5. The number of samples in our QC’ed set that hadWGS data were 2,990 Black, 3,373 South Asian,

619 Chinese, 5,174 Irish and 6,428 Other White samples, all roughly 40% of their respective populations.

Logistic regression of replication direction
We used logistic regression to quantitatively assess the impact of fine-mapping on replication rates while controlling for discovery

p value. For this analysis, to have sufficient sample sizes, we defined that an STR-trait association replicates in another population

if it had the same direction of effect in that population as in the White British population, regardless of the replication p value.

For each of the five replication populations, we compared four categories: all gwsig (genome-wide significant associations in

the discovery population, i.e., p value < 5e�8), FINEMAP (discovery p value < 5e�8 and FINEMAP CP R 0.8), SuSiE (discovery

p value < 5e�8 and SuSiE CP R 0.8) and confidently fine-mapped STR (STR associations in our confidently fine-mapped set).

For each comparison, we used the function statsmodels.formula.api.logit from statsmodels v0.13.279 to fit the logistic regression

model:

replication status � STR in target categoryþ log10ðp � valÞþ log10ðp � valÞ2

where replication_status is a binary variable indicating whether or not the given STR-trait association replicated in the other popu-

lation, p-val is the discovery p value, and STR_in_target_category is a binary variable indicating if the STR is in the target category.

For each replication population, we considered various models.

d All gwsig STRs with either FINEMAP, SuSiE, or confidently fine-mapped STRs as the target category.

d All FINEMAP STRs with confidently fine-mapped STRs as the target category.

d All SuSiE STRs with confidently fine-mapped STRs as the target category.

For each model, we performed a one-sided t-test for the hypothesis that the coefficient for the covariate STR_in_target_category

was greater than zero, i.e., testing that being in the target category increased the predicted chance of replicating in the chosen

population (Table S10).

Gene, transcription factor binding annotation
For all analyses not usingGTEx data, gene annotations were based onGENCODE 3864 (see key resources table). Transcription factor

binding sites and DNaseI hypersensitivity regions were identified by ENCODE90 overlapping several loci (TAOK1, RHOT1 andNCK2)

through visual inspection of the ‘‘Txn Factor ChIP’’ and ‘‘DNase Clusters’’ tracks in the UCSC Genome Browser81 and using the

‘‘Load from ENCODE’’ feature of the Integrative Genomics Viewer.74
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Enrichment testing
We tested the following categories for enrichment in STRs identified by our association testing pipeline.

d Genomic feature: We grouped records by feature type and restricted to features with support level 1 or 2 except for genes

which don’t have a support level. We used bedtools69 to compute which features intersect each STR and the distance between

each STR and the nearest feature of each feature type.

d Repeat unit: unit length and standardized repeat unit were defined as described above. Repeat units occurring in <1000 STRs

were grouped by repeat length. Repeats whose unit could not be determined were considered as a separate category.

d Overlap with expression STRs (eSTR): we tested for overlap with either all eSTRs or fine-mapped eSTRs as defined in our pre-

vious study to identify STR-gene expression associations in the Genotype Tissue Expression (GTEx) cohort.13

Enrichment p values were computed using a Chi-squared test (without Yate’s continuity correction) if all cells had counts R5.

A two-sided Fisher’s exact test was used otherwise. Chi-squared and Fisher’s exact tests were implemented using the

chi2_contingency and fisher_exact functions from the Python scipy.stats package v1.7.3.91

Expression association analysis in GTEx
We had previously analyzed associations13 between STRs and gene expression in GTEx V7. Here we reanalyzed those associations

using GTEx V8. We obtained 30x Illumina whole genome sequencing (WGS) data from 652 unrelated participants in the Genotype-

Tissue Expression project (GTEx)37 through dbGaP accession number phs000424.v8.p2. WGS data was accessed using fusera

through Amazon Web Services. We genotyped STRs using HipSTR6 v0.5 with HipSTR’s hg38 reference STR set (see key resources

table). All individuals were genotyped jointly using default parameters. GTEx’s whole genome sequencing procedure is not PCR-free,

which likely contributed to low call rates at long poly(A) and GC-rich STRs. The resulting VCFs were filtered using DumpSTR from

TRTools,80 using the parameters --filter-hrun --hipstr-min-call-Q 0.9 --hipstr-min-call-DP 10 --hipstr-max-call-DP 1000 --hipstr-

max-call-flank-indel 0.15 --hipstr-max-call-stutter 0.15 --min-locus-callrate 0.8 --min-locus-hwep 0.00001. We also removed

STRs overlapping segmental duplication regions (UCSC Genome Browser92 h38.genomicSuperDups table). Altogether, 728,090

STRs remained for downstream analysis.

The TAOK1 STR locus was filtered from this genotyping for having an 11% call rate, so we imputed the genotypes at that locus into

the GTEx cohort. GTEx V7 SNP files were downloaded from GTEx data portal (see key resources table). SNPs on chromosome 17

were extracted and filtered to remove using vcftools with the parameters --maf 0.01 --mac 3 --we 0.00001 --max-missing 0.8

--minQ 30. We used Beagle v5.2 (beagle.28Jun21.220.jar) with the tool’s provided human genetic maps to impute STRs into the

GTEx SNPs using the same reference panel used for imputation in the UKB cohort above.30 From this imputation we took the

best-guess genotypes of the TAOK1 STR. We lifted the coordinates of the TAOK1 STR from hg19 to hg38 using LiftOver.66

For each tissue, we obtained gene-level and transcript-level transcripts-per-million (TPM) values, exon-exon junction read counts,

and exon read counts for each participant fromGTEx Analysis V8 publicly available from theGTEx project website (see key resources

table). Gene annotations are based on GENCODE v26.64 We focused on 41 tissues with expression data for at least 100 samples

(Table S13). We restricted our analysis to protein-coding genes, transcripts and exons that did not overlap segmental duplication

regions.

To control for population structure, we obtained publicly available genotype data on 2,504 unrelated individuals from the 1000 Ge-

nomes project23 genotyped with Omni 2.5 SNP genotyping arrays. We performed the following principal components analysis jointly

on that data and the SNPgenotypes based onWGSof the 652 individuals above.We removed all indels, multi-allelic SNPs, and SNPs

with minor allele frequency less than 5%.We then used plink v.1.90b3.44 to subset these remaining SNPs to a set of SNPs in approx-

imate linkage equilibrium with the command --indep 50 5 2. We excluded any remaining SNPs with missingness rate 5% or greater.

We lastly ran principal component analysis using smartpca78,93 included in EIGENSOFT v6.1.4 with default parameters.

We removed genes with TPM less than 1 in more than 90 percent of individuals. PEER factors75 were calculated using PEER v1.0

from the TPM values which remained after filtering. For each gene, we tested for association with each STR within 100kb. For each

test we performed a linear regression between the STR’s dosage (sum of allele lengths) and gene expression (TPM). We included the

loadings of the top five genotype principal components as computed above and the top N/10 PEER factors as covariates. The num-

ber of PEER factors was chosen to maximize the number of significant associations across a range of tissues. We did not include

genetic sex or age as covariates.

For each STR we computed Bonferroni-adjusted p values to control for the number of gene3 tissue tests performed for that STR.

Associations that remained with adjusted p < 0.05 are shown in Table S12.

We additionally used the GTEx cohort to test for an association between length of the bilirubin-associated dinucleotide repeat

identified in SLC2A2 with splicing efficiency in liver. We obtained exon-exon junction read counts and exon read counts from the

GTExwebsite (see key resources table).We calculated the percent spliced in value for each exon in themanner suggested by Schafer

et al.94We performed a linear regression to test between the STR’s dosage and the percent spliced in of each exonwithin 10kb, using

the top 5 ancestry principal components as covariates.
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Methylation association analysis in GTEx
This analysis used the same STR data and genotype principal components as the GTEx expression association analysis above.

We downloaded genome-wide DNA methylation (DNAm) profiling results from the NCBI GEO database under accession number

GSE213478. This contained DNA methylation levels from the whole blood of 47 individuals who had been genotyped, including

754,054 autosomal CpG loci which passed quality control checks in that dataset (see key resources table).65 We lifted those loci

from hg19 to hg38. We performed per-locus inverse-normalization of the DNAm data prior to downstream analysis. We calculated

5 PEER factors from the normalized DNAm data across quality-controlled loci from all chromosomes (including sex chromosomes)

using PEER v1.0,75 choosing 5 factors to match the number of PEER factors used by the methylation study which generated this

data.65

We tested for associations between themethylation of each autosomal CpG locus and the length of each STR located within 100kb

of that locus. For each such pair, we performed a linear regression between the STR’s dosage (sum of allele lengths across both

chromosomes) and the inverse-normalized DNAm levels of that CpG locus, including the top five genotype principal components

and the 5 PEER factors as covariates. We compared the effect sizes of these associations with those from another paper studying

STR-methylation correlations in two separate cohorts in whole blood17 and found that they were broadly consistent (r = 0.73,

p < 10�200, Figure S18C).

For each STR we computed Bonferroni-adjusted p values to control for the number of CpG tests performed for that STR. Asso-

ciations that remained with adjusted p < 0.05 are shown in Table S14.

Targeted STR expression analysis in Geuvadis
We applied HipSTR6 v0.6.2 to genotype STRs from HipSTR’s hg38 reference STR set (see key resources table) in 2,504 individuals

from the 1000 Genomes Project63 for which high-coverage WGS data was available (see key resources table). Gene-level reads per

kilobase per million reads (RPKM) values based on RNA-seq in lymphoblastoid cell lines for 462 1000 Genomes participants were

downloaded from the Geuvadis website (see key resources table). Of these, 449 individuals were genotyped by HipSTR.

Similar to the GTEx analysis, we performed a linear regression between STR dosage (sum of allele lengths) and RPKM, except that

this was only performed for two STR-gene pairs (STRs identified by fine-mapping near the genes CBL and RHOT1). We adjusted for

the top 5 genotype principal components (computed as above for the GTEx analysis, but only on populations included in Geuvadis

and separately for Europeans and Africans) and N/10 (45) PEER factors as covariates. PEER analysis was applied using PEER v1.0 to

the matrix of RPKM values after removing genes overlapping segmental duplications and those with RPKM less than 1 in more than

90% of LCL samples. We performed a separate regression analysis for African individuals (YRI) and European individuals (CEU, TSI,

FIN, andGBR). After restricting to individuals with non-missing expression data and STR genotypes andwhowere not filtered as PCA

outliers by smartpca78,93 included in EIGENSOFT v6.1.4, 447 LCL samples remained for analysis in each case (num. EUR = 358, and

AFR = 89 for CBL, EUR = 359 and AFR = 88 for RHOT1).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests are named as they are used and are described in the method details.
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