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Exploring the genetic structure of influenza viruses attracts the attention in the field of molecular ecology and medical genetics,
whose epidemics cause morbidity and mortality worldwide. The rapid variations in RNA strand and changes of protein structure
of the virus result in low-accuracy subtyping identification and make it difficult to develop effective drugs and vaccine. This paper
constructs the evolutionary structure of avian influenza virus system considering both hemagglutinin and neuraminidase protein
fragments. An optimization model was established to determine the rational granularity of the virus system for exploring the
intrinsic relationship among the subtypes based on the fuzzy hierarchical evaluation index. Thus, an algorithm was presented to
extract the rational structure. Furthermore, to reduce the systematic and computational complexity, the granular signatures of virus
system were identified based on the coarse-grained idea and then its performance was evaluated through a designed classifier. The
results showed that the obtained virus signatures could approximate and reflect the whole avian influenza virus system, indicating
that the proposed method could identify the effective virus signatures. Once a new molecular virus is detected, it is efficient to
identify the homologous virus hierarchically.

1. Introduction

Exploring the genetic structure of biological population
attracts the focus in the field of population biology, molecular
ecology, and medical genetics [1]. Influenza A virus is a
negative-strand RNA virus, which encodes the 8 structural
proteins and 2 nonstructural proteins. In the past several
decades, some subtypes of influenza viruses have been iden-
tified to infect humans, whose epidemics cause morbidity
and mortality worldwide [2, 3]. Subtyping identification
of a virus is typically based on viral hemagglutinin (HA)
and neuraminidase (NA) fragments among the 10 encoded
proteins [4, 5]. So far, dozens of subtypes, combination of
the 16 HA and 9 NA types, make up the whole viral system
and it was verified that different labeled viruses descend
from the same ancestor according to microscopic structural
features and genome organization analysis [6]. Evolutionary
forces, treated as the most important molecular mechanisms,
such as natural selection acting upon rapidly mutating viral
populations could shape the genetic structure of influenza
viruses in different hosts, geographic regions, and periods of

time with genetic mutation [7]. In addition, influenza viruses
are equipped with antigenic changes, known as antigenic
shifts among different subtypes of influenza viruses, which
results in structural changes to escape the immunity [8]. It
is of crucial importance to identify the subtypes and analyze
the evolutionary relationships for developing antiviral drugs
and vaccines. Thus, accessing the viral genomes in a timely
fashion and developing effective analyzing methods are
urgently needed.

The dramatic progress in sequencing technologies pro-
vides unprecedented prospects for the exploration of virus
homologous and mutation trajectory in space and time.
Understanding the evolution of influenza viruses has bene-
fited from phylogenetic reconstructions of the hemagglutinin
protein [9]. In an alternative approach, Lapedes and Farber
[10] applied a technique called multidimensional scaling to
study antigenic evolution of influenza. Plotkin et al. [8]
clustered hemagglutinin protein sequences using the single-
linkage clustering algorithm and found that influenza viruses
group into several clusters. Upon the dimensional projection
technique to characterize hemagglutination inhibition (HI)
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data, a low-dimensional clustering method that can detect
the clusters containing an incipient dominant strain was
presented by He and Deem [11]. However, those works
just focused on the one fragment, especially HA protein,
to explore the evolutional relationships. And large volume
of data poses some daunting challenges for exploring the
structure of the complex systemand the intrinsic relationship.
Therefore, there is a need for less computationally intensive
methods.

In recent years, the granular computing (GrC) theory has
become a hotspot in the field of artificial intelligence and
machine learning, which comes from the idea that people
solve the problems from different levels and views [12].
Clustering technique is an effective way to generate granules
of complex system. Y. Y. Yao and J. T. Yao accomplished
a series of research work for applying the theory to data
mining and some other fields [13]. Hartmann et al. [14]
proposed supervised hierarchical clustering in fuzzy model
identification by using hierarchical tree construction. Tang
et al. [15, 16] introduced the granular space to describe the
hierarchical structural information by using the algebraic
topology based on the fuzzy quotient space theory [12].
He also studied the hierarchical clustering structure and
analyzed the fuzzy equivalence (or proximity) relation based
on the fuzzy granular space. Constructing the hierarchical
structure of complex system and extracting the essential
information among the granules on different granularities are
the goals.

In this paper, our aim is to explore the evolutional rela-
tionships of the avian influenza viruses in the same subtype
and among the subtypes considering both HA and NA
fragments in the virus system. Moreover, the complex virus
system should be reduced for further exploration, faced
with thousands of samples in the dataset. Jointing the two
protein sequences, the feature vectors are extracted from HA
and NA proteins, respectively, for labeling the specific virus.
Furthermore, the granular signatures in the viral granules
are identified based on the obtained features to reduce the
systematic and computational complexity and then its perfor-
mancewill be evaluated.Thiswill provide the supports for the
rationality of subtype identification. Once a new molecular
virus is detected, it could be analyzed with obtained viral
signatures and then the prevention and treatment measures
can follow what were applied in the viral signature.

2. Materials and Methods

2.1. Materials. The influenza virus dataset was downloaded
from the NCBI Influenza Virus Resource (http://www.ncbi
.nlm.nih.gov/genomes/FLU/) [17]. The influenza virus con-
tains eight linear negative-strand RNA fragments, which
encode 10 viral proteins, that is, PB1, PB2, PA, HA, NP, NA,
M1, M2, NS1, and NS2, among which most are structural
proteins except NS1 andNS2. Notably, HA andNA fragments
play the direct and important roles in the viral subtyping
identification and the functions [18]. It has been verified
that 8 subgroups of avian influenza virus (H5N1, H5N2,
H7N2, H7N3, H7N7, H9N2, H10N7, and H7N9) could infect
people, which occurred from 1902 to 2015 around the world.

The avian influenza viruses are labeled with unambiguous
symbols such as the host, outbreak time, and detection
sites. Removing some vague and uncompleted viruses, there
are 8274 influenza viruses which reserve HA and NA pro-
tein fragments simultaneously (13143 HA protein fragments
and 9401 NA protein fragments), compositing the whole
avian virus protein system, denoted as Ω. According to the
physicochemical property [19], amino acids are divided into
four types, namely, the polar and hydrophilic (pq), polar
and hydrophobic (pr), nonpolar and hydrophilic (sq), and
nonpolar and hydrophobic (sr). Considering the adjacency
statistical information, the 16-dimension feature vector is
extracted by calculating the frequency from one protein
sequence.Therefore, 32-dimension feature vector is extracted
to represent a virus molecule.

2.2. The Optimization Model for Extracting the Hierarchical
Structure. A relation 𝑅 on a universe 𝑋 is a fuzzy proximity
(FP) relation if it satisfies the reflexivity and symmetry [16,
20]. Furthermore, if 𝑅 is an FP relation on the universe 𝑋
and satisfies the separable condition (∀𝑥, 𝑦 ∈ 𝑋, 𝑅(𝑥, 𝑦) =
1 ↔ 𝑥 = 𝑦), then 𝑅 is called a separable FP relation (or SFP
relation).

In [16], the granular space of FP (or SFP) relations on the
universe 𝑋 was introduced, and then their properties were
explored. Let 𝑅 be an FP (or SFP) relation on a finite universe
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is a dataset of 𝐾-dimension
space. For any 𝜆 ∈ [0, 1], we define a relation 𝑅𝜆 : (𝑥, 𝑦) ∈
𝑅𝜆 ↔ 𝑅(𝑥, 𝑦) ≥ 𝜆, where 𝑅𝜆 is a crisp proximity relation that
satisfies the reflexivity and symmetry. Then, the equivalent
classes of the transitive closure tr(𝑅𝜆) can be marked by [𝑥]𝜆,
which is derived by 𝑅𝜆, and then 𝑋(𝜆) = {[𝑥]𝜆 | 𝑥 ∈ 𝑋} is
a granularity corresponding to 𝜆. The set {𝑋(𝜆) | 𝜆 ∈ [0, 1]}
represents a fuzzy granular space on 𝑋, which is an ordered
set, and satisfies that the bigger the threshold 𝜆 is, the finer
the granularity is, denoted byℵTR(𝑋) [16].

The granularity derived by 𝜆 is marked as 𝑋(𝜆) =
{𝑎1, 𝑎2, . . . , 𝑎𝑐𝜆}, where 𝑎𝑖 = {𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐽𝑖} satisfying the
conditions that |𝑎𝑖| = 𝐽𝑖 (| ⋅ | stands for the number of the
elements in a set) and ∑𝑐𝜆𝑖=1 𝐽𝑖 = 𝑛. Some properties are
explored, such as 𝑎𝑖 = ∑𝐽𝑖𝑘=1 𝑥𝑖𝑘/𝐽𝑖 (𝑖 = 1, 2, . . . , 𝑐𝜆) is the
center of granule 𝑎𝑖 and the center of𝑋 is 𝑎 = ∑𝑐𝜆𝑖=1∑𝐽𝑖𝑘=1 𝑥𝑖𝑘/𝑛.
From the perspective of statistical theory, two indexes are
introduced to measure the deviations within the classes and
among the classes on the granulation 𝑋(𝜆) [18, 20], defined,
respectively, as follows:

𝑆among (𝑋 (𝜆)) =
∑𝑐𝜆𝑖=1 𝐽𝑖 󵄩󵄩󵄩󵄩𝑎𝑖 − 𝑎󵄩󵄩󵄩󵄩

2

2

𝑛 ,

𝑆within (𝑋 (𝜆)) =
∑𝑐𝜆𝑖=1∑𝐽𝑖𝑘=1

󵄩󵄩󵄩󵄩𝑥𝑖𝑘 − 𝑎󵄩󵄩󵄩󵄩
2

2

𝑛 ,
(1)

where ‖ ⋅ ‖2 stand for the 2-norm number in 𝐾-dimension
space.

By analyzing the variance within and among the classes
in statistics [21], 𝑆among(𝑋(𝜆)) is monotone increasing, with
the granularity changing from the coarse to the fine, while
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𝑆within(𝑋(𝜆)) is gradually decreasing. Notably, the total devi-
ation (𝑆(𝑋(𝜆)) = 𝑆among(𝑋(𝜆)) + 𝑆within(𝑋(𝜆))) is always con-
stant 𝑆(𝑋(𝜆)) = ∑𝑛𝑖=1 ‖𝑥𝑖−𝑎‖22/𝑛. Additionally, 𝑆among(𝑋(0)) =
𝑆within(𝑋(1)) = 0 and 𝑆among(𝑋(1)) = 𝑆within(𝑋(0)) =
∑𝑛𝑖=1 ‖𝑥𝑖 − 𝑎‖22/𝑛. Therefore, a fuzzy hierarchical evaluation
index (FHEI) based on the fuzzy granular space is proposed
as follows:

FHEI (𝑋 (𝜆)) = 󵄨󵄨󵄨󵄨󵄨𝑆among (𝑋 (𝜆)) − 𝑆within (𝑋 (𝜆))
󵄨󵄨󵄨󵄨󵄨 . (2)

We establish an optimizationmodel to determine the rea-
sonable granulation in the granular space with the minimal
objective; that is, FHEI(𝑋(𝜆)) reaches the minimum. There
exists only one 𝜆 = 𝜆0 to meet the optimization model,
marked as Model (2):

𝑋(𝜆0) = arg min
𝑋(𝜆)∈ℵTR(𝑋)

{FHEI (𝑋 (𝜆))} . (3)

Remark 1. Model (2) is a global optimization model without
constraints on the hierarchical structure of the finite universe
𝑋. Comparedwith [18], theirmodel for determining the opti-
mal hierarchical clustering has the restriction 𝑆among(𝑋(𝜆)) >
𝑆within(𝑋(𝜆)).

Given an FP relation (or SFP relation) 𝑅 on the finite set
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝐷 = {𝑅(𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝑋} =
{𝑟0, 𝑟1, . . . , 𝑟𝑁}, satisfying 1 = 𝑟0 > 𝑟1 > ⋅ ⋅ ⋅ > 𝑟𝑁, an algorithm
is presented to detect the optimized hierarchical clustering
and construct the hierarchy of complex system based on the
fuzzy granular space [16].

Algorithm A.

Input: an FP relation (or SFP relation).

Output: the optimized hierarchical structure and the corre-
sponding threshold.

Step 1

𝑋(𝑟𝑖) = 𝐶 = {𝑎1, 𝑎2, . . . , 𝑎𝑐1} ,

𝑆0 ⇐󳨐
󵄨󵄨󵄨󵄨󵄨𝑆among (𝑋 (𝑟𝑖)) − 𝑆within (𝑋 (𝑟𝑖))

󵄨󵄨󵄨󵄨󵄨
𝑖 = 0.

(4)

Step 2

𝑖 ⇐󳨐 𝑖 + 1. (5)

Step 3

𝐴 ⇐󳨐 𝐶. (6)

Step 4

𝐵 ⇐󳨐 ⌀,
𝐶 ⇐󳨐 ⌀.

(7)

Step 5. For any 𝑎𝑗 ∈ 𝐴, 𝐵 ⇐ 𝐵 ∪ 𝑎𝑗, 𝐴 ⇐ 𝐴 \ 𝑎𝑗.

Step 6. For ∀𝑎𝑘 ∈ 𝐴, if ∃𝑥𝑗 ∈ 𝑎𝑗, 𝑦𝑘 ∈ 𝑎𝑘 satisfying 𝑅(𝑥𝑗, 𝑥𝑘) ≥
𝑟𝑖, 𝐵 ⇐ 𝐵 ∪ 𝑎𝑘, 𝐴 ⇐ 𝐴 \ 𝑎𝑘.

Step 7

𝐶 ⇐󳨐 {𝐵} ∪ 𝐶. (8)

Step 8. If 𝐴 = ⌀,𝑋(𝑟𝑖) = 𝐶; otherwise, go to Step 5.

Step 9. If𝑋(𝑟𝑖) ̸= 𝑋(𝑟𝑖−1), 𝑆1 ⇐ |𝑆among(𝑋(𝑟𝑖))−𝑆within(𝑋(𝑟𝑖))|;
otherwise, go to Step 2.

Step 10. If 𝑆0 > 𝑆1, 𝑆0 ⇐ 𝑆1, go to Step 2.

Step 11. Output 𝑟𝑖−1,𝑋(𝑟𝑖−1) and 𝑆0.

The computational complexity of Algorithm A is 𝑂(𝑛2).
The concrete problems are decomposed hierarchically, which
is consistent with the core idea of GrC. Given an FP (or
SFP) relation on the finite set 𝑋, the optimization clustering
structure constructed by Algorithm A is its first level struc-
ture. Furthermore, its second level structure is obtained if
AlgorithmA is repeatedly applied to all the equivalent classes
in its first level structure. Therefore, Algorithm A can be
used to construct multilevel structure in practical applica-
tion.

2.3. Identification of Granular Signature. Once the optimal
granularity of the complex system is determined, it is of
crucial importance to construct information granules for
abstracting original samples. Generally, the granules are
obtained according to the principle: the samples with the
same features assemble in one granule. And the average of
all samples in one class or the center of the class is efficacious
to represent the core information. Suppose that a multilevel
structure (or granularity)𝑋∗ = {𝑎1, 𝑎2, . . . , 𝑎𝐽} is constructed,
where 𝐽 = |𝑋∗|. To reduce the complexity of the system,
feature viruses (or signature viruses) could be extracted to
approximately represent the equivalent class. According to
the nearest-to-center principle, an objective function to select
the signature is established, and it is formulated as follows:

𝑝𝑖 = arg max
1≤𝑘≤𝐽𝑖

{𝑅 (𝑥𝑖𝑘, 𝑎𝑖)} , (9)

where 𝑝𝑖 is the signature item of the granule 𝑎𝑖 and 𝑃 =
{𝑝1, 𝑝2, . . . , 𝑝𝐽} is a signature set of the granularity 𝑋∗. In
some way, the signature set 𝑃 can be used to represent
approximately the complex system𝑋.

2.4. Validation of Granular Signature Set. To evaluate the per-
formance of selected signature set 𝑃, a classifier is designed
for classifying the rest of the samples of the corresponding
classes according to the principle of maximum similarity,
marked as Model (3). Given a virus 𝑞𝑗 (∈ 𝑋 \𝑃), the classifier
is designed:

𝐿𝑗 = argmax
𝑖
{𝑅 (𝑞𝑗, 𝑝𝑖)} , (10)
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Table 1: The 8 subtypes of avian influenza virus.

Subtype Number Subtype Number Subtype Number Subtype Number
H5N1 306 H5N2 127 H7N3 70 H9N2 199
H7N9 24 H7N2 40 H7N7 68 H10N7 75

where 𝑝𝑖 ∈ 𝑃, 𝑖 = 1, 2, . . . , 𝐽, and 𝐿𝑗 is the class the virus 𝑞𝑗
belongs to.

Model (3) states that the signature viruses are treated as
the classifying targets and the other samples in 𝑋 \ 𝑃 are
assigned to |𝑃| classes. All samples in𝑋\𝑃 are divided into |𝑃|
classes according toModel (3), marked as 𝑏𝑘, 𝑘 = 1, 2, . . . , |𝑃|.
The accuracy ratio 𝑟 is introduced to measure the efficiency
of signature set for constructing the multilevel structure 𝑋∗.
It is defined as

𝑟 = ∑
|𝑃|
𝑘=1
󵄨󵄨󵄨󵄨𝑎𝑘 ∩ 𝑏𝑘󵄨󵄨󵄨󵄨
|𝑋 \ 𝑃| . (11)

In formula (11), the overlapped ratio 𝑟 is proposed,
which measures the rationality of the obtained signature to
represent the whole virus system. And the bigger the value 𝑟
is, the better the result is.

3. Results and Analysis

In this section, we apply the proposed model to the avian
influenza virus system for constructing the evolutionary
structure, which contains 8274 viral HA and NA protein
fragments simultaneously within 8 subtypes, listed in Table 1.

Based on the feature vectors extracted from the viral
HA and NA proteins, the 32-dimension vector 𝑥𝑖 =
(𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖32) labels the specific virus 𝑥𝑖. Furthermore, the
similarity between viruses 𝑥𝑖 and 𝑥𝑗 is measured:

𝑅 (𝑥𝑖, 𝑥𝑗) =
(𝑥𝑖, 𝑥𝑗)

√(𝑥𝑖, 𝑥𝑖) ⋅ (𝑥𝑗, 𝑥𝑗)
, (12)

where (𝑥𝑖, 𝑥𝑗) = ∑32𝑖=1 𝑥𝑖𝑘 ⋅ 𝑥𝑗𝑘 stands for the inner product in
32-dimension space. Obviously, 𝑅 is an SFP relation.

The virus dataset has redundant information as many
viruses are labeled with the same host, the same occurrence
time, and the same outbreak sites, which could pose the
obstacle to explore the intrinsic relationship and difference
among the subtypes. Thus, those with the same host, the
same occurrence time, and the same location combine as one
new point (a representative virus), which is the preliminary
system simplification, and then a unique virus databaseΩ∗ is
obtained. The FHEI is applied to virus system Ω∗ containing
909 avian influenza viruses, to obtain the reasonable partition
and evolutionary structure.

On the basis of the virus database Ω∗, the viral gran-
ular space (evolutionary structure) is constructed by using
Algorithm A. On the first level, 3 equivalent classes were
finally determined to partition the whole system, and the
corresponding signature viruses are obtained, shown in

Table 2: Three signature viruses of the first level structure.

Number Virus
number Virus signature

A1 850 A/Pekin duck/Singapore/F59/04/98(H5N2)
A2 58 A/chicken/Tunisia/145/2012(H9N2)

A3 1 A/American green-winged
teal/Washington/1595750/2014(H5N1)

Sum 909

Table 2. For the virus granules on the first level, class A1
contains the most viruses (about 93.5%), and granule A3
arises, containing an isolated virus (A/American green-
winged teal/Washington/1595750/2014(H5N1)). Therefore, it
is necessary to construct the second level of virus system.
For each virus granule on the first level, Algorithm A is used
repeatedly, which is to refine the granules to get the detailed
evolutional structure. 14 equivalent subclasses are identified,
denoted as 𝑏∗𝑘 (𝑘 = 1, 2, . . . , 14), and the virus signatures
are extracted, shown in Table 3. From Tables 2 and 3, we
construct the two-level feature structure of the whole virus
system by using the signature viruses on first level and second
level structure.

The virus signature could be used to approximate the
whole system for they are selected from the classes as the
granule information. Moreover, the classifier, designed based
on the principle of maximum similarity, is applied to validate
the performance of virus signature. The accuracy rate of the
signature virus set 𝑃∗ on the second level structure is 76.57%
by comparison, indicating that the second level structure of
viruses system constructed by our model is effective.

Remark 2. Evaluating the performance of virus signature,
the error rate is still 23.43%, which might be caused by the
approximation process since all signature viruses are selected
according to the nearest-to-center principle and they are not
just on the center of each subclass, respectively. From the
perspective of approximation, the signature set contains the
most information of virus system according to the accuracy
rate 76.57%. Therefore, the signature virus set 𝑃∗ containing
14 viruses can be used to approximate the whole system
containing 909 viruses.

The phylogenetic tree of the signature virus set 𝑃∗ can be
constructed by applying the hierarchical clustering algorithm
[16], shown in Figure 1. According to Remark 2, it can also
be treated as the core structure of whole influenza viruses
system, which helps us understand the evolutionary history
and the mechanism of evolution [22].
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Table 3: The virus classes on the second level structure.

Number Virus
number First level Virus signature

B1 1 A1 A/chicken/Cambodia/LC/2006(H5N1)
B2 1 A1 A/dog/Shandong/JT01/2009(H5N2)
B3 177 A1 A/chicken/Israel/184/2009(H9N2)
B4 665 A1 A/duck/Taiwan/DV1236/2009(H5N2)
B5 1 A1 A/blue-winged teal/LA/AI13-1225/2013(H7N7)
B6 2 A1 A/duck/Korea/A349/2009(H7N2)

B7 2 A1 A/chicken/Abbottabad/NARC-
2419/2005(H7N3)

B8 1 A1 A/mallard/Netherlands/22/2010(H10N7)
B9 12 A2 A/swine/Hong Kong/2106/98(H9N2)
B10 35 A2 A/chicken/Italy/330/1997(H5N2)
B11 1 A2 A/chicken/Queensland/1995(H7N3)
B12 9 A2 A/chicken/Iran/261/01(H9N2)
B13 1 A2 A/oystercatcher/Peru/MM152/2008(H10N7)

B14 1 A3 A/American green-winged
teal/Washington/195750/2014(H5N1)

0 20 40 60

A/chicken/Iran/261/01(H9N2)

A/American green-winged teal/Washington/195750/2014(H5N1)

A/chicken/Italy/330/1997(H5N2)

A/swine/Hong Kong/2106/98(H9N2)

A/oystercatcher/Peru/MM152/2008(H10N7)

A/chicken/Queensland/1995(H7N3)

A/chicken/Israel/184/2009(H9N2)

A/duck/Taiwan/DV1236/2009(H5N2)

A/mallard/Netherlands/22/2010(H10N7)

A/dog/Shandong/JT01/2009(H5N2)

A/chicken/Cambodia/LC/2006(H5N1)

A/chicken/Abbottabad/NARC-2419/2005(H7N3)

A/duck/Korea/A349/2009(H7N2)

A/blue-winged teal/LA/AI13-1225/2013(H7N7)

Figure 1: The phylogenetic tree of signature viruses on second level structure.

Among the 8 virus subtypes, 7 viruses are identified
as the signature viruses except H7N9, for H7N9 viruses
account for the minority of whole system (Figure 1). Explor-
ing the intrinsic relation, it is obvious that H7N9 belongs
to class B4, elucidating that the variation of H7N9 is
not significant [23] and can be viewed as a new mem-
ber in the family of viruses. Based on the coarse-grained
idea, one signature virus represents the corresponding
class. However, some isolated points are detected, such
as A/chicken/Cambodia/LC/2006(H5N1), A/dog/Shandong/
JT01/2009(H5N2), and A/chicken/Queensland/1995(H7N3),
whichmight be caused by the big change to virus RNA strain.

From the hierarchical structure of the feature vi-
ruses, A/blue-winged teal/LA/AI13-1225/2013(H7N7), A/
duck/Korea/A349/2009(H7N2), andA/chicken/Abbottabad/
NARC-2419/2005(H7N3) have similar evolution relation-
ship (connect closely) for they equip the same HA type
(H7). Besides, A/chicken/Cambodia/LC/2006(H5N1) and
A/dog/Shandong/JT01/2009(H5N2) have the consistent con-
clusions. However, A/chicken/Italy/330/1997(H5N2) is far
from them, which could be due to the fact that the outbreak
time plays an important role in sequence mutation. If just
considering the HA and NA proteins, the subtypes, such as
H9N2 [24], should be redefined. Comparing the two-level
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structure and hierarchical structure of virus signature, the
intrinsic relationship among A1 on the first level structure
is consistent with that in the hierarchical structure, while
class A2 has the dispersed structure where the feature viruses
in different subtypes scatter in chaos, which indicates that
constructing the second level structure is meaningful.

4. Conclusions

The rapid variation of influenza viruses results in low-
accuracy subtyping identification and makes it difficult to
develop effective drugs. This article explored the homology
of avian influenza virus system and identified the subtypes
according to HA and NA protein fragments, which might
provide the support for developing antiviral drugs and
vaccines according to different subtypes. Phylogenetic recon-
structions serve understanding the evolution of influenza
viruses. However, the large amounts of virus dataset pose
an obstacle for analyzing the evolutionary relationship and
identifying the correct subtypes to predict the biological
functions. Granular computing theory was applied to deter-
mine the partition of virus system based on the constructed
granular space. A method and the corresponding algorithm
were proposed for detecting the rational granularity.With the
proposed algorithm applied repeatedly, a multilevel structure
of whole system was constructed. To reduce the computa-
tional complexity, some key viruses were selected to approx-
imate the whole system based on the coarse-grained idea.
According to the nearest-center principle, virus signatures
were identified and constructed the granular signature set
of a multilevel structure of complex system. By designing a
classifier, the performance of virus signatures was evaluated
and the result showed that the virus signatures could reflect
the most properties of virus system. Furthermore, hierar-
chical structure of virus signature was constructed by using
hierarchical clustering algorithm. Both of the two structures
have some consistent intrinsic relationship among the virus
systems and between the different subtypes. Some viruses
were detected as isolated points in the structure thought
equipped with the same labels, which might be caused by
the rapid variations in the RNA strands. The virus signatures
have the potential use in new virus subtyping comparison and
functional prediction.
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