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Preoperative distinction between transitional meningioma and atypical meningioma would
aid the selection of appropriate surgical techniques, as well as the prognosis prediction.
Here, we aimed to differentiate between these two tumors using radiomic signatures
based on preoperative, contrast-enhanced T1-weighted and T2-weighted magnetic
resonance imaging. A total of 141 transitional meningioma and 101 atypical
meningioma cases between January 2014 and December 2018 with a
histopathologically confirmed diagnosis were retrospectively reviewed. All patients
underwent magnetic resonance imaging before surgery. For each patient, 1227
radiomic features were extracted from contrast-enhanced T1-weighted and T2-
weighted images each. Least absolute shrinkage and selection operator regression
analysis was performed to select the most informative features of different modalities.
Subsequently, stepwise multivariate logistic regression was chosen to further select
strongly correlated features and build classification models that can distinguish
transitional from atypical meningioma. The diagnostic abilities were evaluated by
receiver operating characteristic analysis. Furthermore, a nomogram was built by
incorporating clinical characteristics, radiological features, and radiomic signatures, and
decision curve analysis was used to validate the clinical usefulness of the nomogram. Sex,
tumor shape, brain invasion, and four radiomic features differed significantly between
transitional meningioma and atypical meningioma. The clinicoradiomic model derived by
fusing the above features resulted in the best discrimination ability, with areas under the
curves of 0.809 (95% confidence interval, 0.743-0.874) and 0.795 (95% confidence
interval, 0.692-0.899) and sensitivity values of 74.0% and 71.4% in the training and
validation cohorts, respectively. The clinicoradiomic model demonstrated good
performance for the differentiation between transitional and atypical meningioma. It is a
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quantitative tool that can potentially aid the selection of surgical techniques and the
prognosis prediction and can thus be applied in patients with these two
meningioma subtypes.
Keywords: meningioma, clinical decision-making, neoplasm grading, radiomics, retrospective studies
INTRODUCTION

Meningiomas are the most common primary intracranial tumors
in adults, accounting for 36.7% of all intracranial tumors (1).
According to the latest 2016 edition of the World Health
Organization (WHO) classification of central nervous system
tumors (2), meningiomas have been classified into 3 grades and
15 different subtypes. Among these different subtypes, transitional
meningioma (TM) is a common benign meningioma (WHO
grade I), whereas atypical meningioma (AM) is an uncommon
tumor of intermediate grade between benign and malignant forms
(WHO grade II). Pathologically, TM is characterized by the
transitional morphological manifestation between endothelial
meningiomas and fibrous meningiomas (3). AM is defined as a
tumor with increased mitotic activity (≥4 mitoses per 10 high-
power fields), brain invasion, and at least three of the following
minor criteria: increased cellularity, high nucleus-to-cytoplasm
ratio, prominent nucleoli, sheet-like architecture, and spontaneous
necrosis foci (4, 5).

According to the European Association of Neuro-Oncology
(EANO) guidelines, magnetic resonance imaging (MRI) is the
main method used in the provisional diagnosis of meningiomas
(6). At present, several studies have explored imaging features to
assess the tumor grade, and some imaging features (such as
tumor heterogeneity, shape, and tumor-brain interface) may be
used as predictive factors to discriminate between tumors of
different grades (7–9). Zhang et al. used MRI features to
distinguish some subtypes of WHO grade I meningiomas
(angiomatous, meningothelial, fibroblastic, and psammomatous
meningiomas) and found that angiomatous and meningothelial
meningiomas were the most easily identifiable subtypes (10).
However, current image-guided evaluation depends on the
experience of radiologists, which is non-specific and highly
subjective. Recently, our previous study (11) has shown that
among meningiomas, WHO grade I TM and WHO grade II AM
are more aggressive than other subtypes because the frequency of
brain invasion in these two tumors was much higher than in
other subtypes. This study showed that TM was more aggressive
than other subtypes of WHO grade 1 meningioma, and its
biological behavior is close to that of atypical meningioma.
Another study observed that several imaging characteristics,
such as irregular tumor shape, heterogeneous contrast
enhancement, and peritumoral edema were identified as
predictors of brain invasion (12). The above research suggests
that TM and AM may be similar in their imaging presentation,
although the reported data on TM remain scarce, especially
regarding its imaging characteristics. However, the clinical
treatment plan and prognosis of these two tumors are
significantly different due to their different grades. According
2

to EANO guidelines for the treatment of meningiomas, the
diagnosis of WHO grade II meningioma (such as AM) implies
an increased risk of recurrence, requiring shorter control
intervals (every 6 months instead of annually) than in WHO
grade I TM (6). Han et al. reported that TMs can be treated with
either surgery or external beam radiation, AMs often require a
combination of the two modalities (13). The choice of surgical
technique may be different. Because AM is more prone to
invasive growth and recurrence. Whether to expand the scope
of surgical resection, application of intraoperative navigation and
preoperative blood preparation, this is closely related to the size
of the tumor (AM tends to be slightly larger than TM) and tumor
surrounding tissues Moreover, it has been established that higher
tumor grades are associated with worse prognosis; higher grades
indicate reduced survival and higher rates of tumor recurrence
(14). Therefore, precise distinction between TM and AM before
surgery is desirable.

Given the above reasons, it is necessary to explore the imaging
differences between AM and TM. Radiomic analysis is a reliable
tool that can quantify high-dimensional tumor features that
cannot be observed with the naked eye, such as intensity,
texture, and shape features (15, 16). In recent years, radiomic
analysis has rapidly transformed the field of medical imaging
analysis, since it provides more stable results and is an objective
rather than a subjective assessment. Several studies have
demonstrated the applications of radiomics in meningiomas,
such as the characterization of the grade and histological
subtype, the prediction of brain invasion and recurrence-free
survival, and the identification of differential diagnoses in
meningioma (11, 17–20). These studies show that the MRI-
based radiomics may also be a method for discriminations
between AM and TM.

To the best of our knowledge, this is the first study to
differentiate TM from AM based on texture feature or radiomic
analysis. Therefore, our study aimed first to identify MR and
radiomic features that are associated with these two tumors from
two MRI modalities [T2-weighted (T2) and T1-weighted post-
contrast (T1C)]; second, to combine these two modalities
generating a radiomic signature; and third, to build a nomogram
fusing clinical factors, MR features, and radiomic signatures to
differentiate TM from AM in MRIs of patients with
suspected meningioma.
MATERIALS AND METHODS

Study Population and Semantic Features
For this retrospective analysis, ethical approval was obtained
from the Institutional Review Board of Lanzhou University
January 2022 | Volume 12 | Article 811767
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Second Hospital, and the requirement for informed consent was
waived. In this study, all patients with TM and AM who
underwent surgery in our institute between January 2015 and
December 2019 were enrolled according to the following
inclusion and exclusion criterias. The inclusion criteria were:
(a) histological diagnosis of AM or TM, and (b) MRI, including
T1C and T2 sequences, performed within 1 week before surgical
tumor resection. The exclusion criteria were: (a) cases with
motion artefacts that impacted the assessment; (b) incomplete
MRI sequences; and (c) treatment such as radiotherapy,
chemoradiotherapy, or surgery before surgical tumor resection.

All tumors were resected with the aid of a microscope. Patients
with TM and AM were diagnosed according to the pathological
findings. Finally, a total of 242 patients (TM: 19 men, 122 women,
mean age 52.3 ± 9.2 years; AM: 46 men, 55 women, mean age 51.5
± 10.3 years) were enrolled. All patients were randomly divided
into a training cohort and a validation cohort in a 7:3 ratio. The
patient recruitment flowchart is shown in Figure 1.

Two radiologists (reader 1 JZ and reader 2 YTC, with 12 and 15
years of experience in brain MRI interpretation, respectively)
independently analyzed the MRI characteristics (including
tumor location, maximum diameter, tumor shape, tumor
border, dural tail sign, peritumoral edema, T2 signal, enhanced
features, bone invasion, sinus invasion, and brain invasion). The
image analysis was based on clinical experience. Both readers were
blinded to all personal information and the histopathological
results before analysis. For qualitative data, agreements were
reached after discussion between the two in cases of difference
of opinions. When the two readers were unsure, reader 3 (ZYZ)
Frontiers in Oncology | www.frontiersin.org 3
with 19 years of experience confirmed the results. For quantitative
data, reader 1 measured the maximum diameter three times on
the maximum level of the tumor, and calculated the average of
three measurements. Reader 2 performed the data measurement
in the same way. The final result was the average of the
measurement values of two readers to minimize the deviation
of the measurement results. Among MR features evaluation,
peritumoral edema was evaluated on T2 images according to the
standardized visually accessible Rembrandt Images (VASARI;
https://wiki.nci.nih.gov/display/CIP/VASARI) feature set. Brain
invasion was diagnosed by pathology. Bone invasion
assessments were performed by pathology and surgeon
assessment intraoperatively. Sinus invasion was evaluated by an
intraoperative neurosurgeon as a diagnostic standard.

Image Acquisition, Segmentation,
and Normalization
The MRIs were obtained at our institution with 3.0-T scanners
(Siemens Verio or Philips Achieva). The MR sequences included
T1C and T2 images, and the detailed parameters of each scanner
are shown in Supplementary Table S1.

Two radiologists (TH and JZ) without prior knowledge of the
pathological records manually segmented MR images using the
open-source software ITK-SNAP (version: 3.8.0, www.itksnap.
org). On both axial T1C and T2 images, the regions of interest
(ROIs) of images were manually delineated on each slice of the
entire tumor including hemorrhagic, necrotic lesions and
without the surrounding brain tissue, and oedema. T2 images
were segmented with reference to T1C images for visual
FIGURE 1 | Inclusion and exclusion criteria.
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guidance. The segmented tissues on each slice were fused
together to generate the volume of interest, as shown in
Supplementary Figure 1.

To obtain a standard normal distribution of the image
intensities, T1C and T2 images were standardized using z-score
normalization and resampling after manual segmentation. MR
scanners and image segmentation of two additional sets (i.e. two
MR scanners set and the re-segmentation set) are described in
Supplementary Material.

Feature Extraction and Selection
The PyRadiomics platform was used to extract standardized
radiomic features from the T1C and T2 imaging data (21). In this
study, feature extraction followed the Image Biomarker
Standardization Initiative (IBSI) guideline (22). T1C features
were extracted from the volume of interest (VOI) of T1C images,
whereas T2 features were extracted from the VOI of T2 images.
Finally, a total of 2454 radiomic features were extracted from the
VOI of two modalities of the MR images.

For both T1C and T2 features, the least absolute shrinkage
and selection operator (LASSO) regression with five-fold cross-
validation was conducted to select the radiomic features highly
correlated with discrimination of TM and AM (Supplementary
Figure 2). Features with a P-value of less than 0.05 were selected.
For clinical factors and MRI features, the correlation between
these two factors and discrimination of AM and TM were tested
via Student’s t-test and the chi-square test with the P-value set to
0.05. Then, stepwise multivariate logistic regression further
selected the most informative features and deleted irrelevant
features. Features with a P-value of less than 0.05 and
preoperative factors were included in the model. Spearman
correlation analysis was conducted to examine the correlation
between the selected radiomic features and clinicoradiological
features to determine whether these features are correlated with
each other.

Fusion of Modalities and Radiomic
Signature Building
T1C represents the blood supply and the integrity of the blood-
brain barrier, whereas T2 is sensitive to peritumoral edema, thus
mainly reflecting tissue edema. Therefore, these two modalities
were fused by combining the selected radiomic features to
increase the performance of the radiomic model. After fusing
the modalities, we used stepwise multivariate logistic regression
to build a radiomic model discrimination of TM and AM based
on the selected radiomic features. The T1C model was built
based on T1C features (two features), and the T2 model was built
based on T2 features (two features), whereas the fusion model
was built based on T1C and T2 fusion features (all four radiomic
features). The clinical model was built based on a clinical factor
(sex) and MRI features (tumor shape and brain invasion). Thus,
the clinicoradiomic model was built by incorporating the clinical
factor, MRI features, and the radiomic signature. In the training
cohort, the maximum area under the receiver operating
characteristic curve (AUC) with three-fold cross-validation
determined the final regularization parameter.
Frontiers in Oncology | www.frontiersin.org 4
Nomogram Building and Validation
Integrated discrimination improvement (IDI) (23) was used to
quantify performance improvements. The P-values indicated
whether the improvement in reclassification was statistically
significant after the inclusion of a new factor in the model. In
addition, we used the DeLong test to compare the AUC estimates
of the performance between different models.

Afterward, a nomogram for clinical usefulness incorporating
the radiomic signature and the correlated clinicoradiological
features was constructed in the training cohort and validated in
the validation cohort. The calibration curves assessed the
discrimination ability of the nomogram for the training and test
cohorts, and the Hosmer-Lemeshow test evaluated the agreement
between the discrimination of TM from AM and the observed
outcomes. Then, we used decision curve analysis (DCA) to
quantify the net benefits at different threshold probabilities to
evaluate the clinical efficacy of the nomogram (24).

Statistical Analysis
In this study, all statistical analyses were performed with R
software (version 3.6.4, http://www.Rproject.org). R was also
used to assess the prediction models. PyRadiomics was used to
extract and select the radiomic features, as well as to build the
prediction models. The Spearman correlation test was used to
explore differences between clinicoradiological features and
radiomic features. Student’s t-test and the chi-square test were
used to compare continuous and categorical variables, respectively.
Generally, two-sided P-values less than 0.05 were considered
statistically significant. The intra-/inter-class correlation
coefficients (ICCs) were used to assess the agreement of the two
MR scanners and the extracted features by two radiologists.
RESULTS

Clinical Factors and MR Features
The clinical factors and MR features of the patients are shown in
Table 1. For clinical factors, sex was found to be significantly
different (P < 0.001) between the TM and AM groups, whereas
age did not differ significantly (P > 0.05). For MR features, the
parameters maximum diameter, tumor shape, peritumoral
edema, enhanced features, bone invasion, and brain invasion
were significantly different (all P < 0.05) in the univariate
analysis. Among them, tumor shape and brain invasion were
highly correlated with discrimination of TM from AM and can
be used as independent predictive factors according to the
multivariate logistic regression analysis. By contrast, tumor
location, tumor border, dural tail sign, T2 signal, and sinus
invasion were not significantly different (all P > 0.05) between the
TM and AM groups.

Radiomic Features Correlated With TM
and AM
The ICCs were calculated to evaluate the agreement of the twoMR
scanners and the features extracted by two radiologists,
respectively. All values exceeded 0.75, reflecting good agreement.
In total, 2454 radiomic features were extracted from each patient.
January 2022 | Volume 12 | Article 811767

http://www.Rproject.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics Models for Meningioma Diagnosis
Among them, two T1C features and two T2 features were selected,
and all four radiomic features (T1C_WaveletGLSZMwavelet.
HHL_GraylevelNonUniformity, T1C_SquareRootGLSZM_
squareroot_zoneEntropy, T2_WaveletGLCMwavelet .
LLL_JointEnergy, and T2_SquareRootGLDM_squareroot_
DependenceEntropy) were significantly different between the
TM and AM groups (all P < 0.05; Figure 2). Their odds ratios
are shown in Supplementary Figure 3. The weights of each
selected radiomics features are shown in Supplementary Table 2.

According to the Spearman correlation test, these
four features extracted by algorithms from MR images
were consistent with some clinicoradiological features
evaluated by the radiologists (Supplementary Table 3).
For example, shape was correlated with the parameters
Frontiers in Oncology | www.frontiersin.org 5
T1C_WaveletGLSZMwavelet.HHL_GraylevelNonUniformity
and T1C_SquareRootGLSZM_squareroot_zoneEntropy in both
training and validation cohorts (Figure 3).

Fusion of Modalities and Model Building
T1C and T2 radiomic features may correspond to different
information. Though fusing the selected radiomic features, the
radiomics signature can reflect the discrimination factors of TM
and AM from different perspectives. Stepwise multivariate
logistic regression analysis showed that sex, tumor shape, and
brain invasion were significantly different between TM and AM
groups (all P < 0.001). Thus, the radiomic signature, sex, tumor
shape, and brain invasion were selected for the clinicoradiomic
model building. The radiomics scores in the AM group were
TABLE 1 | Clinical factors of the patients and magnetic resonance imaging features in the training and validation cohorts.

Characteristics AM (n = 101) TM (n = 141) Univariate analysis (p value) Multivariate analysis (p value)

Clinical factors
Age (years) 51.5 ± 10.3 52.3 ± 9.2 0.543 N/A
Sex <0.001* <0.001*
Female 55 (54.5%) 122 (86.5%)
Male 46 (45.5%) 19 (13.5%)

Imaging features
Tumor location 0.442 N/A
Parasinus and parasial 56 (55.4%) 69 (48.9%)
Skull base 28 (27.8%) 50 (35.5%)
Convexity 17 (16.8%) 22 (15.6%)
Maximum diameter (mm) 47.96 ± 15.89 37.36 ± 15.18 <0.001* N/A
Tumour shape <0.001* <0.001*
Circular or quasi- circular 38 (37.6%) 89 (63.1%)
Irregular 63 (62.4%) 52 (36.9%)

Tumour border 0.106 N/A
Clear 81 (80.2%) 124 (87.9%)
Blur 20 (19.8%) 17 (12.1%)

Dural tail sign 0.175 N/A
Yes 41 (40.6%) 45 (31.9%)
None 60 (59.4%) 96 (68.1%)

Peritumoural oedema <0.001* N/A
None (0%) 27 (27.3%) 83 (58.9%)
≤5% 23 (23.2%) 19 (13.5%)
6-33% 19 (19.2%) 14 (9.9%)
34-67% 17 (17.2%) 19 (13.5%)
68-95% 13 (13.1%) 6 (4.3%)

MRI signal
T2WI 0.056 N/A
Slightly high signal 50 (49.5%) 59 (41.8%)
Iso signal 31 (30.7%) 64 (45.4%)
Mixed signal 20 (19.8%) 18 (12.8%)

Enhanced features <0.001* N/A
Uniform 42 (41.6%) 93 (66.0%)
Uneven enhancement 59 (58.4%) 48 (34.0%)

Bone invasion 0.022* N/A
Yes 38 (37.6%) 33 (23.4%)
No 63 (62.4%) 108 (76.6%)

Sinus invasion 0.469 N/A
Yes 25 (24.8%) 41 (29.1%)
No 76 (75.2%) 100 (70.9%)

Brain invasion 0.014* 0.011*
Yes 21 (20.8%) 13 (9.2%)
No 80 (79.2%) 128 (90.8%)
January 202
Among peritumoural oedema, percentage represents the proportion of peritumoural oedema in the entire abnormality, and the entire abnormality may be comprised of the entire tumour
and oedema component.T2 signal is defined by comparing the signal of the gray matter of the brain. A Student’s t-test was used to compare the difference in age and maximum diameter,
while the chi-square test was used to compare the difference in other features. *P < 0.05. SD, standard deviation. N/A, not available.
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significantly higher than those in the TM group in the different
models, as shown in the Figure 4.

The performance of these models was evaluated in the training
cohort and then validated in the validation cohort. The
discrimination ability of T1C, T2, the radiomic (fusion of T1C
and T2), clinical, and the clinicoradiomic models are shown in
Table 2. The ROC curves for T1C, T2, the radiomic, clinical, and
clinicoradiomic models are plotted in Figure 5. The clinicoradiomic
model (nomogram) demonstrated the best discrimination ability,
resulting in AUCs of 0.809 (95% CI, 0.743-0.874) and 0.795 (95%
CI, 0.692-0.899) with sensitivity values of 74.0% (95% CI, 49.3%-
83.6%) and 71.4% (95% CI, 42.9%-89.3%) for the differentiation of
TM from AM in the training and validation cohorts, respectively.
The formula for calculating the clinicoradiomic model and the
fusion radiomic signature is described respectively in the
Supplementary Results.

Model Comparison
The IDI index was calculated to assess the predictive usefulness
of the different models. The clinicoradiomic model improved
the integrated discrimination by 5.75% (P = 0.002) and 9.96%
(P < 0.001) compared to the radiomic model in the training and
Frontiers in Oncology | www.frontiersin.org 6
validation cohorts, respectively. The comparisons between
different models are shown in Table 3. In addition, Delong test
showed that compared with Clinical and T2 models, the
discrimination ability of clinicoradiomic model has been
significantly improved in the training cohort, P value was
0.014 and 0.004 respectively, and there is no statistical
significance in the validation cohort.

Assessment of the Clinicoradiomic
Nomogram Performance
The clinicoradiomic model demonstrated the best discrimination
ability and was used to construct the nomogram (Figure 6A). The
calibration curve together with the Hosmer-Lemeshow test were
used to measure the consistency between the probability of TM or
AM being diagnosed by the clinicoradiomic model and the actual
pathological diagnosis. The actual pathological diagnosis was
consistent with the predicted probability of TM and AM in both
the training and validation cohorts, with P-values of 0.361 and
0.472, respectively, as shown in Figures 6B, C.

The DCA assessed the discrimination ability of the
clinicoradiomic model based on clinical applications. The
clinicoradiomic model provided a net benefit in the DCA at a
A B

C D

FIGURE 2 | Boxplots of the four radiomic features (A–D) with significant differences between transitional meningioma (TM) and atypical meningioma (AM) groups in
the training cohort. The symbol **** represents p < 0.001.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics Models for Meningioma Diagnosis
threshold probability of above 20% (Figures 6D, E). This result
indicated that the clinicoradiomic data were clinically useful.
DISCUSSION

This is a preliminary study to develop a clinicoradiomic model
that discriminates TM from AM based on MRI. The
discrimination ability of this fusion model was validated via
DCA, discrimination, and calibration curves in an internal
validation cohort. One clinical factor, two radiological features,
and four radiomic features indicated a high correlation with the
ability of a model to discriminate between TM and AM. A multi-
modality (fusion of T1C and T2) model of radiomics showed
good discrimination ability in both training (AUC: 0.776,
Frontiers in Oncology | www.frontiersin.org 7
Sensitivity: 0.685) and validation (AUC: 0.734, Sensitivity:
0.679) cohorts. Moreover, the nomogram incorporating
clinicoradiological and radiomic features demonstrated the best
performance in both training (AUC: 0.809, Sensitivity: 0.740)
and validation (AUC: 0.795, Sensitivity: 0.714) cohorts.

Among clinical factors, sex was only the parameter that was
significantly different between TM and AM. Females (86.5%)
were prone to TM, whereas the male-to-female ratio was
balanced in AM (females 54.5%), which is consistent with the
results of other studies (3, 25). Among MR features, tumor shape
and brain invasion were significantly different between TM and
AM, and based on the stepwise multivariate logistic regression
analysis, they can be used as independent discrimination factors.
AMs are more irregular, and TMs are mostly circular or quasi-
circular, which may be related to the grade of the tumor and the
A B

FIGURE 3 | Chord diagram of the correlation between clinicoradiological and selected radiomic features. Correlation analysis of clinicoradiological and selected
radiomic features in the training (A) and validation (B) cohorts. The Spearman correlation test confirms that each link is significantly correlated (P < 0.05). The width
of a link represents the strength of the correlation. For example, the T1C_SquareRootGLSZM_squareroot_zoneEntropy feature (gray) is highly correlated with tumor
shape in both training and validation cohorts.
A B C D E

FIGURE 4 | Plots (A–E) show the boxplots of the corresponding radiomics score in the T1C, T2, combination of T1C and T2, clinical and clinicoradiomics models,
respectively.
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increased brain volume due to the peritumoral edema (26).
Similarly, in most studies, irregular or lobulated tumor growth
was associated with high-grade histology in both uni- and
multivariate analyses (7, 8, 27, 28), presumably showing a
parenchymal reaction of the brain tissue to the extensive
tumors growth and the aggressiveness of the meningioma (27).
Some authors also found that irregular or lobulated
meningiomas were more likely to recur than regular-shaped
ones (7). Zhang et al. have reported that the frequencies of
Frontiers in Oncology | www.frontiersin.org 8
brain invasion in TM and AM were much higher than those in
other meningioma subtypes. In our study, the incidence of brain
invasion in AM (20.8%) was higher than that in TM (9.2%),
which is consistent with a previous study (4%-19% in all WHO
grade meningiomas) (11, 12, 29). This indicates that WHO grade
II AMs are more aggressive than WHO grade I TMs. Moreover,
the maximum diameter , peri tumoral brain edema,
heterogeneous enhancement, and bone invasion were also
different in these two tumors according to the univariate
TABLE 2 | Performance of the sequence models.

Cohort Model AUC ACC SEN SPE PPV NPV

Training set T1C 0.754 (0.679-0.829) 0.729 (0.656-0.795) 0.726 (0.589-0.822) 0.732 (0.464-0.866) 0.671 (0.623-0.698) 0.780 (0.692-0.808)
T2 0.731 (0.655-0.806) 0.694 (0.619-0.762) 0.644 (0.466-0.767) 0.732 (0.556-0.825) 0.644 (0.567-0.683) 0.732 (0.675-0.755)
Radiomics 0.776 (0.705-0.847) 0.753 (0.681-0.816) 0.685 (0.507-0.795) 0.804 (0.464-0.887) 0.725 (0.661-0.753) 0.772 (0.662-0.789)
Clinical 0.726 (0.651-0.801) 0.688 (0.613-0.757) 0.534 (0.380-0.639) 0.804 (0.685-0.900) 0.672 (0.593-0.711) 0.696 (0.661-0.720)
Nomogram 0.809 (0.743-0.874) 0.771 (0.700-0.831) 0.740 (0.493-0.836) 0.794 (0.567-0.866) 0.730 (0.643-0.753) 0.802 (0.743-0.816)

Test set T1C 0.717 (0.597-0.836) 0.694 (0.575-0.798) 0.750 (0.392-0.893) 0.659 (0.295-0.818) 0.583 (0.423-0.625) 0.806 (0.650-0.837)
T2 0.670 (0.541-0.798) 0.611 (0.489-0.724) 0.607 (0.392-0.858) 0.614 (0.432-0.886) 0.500 (0.392-0.586) 0.711 (0.633-0.780)
Radiomics 0.734 (0.616-0.851) 0.722 (0.604-0.821) 0.679 (0.285-0.857) 0.750 (0.431-0.864) 0.633 (0.420-0.686) 0.786 (0.678-0.809)
Clinical 0.765 (0.653-0.877) 0.736 (0.619-0.833) 0.714 (0.372-0.879) 0.750 (0.499-0.864) 0.645 (0.486-0.691) 0.805 (0.733-0.826)
Nomogram 0.795 (0.692-0.899) 0.750 (0.634-0.845) 0.714 (0.429-0.893) 0.773 (0.477-0.910) 0.667 (0.545-0.714) 0.810 (0.724-0.833)
January 2022 | Volume
T1C, contrast-enhanced T1-weighted imaging; T2WI, T2-weighted imaging; Radiomics, combination of T1C and T2; Clinical, fusion of sex, tumour shape and brain invasion; AUC, area
under receiver operating characteristic curve; ACC, balanced accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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FIGURE 5 | Comparison of the receiver operating characteristic (ROC) curves of the different models. (A, B) ROC curves of the different models in the training and
validation cohorts. The clinicoradiomic model demonstrates the best discrimination ability among these models, with area under the curve (AUC) values of 0.809 and
0.795 in the training and validation cohorts, respectively. (C, D) Radiomic signature histogram of the training and validation cohorts. The red bar shows the sample
with transitional meningioma (TM), and the blue bar shows the sample with atypical meningioma (AM).
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analysis, in agreement with published reports (30). For example,
larger tumor size and tumor volume were more likely to be
observed in high-grade meningiomas, and AM is a WHO grade
II tumor. Heterogeneous enhancement reflects intratumoral
hemorrhage, ischemic necrosis, cystic change, or calcification
and is associated with heterogeneous distribution of tumor cells.
Previous studies have reported that AMs have significantly more
intratumoral necrosis and cystic changes than benign
meningiomas (1, 31).

At present, MR radiomics can reproducibly extract objective
and quantitative data from different sequences (T2, T1, T1C, and
fluid attenuated inversion recovery [FLAIR], among others) to
diagnostically discriminate meningiomas from other tumor
forms, such as craniopharyngioma from meningioma in the
sellar/parasellar area (32) or malignant hemangiopericytoma
from angiomatous meningioma (20, 33). Radiomics can use
visually imperceptible information about the tumor. Given this
background, the radiomics model is a convenient, noninvasive
method that does not require tissue biopsy or gene sequencing
and may be a valuable approach to differentiate TM from AM
since the radiomics model (AUC: 0.776 in the training cohort)
outperformed the clinical model (AUC: 0.726). Additionally, we
developed and validated a clinicoradiomics model to
discriminate between TM and AM. Of the 2454 radiomic
features, four were highly correlated with the discrimination
between these two tumors. These features were textural image
features indicating microscopic descriptions of the tumor
including cellularity and tumor-induced compression of
normal brain tissue. Textural features can neither be identified
by the human visual system nor be easily interpreted to
understand their specific meaning (7, 34, 35). We analyzed the
four identified radiomic features and found that two gray-level
size zone matrix (GLSZM) features, one gray-level dependence
matrix (GLDM) feature, and one gray-level co-occurrence
matrix (GLCM) feature were significantly associated with the
discrimination of TM from AM. According to the definitions of
these texture features (36), GLSZM quantifies gray-level zones in
an image. The GLDM feature measures the difference between
adjacent voxels based on their voxel value, and this feature was
most relevant to the discrimination between these two tumors.
The GLDM features selected by LASSO include entropy features,
where a larger entropy value indicates greater heterogeneity of
the tumor (37). The GLCM feature describes the distance and
angle of each pixel, which includes energy, correlation, entropy,
inertia, and inverse difference (37). Compared to TM, the values
Frontiers in Oncology | www.frontiersin.org 9
of these features were higher in AM. This indicates that these
features may reflect microscopic heterogeneity within the
tumors. Thus, as a new tool, the radiomic feature could
distinguish TM from AM.

We also analyzed the correlation between clinicoradiological
factors and radiomic features using Spearman’s correlation
analysis. We found that some clinicoradiological factors were
consistent with some radiomic features extracted from MR
images in both training and validation cohorts. This revealed
that clinicoradiological features also reflected some radiomic
MRI features. For example, shape was correlated with
T1C_WaveletGLSZMwavelet.HHL_GraylevelNonUniformity
and T1C_SquareRootGLSZM_squareroot_zoneEntropy in both
training and validation cohorts. This indicated that some
radiomic features corresponded to tumor shape in MR images,
such as entropy in GLSZM. The correlation between these
features revealed that some specific feature combinations may
be explained by some clinicoradiological features to some extent.
Besides, the included four features were extracted from different
sequences, and the combination of T1C and T2 models of
radiomic features indicated a better discrimination ability than
the T1C or T2 models alone. These results indicated that
different sequences provided distinct information, and multiple
sequences could show more information about tumors and
increase the discrimination ability of the model. After Delong
test, we found that the discrimination ability of clinicoradiomic
model is better than that of Clinical and T2 models. However,
there is no statistical significance in the validation cohort, which
may be related to the small sample size of the validation cohort.
This result indicated that we should include more data in future
study to improve the performance and stability of the model. At
present, the clinical application of radiomics is still in the
exploratory research stage, and it needs time to accumulate.
Radiomics-derived data, when combined with other pertinent
data sources (including clinically obtained, treatment-related or
genomic data), can produce accurate robust evidence-based
clinical-decision support systems (38).

The nomogram incorporating clinicoradiological factors and
radiomic features showed the best discrimination ability
compared to radiomic models based on T1C, T2, T1C/T2
images, and clinicoradiological factors. The results indicated
that fusing clinicoradiological factors and radiomic features
significantly improved classification performance. Combining
qualitative and quantitative imaging analyses provided an
additive effect because the information contained in these
TABLE 3 | Comparison of the different models in the validation cohort.

Initial model Model introducing new factor Performance improvement (IDI)

Training cohort Validation cohort

Clinical Clinicoradiomic 11.1% P = 0.00033 7.86% P = 0.0396
Combination of T1C and T2 Clinicoradiomic 5.75% P = 0.00195 9.96% P = 0.00089
T1C Combination of T1C and T2 4.37% P = 0.00538 3.06% P = 0.3425
T2 Combination of T1C and T2 7.04% P = 0.00029 6.91% P = 0.02442
January 2022 | Volume
Compared with the T1C and T2 models, the performance of combination of T1C and T2 model improved by 7.04% and 4.37% in discrimination ability, respectively. Compared with
combination of T1C and T2 model, the performance of clinicoradiomic model improved by 5.75% in discrimination ability. IDI: Integrated discrimination improvement; Clinicoradiomic,
fusion of sex information, tumour shape, brain invasion and radiomic signature.
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A

B C

D E

FIGURE 6 | Establishment and performance of the clinicoradiomic model. (A) The clinicoradiomic model is used to develop a nomogram. (B, C) Calibration curves
of the clinicoradiomic nomogram for the training and validation cohorts. The x-axis represents the probability of atypical meningioma (AM) and transitional
meningioma (TM) as measured by the clinicoradiomic model, and the y-axis represents the actual rate of AM and TM. The solid line represents the discrimination
ability of the nomogram, and the diagonal dotted line represents the ideal evaluation by a perfect model. The P-values in the Hosmer-Lemeshow test are 0.361 and
0.472 in the training and validation cohorts, respectively. A closer fit to the diagonal dotted line represents a better evaluation. (D, E) Decision curve analysis for the
clinicoradiomic model. The x-axis shows the threshold probability, and the y-axis measures the net benefit. The gray line represents all patients with AM, whereas the
black line represents all patients with TM. The pink line represents the clinicoradiomic model.
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features was complementary (39). Preoperative risk factors were
extracted without postoperative factors to build the nomogram.
This nomogram may be helpful for both clinicians and
radiologists to preoperatively distinguish TM from AM. The
nomogram was better than the radiomics model and could be
applied in clinical practice for meningioma patients undergoing
MRI scans.

Our study has several limitations. First, the analysis of MRI
characteristics was independently performed by two radiologists,
and imaging assessments are subjective. Second, we selected the
T1C and T2 sequences for this study. On T2 images, the tumor
had unclear boundaries in some cases. Although we referred to the
T1C sequences for visual guidance to delineate tumor borders,
there were still deviations. Third, our study was a single-center
study, and a multi-center external validation is needed to test the
generalizability and robustness of the model in the future. In
addition, two neuroradiologists spent plenty of time to manually
delineate two independent VOIs of tumors for eachMRI sequence
in this study, thus, efficient automatic segmentation and co-
registration was available for meningiomas in the future
research. In future, multimodal studies such as DWI and FLAIR
sequences could be combined to improve accuracy.
CONCLUSION

Preoperative identification of TM and AM would aid the clinical
decision-making and prognosis prediction. In the radiomic
analysis, four radiomic features were highly correlated with the
discrimination between these two tumors. After the fusion of
T1C and T2 features, the MRI-based radiomics signature
effectively identified TM and AM on MR images. The
clinicoradiomic model that combined the radiomic signatures
and clinicoradiological factors showed the best discrimination
ability and may be used in patients with TM and AM.
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