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Abstract: Highly selective ion separations are vital for producing pure salts, and membrane-based
separations are promising alternatives to conventional ion-separation techniques. Our previous work
demonstrated that simple pressure-driven flow through negatively charged isoporous membranes
can separate Li+ and K+ with selectivities as high as 70 in dilute solutions. The separation mechanism
relies on spontaneously arising streaming potentials that induce electromigration, which opposes
advection and separates cations based on differences in their electrophoretic mobilities. Although the
separation technique is simple, this work shows that high selectivities are possible only with careful
consideration of experimental conditions including transmembrane pressure, solution ionic strength,
the K+/Li+ ratio in the feed, and the extent of concentration polarization. Separations conducted
with a rotating membrane show Li+/K+ selectivities as high as 150 with a 1000 rpm membrane
rotation rate, but the selectivity decreases to 1.3 at 95 rpm. These results demonstrate the benefits
and necessity of quantitative control of concentration polarization in highly selective separations.
Increases in solution ionic strength or the K+/Li+ feed ratio can also decrease selectivities more than
an order of magnitude.

Keywords: streaming potential; ion separations; selectivity

1. Introduction

Highly selective ion separations are important for recovering pure salts from natural
resources or secondary waste streams [1]. For example, geothermal brines contain a high
concentration of Li+ (compared to seawater) and are a key source of battery-grade Li2CO3
(99.5 wt% purity) [2,3]. Nevertheless, these brines contain large excesses of Na+, K+, Ca2+,
Mg2+, and other cationic species, therefore Li2CO3 production from brines is a challenging
ion-separation process [4].

Conventional ion separations typically employ chemical precipitation, solvent extrac-
tion, ion exchange, or a combination of these techniques [5,6]. Although these established
processes yield highly pure salts, they often have negative environmental impacts due to
high water usage, employment of harsh chemicals, and improper waste management [6].
In contrast, membrane-based ion separations may drastically reduce the environmental
footprint of the separation process, but more selective membranes are needed [4] to produce
highly pure salts.

Many studies have demonstrated that membranes can effectively separate mono-
valent and multivalent ions [7–13]. For example, membranes with a dense, positively
charged polyelectrolyte coating showed remarkable Li+/Mg2+ selectivities around 1000,
and electrodialysis with such membranes can recover 60% of the Li+ from a source-phase
solution while creating 99.9% pure Li+ in the receiving phase [7]. The dense structure of
the polyelectrolyte film greatly impedes Mg2+ migration because of its large hydrodynamic
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radius, and the positive surface charge also excludes multivalent Mg2+ more than singly
charged Li+ (Donnan exclusion) [14,15].

Membrane-based separations among ions that have the same charge are more chal-
lenging than monovalent/multivalent ion separations, largely because Donnan exclusion
does not offer selectivity among ions that have the same charge. Thus, researchers typically
employ membranes with precisely defined pore sizes or specific ion-binding sites to sep-
arate these ions. Such membranes include layered graphene oxide sheets [16–18], metal
organic frameworks [19,20], and crown-ether-functionalized polymers [21–23].

In addition to the above methods, under certain conditions simple pressure-driven
flow in charged, isoporous membranes can separate ions that have the same charge but
different electrophoretic mobilities. Our recent study based on this separation mecha-
nism demonstrated Li+/K+ selectivities as high as 70 when flowing a dilute solution
through polycarbonate track-etched membranes with 30-nm pores [24]. Remarkably, both
selectivity and Li+ permeability can increase with transmembrane pressure, breaking the
selectivity-permeability tradeoff. The separation mechanism relies on opposing advection
with electromigration, which spontaneously arises in charged porous membranes provided
that the solution ionic strength is sufficiently low. As Figure 1A shows, a negatively charged
pore attracts cations and rejects anions, and pressure-driven flow through the pore carries
more cations than anions via advection. In the absence of electrical current, the molar
fluxes of cations and anions across the membrane must be equal (assuming they are both
monovalent species). Thus, an electrical-potential difference spontaneously arises to induce
electromigration to give zero current (Figure 1B) [25,26]. Note that flux is the product of
concentration and velocity, so the net velocity of the depleted anion must be larger than
that of the more abundant cation to create zero current.
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Figure 1. (A) Qualitative ion distribution in a negatively charged nanopore and (B) scheme of
streaming potential and ion flux components during flow through the pore. Due to anion exclusion,
the cation advection flux is much larger than the anion advection flux. The spontaneously arising
streaming potential creates electromigration flux components, so that the net fluxes of cations and
anions are equal (assuming that the cations and anions are both monovalent species) [24].

When Li+ and K+ are both present in the feed solution, the streaming potential induces
different electromigration velocities for these two ions (Figure 2A). K+ has a larger electro-
migration velocity than Li+ because K+ has a smaller hydrodynamic radius, or equivalently
a higher electrophoretic mobility [27]. Thus, Li+ has a larger net velocity through the mem-
brane than K+, and a transmembrane flow leads to Li+/K+ separations. For sufficiently
dilute feed solutions, the streaming potential is large enough to give a K+ electromigration
velocity that completely overcomes its advection velocity (Figure 2B). This leads to very
high Li+/K+ selectivities as the K+ flux approaches 0 at large flow velocities within the
nanopores (see Section 3.3 for further discussion).
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tromigration (red arrows) retards K+ more than Li+ due to the higher mobility of K+, whereas the
advection velocities of both ions (black arrows) are the same; (B) with significantly strong streaming
potentials, the magnitude of the K+ electromigration velocity exceeds its advection velocity, and K+

transports very slowly through the nanopore due to diffusion [24].

The earliest literature that proposes the above separation mechanism appeared 60 years
ago [28–30], yet experimental results demonstrating high selectivities were not available
until recently. As noted above, high Li+/K+ selectivities occur when (1) the K+ electro-
migration velocity magnitude exceeds its advection velocity and (2) the flow velocity
within the nanopore is sufficiently large such that diffusion does not greatly reduce se-
lectivity. These two necessary conditions impose a number of limitations on the choice
of membrane and experimental conditions. For membranes that have pore diameters
<10 nm, it is difficult to achieve sufficiently large flow velocities within the nanopores at
transmembrane pressures below 60 bar (the high end of pressures employed in reverse
osmosis). Condition (1) for high selectivity requires a high streaming potential drop across
the nanopores. This limits the solution ionic strength to below 1 mM (Debye thickness
~10 nm) so that strong anion exclusion occurs in the pores. Aiming to satisfy both conditions
(1) and (2), this work employs low ionic-strength solutions (below 1 mM) and hydrophilic
polycarbonate track-etched membranes with 30 nm pores. The pore size distribution is
narrow, and the pore surfaces are negatively charged due to the chemical-etching in the
manufacturing process [26]. However, a challenge remains in controlling concentration
polarization (CP, the accumulation of rejected solutes near the membrane surface). With
severe CP, the solution ionic strength at the feed-solution/membrane interface can signifi-
cantly increase to decrease streaming potentials. Selectivity condition (1) may no longer be
satisfied at high CP due to weaker anion exclusion that decreases the streaming potential.
The resulting relatively high K+ passage will decrease selectivity. The polycarbonate track-
etched membranes employed in this work have around 1% porosity, but CP is still evident,
particularly at low rotation rates and high transmembrane pressures (see Section 3.3).

To investigate the effects of CP on Li+/K+ separations, this work employs a recently
developed rotating-membrane filtration cell to provide quantitative control of CP [31,32].
Compared to filtration cells that employ cross-flow or over-head stirring, the rotating
cell has two advantages. First, the thickness of the CP layer varies with the membrane
rotation rate, and one can estimate the boundary layer thickness. Additionally, the CP layer
thickness is uniform over the membrane surface [33]. Thus, for the first time, this study
investigates the effects of CP on streaming potential-based separations and minimizes
the effects of a non-uniform CP layer. This work also examines the effects of feed-solution
ionic strength and the Li+/K+ molar ratio in the feed on selectivities.
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2. Materials and Methods
2.1. Materials

KCl (ACS reagent, 99.0–100.5%) was purchased from Sigma Aldrich (St. Louis, MO,
USA), LiCl (crystal, ACS reagent) was obtained from Spectrum Chemical (New Brunswick,
NJ, USA). K+ and Li+ standard solutions (TraceCert®, 1000 mg/L) were acquired from
MilliporeSigma (Burlington, MA, USA). All solutions were prepared with deionized water
(18.2 MΩ cm, Milli-Q Reference System from Millipore, Burlington, MA, USA,). Hy-
drophilic polycarbonate track-etched membranes (nominal 30 nm diameter pores, 47 mm
disk diameter, 6 µm thickness) and nylon membranes (1.2 µm pore size, 47 mm disk diame-
ter) were obtained from Sterlitech (Auburn, WA, USA). The track-etched membranes have
a pore density of 6 × 1012 pores/m2 with a tolerance of ± 15%, according to manufacturer,
and should have a nominal porosity around 0.4%. However, porosity calculations based
on water permeabilities from a previous study [24] and from this work suggest that either
the actual porosity is around 1% or that pores may have a “toothpick”-shaped structure
with an effective diameter larger than 30 nm [34]. The burst strength of the track-etched
membranes is 0.7 bar, per the manufacturer.

2.2. Rotating-Membrane Filtration Cell

The rotating-membrane filtration cell design is similar to those in previous works [31,35],
and cell manufacturing was undertaken in the machine shop of the University of Notre
Dame Physics department. Figure 3A shows the schematic diagram. The unit consists of a
motor, drive belt, and cell body including the hollow rotating shaft. The motor has a variable
frequency drive, and the shaft rotating speed can be adjusted from 95 to 2000 rpm, measured
by a digital tachometer. The cell can hold 3 L of feed solution, and the exposed membrane area
has a diameter of 4 cm. However, the membrane area near the o-ring seal should have less
effective mixing and more severe concentration polarization [24,31] compared with membrane
areas away from the o-ring seal. Thus, we taped the membrane with a donut-shaped “mask”
to cover the membrane area near the o-ring. The effective membrane area after taping was
6.6 cm2 (2.9 cm diameter). The polycarbonate track-etched membrane rests on top of a nylon
membrane, and this “composite” system sits on top of a porous stainless-steel frit that serves
as a mechanical support. The nylon membrane prevents direct contact between the thin track-
etched membrane and rough stainless-steel surface and minimizes membrane deformation
under high pressures. The housing can withstand pressure as high as 10 bar, and a rotary
seal prevents solution leakage while allowing the hollow shaft to rotate as fast as 2000 rpm.
During operation, the rotary seal generates heat due to friction with the rotating shaft and can
increase the fluid temperature from 21 to 29 ◦C in around 90 min at a 1000 rpm rotation rate.
However, most experiments finished in under an hour, and the small increases in temperature
during experiments were insignificant.

2.3. Filtration Setup

Figure 4 shows the scheme of the filtration apparatus. The fully assembled rotating-
membrane cell is connected to a feed tank (3-gallon portable pressure vessel from Pope
Scientific). The feed tank is connected to a nitrogen tank, which has a pressure-regulator
valve and a ventilation valve. Prior to any experiments, the drain line of the filtration cell
is closed, and the on/off valve is open. The feed tank is filled with 6 L of feed solution,
and the pressurized nitrogen slowly pushes the feed solution from the feed tank to the
filtration cell. Once the filtration cell is fully filled, feed solution overflows through the
on/off valve, and the on/off valve is then immediately shut off. The filtration setup is
ready for experiment.
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During experiments, the system pressure or transmembrane pressure is controlled by
the pressure-regulator valve on the nitrogen supply, and the transmembrane pressure gives
permeate flow. When experiments are finished, the nitrogen supply is shut off, and the
system is vented to atmospheric pressure by opening the ventilation value on the nitrogen
tank. Subsequently, both the on/off valve and the drain line are opened, and the filtration
cell is emptied. A typical experiment collects less than 30 mL of permeate, and the filtration
cell contains 3 L of feed solution. Assuming 100% salt rejection, the salt concentration in the
feed solution increases less than 1% in the test cell during one experiment, so we neglect
such changes in data analysis.

Compared to our previous work [24], the above filtration setup has two clear advan-
tages. First, the rotating-membrane cell should theoretically yield a uniform concentration
polarization (CP) layer. In contrast, our prior work employed a dead-end filtration cell
(Sterlitech HP4750, Auburn, WA, USA) with overhead stirring that gives a non-uniform CP
layer. Thus, this work can investigate the effects of CP more systematically by ignoring the
contribution of non-uniformity, which is particularly important if the separation is sensitive
to the CP layer thickness. Moreover, the filtration cell in this work houses a lot more feed
solution (3 L) than a Sterlitech HP4750 cell (less than 300 mL), so changes in feed solution
concentrations should have minimal effect.

2.4. Permeability Measurements

Membrane-permeability measurements give important insights into the extent of
concentration polarization, membrane porosity, and electroosmosis. Moreover, these mea-
surements provide the flow velocity values in boundary layers in numerical simulations
(see Section 2.6). The permeability is measured by the “bucket and stopwatch” method: at
a given transmembrane pressure, the time to collect 5 mL of permeate is recorded, and the
superficial velocity is calculated by dividing the permeate volume (5 mL) by the effective
membrane area (6.6 cm2) and collection time. The transmembrane pressure varied from
1.4 bar (20 psi) to 6.9 bar (100 psi), and the superficial velocity at a given pressure was
measured three times with a pristine membrane each time. The feed solution was 0.1 mM
KCl. Additionally, the permeability measurements were also performed with 10 mM KCl
to gauge the extent of electroosmosis and electroviscosity. All superficial velocities were
measured with a membrane rotation rate of 1000 rpm.

2.5. Single-Salt and Mixed-Salt Filtration

In single-salt filtration, the aqueous feed solutions contain either KCl or LiCl at various
ionic strengths. The permeate ion concentrations were determined using inductively
coupled plasma optical emission spectroscopy (ICP-OES, Avio 200, Perkin-Elmer, Waltham,
MA, USA) with calibration curves. Salt passages were calculated using Equation (1), and
results are the average values from three pristine membranes. Uncertainties represent
standard deviations.

Passage % =
Permeate concentration

Feed concentration
× 100% (1)

In mixed-salt filtration, the feed solutions contain a mixture of K and Li salts at
various Li+/K+ ratios. The ion passages are calculated with Equation (1), and the Li+/K+

selectivities are calculated using Equation (2). Again, experimental results are the average
values from three pristine membranes and uncertainties are standard deviations.

Selectivity =
Li passage %
K passage %

(2)

In all studies, the first 15 mL of permeate was discarded because it was likely contam-
inated with residual solution in the dead volume of the test unit. The next 5 mL of the
permeate was collected as a sample.
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2.6. Numerical Simulations

This section describes only the framework and governing equations of numerical equa-
tions, interested readers can find the full details in the supporting information of our previous
work [24], which employs the same numerical procedures and frameworks to model ion
transport. The simulations employ the extended Nernst–Planck equation, Equation (3), to
describe ion transport through the nanopores inside the track-etched membranes.

ji(r) = −Di
∂ci(x, r)

∂x
− zici(x, r)Di

F
RT

∂φ(x, r)
∂x

+ ci(x, r)jv(r) (3)

In the above equation, ji is the ion flux inside the nanopore. Di and zi are the diffusion
coefficient and the charge, respectively, for ion i. ci is the ion concentration, which depends
on the axial coordinate, x, and radial coordinate, r. Additionally, φ is the electrostatic
potential, jv is the flow velocity (volume flux) inside the pores, and F, R, and T are Faraday’s
constant, the gas constant, and temperature, respectively. The first term on the right-hand-
side of the equation describes diffusive flux governed by Fick’s law; the second term is the
electromigration flux employing the Einstein–Smoluchowski relation between diffusivity
and electrophoretic mobility; and the third term describes advection flux.

The polycarbonate track-etched membrane pores bear negative surface charge. There-
fore, the ion concentrations within the nanopores also depend on the radial coordinate, and
the simulations employ the Poisson–Boltzmann equation to model the ion distribution.

∂2φ(x, r)
∂r2 +

1
r

∂φ(x, r)
∂r

= − F
εoεp

∑
i

ci(x, r)zi. (4)

In the above equations εoεp is the dielectric permittivity of solution in the mem-
brane pore.

Additionally, the simulation also assumes zero-current (Equation (5)), electroneutrality
at the axial coordinate (Equation (6)), and the Hagen–Poiseuille equation for flow velocity
(Equation (7)).

0 = F ∑
i

zi

∫ Rp

0

2π

πRp2 ji(r)rdr (5)

∣∣∣∣2πRpLσ

πRp2LF

∣∣∣∣ = ∑
i

zi

∫ Rp

0

2π

πRp2 ci(x, r)rdr. (6)

jv(r) =
∆PRp

2

4µL

(
1− r2

Rp2

)
(7)

In the above equations, Rp is pore radius, L is the pore length, and σ is the surface
charge density on the pore wall. ∆P is the transmembrane pressure, and µ is the fluid
dynamic viscosity.

To model ion transport within the boundary layer next to the membrane surface, this
work again employs the extended Nernst–Planck equation.

ji ′ = −Di
dci
′

dx
− zici

′Di
F

RT
dφ

dx
+ ci

′ jv ′ (8)

In this equation, ji ′ is the ion flux within the boundary layer with respect to the whole
membrane area (not just the area that has open pores), and ji ′ is about 100 times smaller
than the “mixing cup” value of ji due to the low membrane porosity. Equation (9) describes
ji ′, and the membrane porosity ε is around 1%, as calculated from water-permeability
measurements and Equations (7) and (10). Similarly, jv ′ is the flow velocity calculated with
respect to the whole membrane area. ci

′ is the ion concentration within the boundary layer.

ji ′ = ε
∫ Rp

0

2π

πRp2 ji(r)rdr (9)
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jv ′ = ε
∫ Rp

0

2π

πRp2 jv(r)rdr = ε
∆PRp

2

8µL
(10)

At the membrane/feed and membrane/permeate interfaces, this work employs a
Donnan partitioning model [14].∫ Rp

0
2π

πRp2 ci(r)rdr

ci
′ = exp

(
− ziFφD

RT

)
(11)

where φD is the Donnan potential at the membrane/feed or membrane/permeate interfaces.
The value of φD varies with ion fluxes, flow velocity, and surface charge density.

Finally, the permeate concentrations are simply the ion fluxes divided by the flow
velocity (volume flux).

ci, permeate =

∫ Rp
0

2π
πRp2 ji(r)rdr

∆PRp2

8µL

=
ji ′

jv ′
(12)

Table 1 shows the parameters employed in the simulations. Our MATLAB numerical
procedures can calculate the ion passages and fluxes at various flow velocities (pressures)
and boundary-layer thicknesses.

Table 1. Simulation parameters.

Properties Value

Pore diameter 30 nm
Pore length 6 µm

Membrane surface charge density −2.2 mC/m2

Transmembrane pressure 20–100 psi (1.4–6.9 bar)
Flow velocity within the boundary layer Obtained from permeability measurements

Fluid dynamic viscosity 0.00089 Pa/s at 25 ◦C
Flow velocity within the pores Calculated from Hagen–Poiseuille model

K+ diffusion coefficient 1 1.96 × 10−9 m2/s
Li+ diffusion coefficient 1 1.03 × 10−9 m2/s
Cl− diffusion coefficient 1 2.03 × 10−9 m2/s

Boundary layer thickness (from Levich
equation for K+)

19.4 µm @ 1000 rpm
25.1 µm @ 600 rpm
63.1 µm @ 95 rpm

1 Literature values at infinite dilution at 25 ◦C [27].

The simulations reported in the body of the paper assume pore diameters of 30 nm,
which is the nominal diameter provided by the manufacturer. Additionally, these simula-
tions employ Equation (13), the Levich equation [33], for the boundary layer thicknesses
(see Section S1 of the supplementary materials for justifications).

δ = 1.61Di
1/3ω−0.5

(
µ

ρ

)1/6
(13)

In the above equation, δ is the boundary layer thickness, ω is the membrane rotation
rate in rad/s, and ρ is the fluid density of 1000 kg/m3 at 25 ◦C. The surface charge density
is assumed to be −2.2 mC/m2, which is on the order of prior measured results [24] and
gives good agreement between data and simulations in single-salt studies. (A previous
study reported a surface charge of −3.4 mC/m2 in a 1 mM KCl solution, but this work
employs more dilute solutions so the surface charge could be lower [15]). As Section 3
shows, simulation results conform largely with trends in experimental data, particularly in
single-salt studies, and give insights into the transport phenomenon. However, significant



Membranes 2022, 12, 631 9 of 22

deviations between experimental data and simulations occur at high flow velocities in
mixed solutions. This is expected for several reasons.

First, the simulation assumes every pore path is perpendicular to the membrane
surface and has the same length as the nominal membrane thickness, whereas SEM images
of a membrane cross section show that pores paths are somewhat oblique or have different
angles (Figure 5, Figures S1 and S9 the supplementary materials show more SEM images.)
Additionally, the model does not consider possible changes in surface charge density at
different ionic strengths [15]. Significant pore clustering could occur in some membrane
areas and increase the flow velocity and extent of CP locally. Finally, if the tape is not a
perfect mask, significant CP could occur near the edge of the tape. As an approximation,
we also modelled the experimental data in this work using a boundary layer thickness that
is 1.9 times what the Levich equation predicts. We present these modelling results in the
supplementary materials (Figures S2–S6). At high pressures, the fits between experimental
results and simulations agree better with the higher boundary layer thickness, but we do
not have quantitative justification for the factor of 1.9.
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Figure 5. Cross-sectional SEM image of a polycarbonate track-etched membrane with 30 nm pores.
The dark region is the cross section, whereas the brighter section at the top is the membrane surface.
A focused ion beam was used to section the membrane sample in the middle prior to SEM imaging of
the membrane cross section (Helios G4 Ux Dual Beam instrument). Prior to imaging, the membrane
was coated with a layer of Palladium. Some pores show their tracks passing through the membrane,
but most pores only show an entrance in the cross-section, and this indicates that pores have different
orientations and different pore lengths.

3. Results and Discussion

This work aims to better understand the mechanism of ion separations that rely on
spontaneously arising streaming potentials in negatively charged nanoporous membranes.
Although the streaming potential phenomenon has been well studied [25,26,36–38], its
effects on ion passages are complicated due to salt partitioning (more details below) that
depends on CP. This study uses a rotating membrane to systematically vary CP and
examine its effects on ion transport. In the following sections, we first employ permeability
measurements to verify the presence of the streaming potential (and electroosmosis) during
pressure-driven flow in negatively charged 30 nm nanopores. We then employ single-
salt studies combined with numerical simulations to investigate the effects of streaming
potentials on salt passages, with an emphasis on the interplay between ion partitioning and
counter-flow electromigration. Section 3.3 examines the more complicated case in which
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the feed solution contains two salts. This section provides experimental and simulation
results to examine the effect of CP on the ion-separation mechanism. We also discuss
limitations of the separation mechanism.

3.1. Peameability Measurements and Electroosmosis

Figure 6 shows the measured superficial solution velocities through track-etched
membranes exposed to various transmembrane pressures. We define the superficial flow
velocity as the volumetric flow rate divided by the entire exposed membrane area, 6.6 cm2.
The actual solution velocity inside the 30-nm pores is two orders magnitude higher due to
the 1% porosity of the membranes. With either 0.1 mM KCl or 10 mM KCl as test solutions,
the superficial velocities increase linearly with transmembrane pressures, as expected from
the Hagen–Poiseuille model.
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Figure 6. Superficial velocities of either 0.1 mM KCl or 10 mM KCl feed solutions passing through
track-etched membranes (30 nm pores) at various transmembrane pressures. The membrane rotation
rate is 1000 rpm.

Interestingly, the solution permeability with 10 mM KCl is about 15% higher than with
0.1 mM KCl. At first, this seems counter-intuitive: the Hagen–Poiseuille equation suggests
that the permeability should be slightly smaller with the more concentrated solution be-
cause of a modest increase in viscosity (the actual viscosity difference is less than 0.1% [39]).
However, the charged pore surfaces lead to streaming potentials and induced electroosmo-
sis that depends on the solution ionic strength. During the manufacturing of track-etched
membranes, chemical etching creates acidic functional groups that deprotonate at neutral
or basic pH. As mentioned in the introduction, flow through negatively charged nanopores
creates a streaming potential, and this potential gives rise to electroosmosis that opposes the
pressure-driven flow component. Thus, the spontaneously arising electroosmosis decreases
the overall flow velocity in a phenomenon often referred to as electroviscosity [40,41].
However, in aqueous 10 mM KCl, the Debye length is only 3 nm, so the zeta potential,
streaming current, and streaming potential are small. The electroosmosis, which is directly
proportional to the product of zeta potential and streaming-potential, is insignificant with
10 mM KCl in 30 nm pores. In contrast with a 0.1 mM KCl solution, the Debye length
is around 30 nm, and electroosmotic flow is noticeable and retards pressure-driven flow.
This provides strong evidence for negatively charged pores and the spontaneously arising
streaming potentials that govern the separations and salt rejections described below.

3.2. Single-Salt Studies

Figure 7 presents the salt passages during pressure-driven flow of 0.1 mM KCl or
0.1 mM LiCl through track-etched membranes. Filtration of either salt solution shows a
passage below 100%, or positive salt rejection (rejection = 100%-passage). The rejections
result primarily from the spontaneously arising streaming potentials, not from size exclusion
or sieving. The hydrodynamic radii of Li+ and K+ are around 0.25 and 0.13 nm, respectively,



Membranes 2022, 12, 631 11 of 22

so 30 nm pores will not significantly reject salts via size sieving like nanofiltration or reverse
osmosis membranes do.
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Figure 7. Salt passages during flow of 0.1 mM KCl or 0.1 mM LiCl through track-etched membranes
(30 nm pores) using various transmembrane pressures while rotating the membrane at 1000 rpm.
Dashed lines are simulated passages assuming a surface charge density of −2.2 mC/m2, a pore
diameter of 30 nm, and a boundary layer thickness of 19.4 µm, as estimated from the Levich equation.

Because of electrical compensation of the fixed negative charge on pore surfaces, total
cation concentrations are around 3 mM within membrane pores (assuming −2.2 mC/m2

of surface charge), and only 0.1 mM in the bulk feed solution. This enrichment should
enhance passages of cations. However, as Figure 1 shows, the streaming potential gives a
cation electromigration flux that opposes the net flux to impede cation passage through the
membrane. The cation enrichment and electromigration have opposing effects on cation
flux, but under the experimental conditions, electromigration dominates to give positive
cation rejection.

Related principles apply to anions. Because of the negative surface charge, anion
concentrations are depleted within the membrane compared to the bulk solution (the
theoretical Cl− concentration in the nanopores is around 3 µM, so the depletion factor
is around 30), and this exclusion should impede anion passage through the membrane.
In contrast, the streaming potential induces anion electromigration that is in the same
direction as the net flux (Figure 1), and this favors anion transport. The anion depletion
and electromigration have opposite effects on transport, and the experimental results show
that anion depletion dominates to yield positive anion rejections.

As Figure 7 shows, at a given transmembrane pressure LiCl has a higher single-salt
passage than KCl, and numerical simulations yield the same behavior. Interestingly, the
more mobile cation, K+, experiences a lower passage. The diffusion coefficient of K+ is
nearly twice that of Li+ (Table 1). According to Equation (3), electromigration flux is directly
proportional to the product of diffusivity, Di, and electric field, − dφ

dx . Because of the low
diffusivity of Li+, the electric field must be higher for a LiCl solution than for a KCl solution
to maintain equal cation and anion fluxes (zero-current condition). The simulated streaming
potential with LiCl is about twice the streaming potential calculated with KCl (see Figure 8).
At the same transmembrane pressure, the Cl− advection flux is the same with either salt
solution, but the Cl− electromigration flux is higher in the LiCl solution due to the higher
streaming potential. Thus, the net Cl− flux must be higher with the LiCl solution, and LiCl
has a higher passage than KCl through these negatively charged track-etched membranes.
Note that the streaming potential achieves zero current mostly by decreasing the cation
flux. Despite the increase in Cl− flux with LiCl compared to KCl, the streaming potential
still must be higher with LiCl to achieve zero current.
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Figure 8. Simulated streaming potentials as a function of transmembrane pressure with either 0.1 mM
KCl or 0.1 mM LiCl feed solutions passing through 30 nm pores at different transmembrane pressures.
The simulation assumes a surface charge density of −2.2 mC/m2 and a boundary layer thickness of
19.4 µm, as estimated from the Levich equation for a rotation rate of 1000 rpm.

Experimental and simulation results (Figure 7) show that both KCl and LiCl passages
increase with transmembrane pressure (within the studied pressure range). This increase
stems from CP where the rejected solutes accumulate at the membrane/feed interface, so the
interfacial salt concentration is higher than the bulk feed-solution concentration. Moreover,
CP may increase exponentially with flow rate so the effect of the salt accumulation becomes
more evident at higher pressures. Assuming the membrane has a constant intrinsic passage
(intrinsic passage is defined as the permeate concentration divided by the interfacial
salt concentration, not the feed concentration), observed passages should increase with
pressure because interfacial concentrations increase with pressure due to CP. Additionally,
the increased salt concentration at the membrane/feed interface weakens Donnan exclusion,
and that should lead to an increase in intrinsic passage (see below). Without CP, simulations
suggest that salt passages are essentially constant with pressure within the studied pressure
range (see Figure S7 of the supplementary materials).

As Figure 9 shows for LiCl, salt passage increases with the salt concentration in the
feed solution. The ratio of the interfacial solution concentration to the bulk concentration,
termed the CP factor, should not vary greatly with concentration. Thus, the data in Figure 9
suggest that the membrane’s intrinsic passage increases with the salt concentration in the
feed. As mentioned in the introduction, the streaming potential results from an imbalance of
cations and anions within the charged pores (Donnan exclusion). As the salt concentration
in the feed solution increases, the extent of Donnan exclusion of anions declines so the
streaming potential decreases to give higher salt passages. For Li+ ions, the increase in
bulk salt concentrations in Figure 9 should give minimal increases in the Li+ concentration
within the nanopores (most of the Li+ in the pores is electrically compensating the surface
charge). Therefore, the smaller streaming potential is the dominant variable that leads to less
electromigration flux (electromigration flux is proportional to the product of concentration
and electric field) to enhance the Li+ passage. For Cl− ions, less Donnan exclusion should
increase the Cl− concentration inside the membrane several fold because Cl− ions are
heavily excluded from the negatively charged membrane pores. According to Equation
(3), both Cl− advection and electromigration flux should increase at higher ionic strength
because they are both proportional to concentration. Despite the smaller electric field, Cl−

passage increases with bulk salt concentrations due to less exclusion.
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Figure 9. Salt passages during flow of LiCl solutions of various ionic strengths through track-etched
membranes (30 nm pores) using various transmembrane pressures and a 1000 rpm rotation rate.
Dashed lines are simulated passages assuming a surface charge density of −2.2 mC/m2, a pore
diameter of 30 nm, and a boundary layer thickness of 19.4 µm, as calculated from the Levich equation.

The above single-salt studies elucidate the effects of opposing flow and electric field
on salt passage. Although the cation hydrodynamic diameter is two orders of magnitude
smaller than the pore diameter (the hydrodynamic radii of Li+ and K+ are around 0.25 and
0.13 nm, respectively, and the pore diameter is 30 nm), opposing flow and electric field can
lead to salt rejections. While the LiCl and KCl salt passages only show minor differences
around 10% in Figure 7, mixed-salt studies in which both Li+ and K+ are present in the feed
solution show drastic difference in ion passages (see below).

3.3. Mixed-Salt Studies

Section 3.2. shows that flow through 30 nm, negatively charged polycarbonate track-
etched membranes leads to single-salt rejection in dilute solutions. As mentioned, these
rejections result from the spontaneously arising streaming potentials that give rise to
electromigration flux, which is in the opposite direction of advection for cations. In fact, the
electromigration velocity retards more than 99% of the advection velocity for cations (see
Section S3, Tables S1 and S2 in the supplementary materials) in these single-salt studies.

When considering solutions of mixed salts, one might start by theoretically exam-
ining the case in which an infinitely small fraction of LiCl is replaced by KCl (the feed
solution ionic strength is kept constant). The electromigration velocity still retards more
than 99% of the advection velocity for Li+, but the K+ electromigration velocity magni-
tude exceeds its advection velocity and is about twice the Li+ electromigration velocity
(electromigration velocity is proportional to diffusivity, Equation (3)). In other words,
simulation suggests that the K+ electromigration velocity exceeds its advection velocity by
almost 100% in magnitude. In this case, the Li+/K+ separation becomes very effective as
K+ passage will approach 0 at sufficiently high transmembrane pressures (see below). The
following sections discuss this phenomenon in more detail and provide experimental and
simulation examples.

3.3.1. Effect of Rotation Rate (Concentration Polarization)

Figure 10 shows Li+ and K+ passages under various transmembrane pressures and
rotation rates during flow of a 0.05 mM LiCl, 0.05 mM KCl mixture through track-etched
membranes with 30 nm pores. In most cases, K+ passage decreases with transmembrane
pressure while Li+ passage increases. Thus, the separation is impressive because at high
rotation rates both the Li+/K+ selectivity and Li+ passage increase with flow rate, breaking
the selectivity–permeability tradeoff, as we saw previously [24]. As Figure 2 shows, the
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streaming potential retards K+ more than Li+ because K+ has a higher electrophoretic
mobility. With sufficiently dilute feed solutions and strong streaming potentials, the K+

electromigration velocity exceeds its advective velocity in magnitude. Moreover, the
magnitude of the difference between the K+ electromigration and advective velocities
increases with increasing transmembrane pressure. This leads to a more rapid K+ depletion
within the membrane (Figure 11) and a smaller K+ passage at higher pressures. Thus, the K+

passage tends toward 0 as transmembrane pressure, or flow rate, increases. Decreasing the
fluid temperature could also facilitate rapid K+ depletion. As temperature decreases, the ion
diffusion coefficient decreases [42], and the concentration gradient becomes “steeper” at a
constant diffusive flux (diffusive flux is proportional to concentration gradient and diffusion
coefficient, see Equation (3)). However, chilling the fluid would require refrigeration and
add to the energy cost.
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Figure 10. K+ (A) and Li+ (B) passages during flow of a 0.05 mM KCl, 0.05 mM LiCl mixture through
track-etched membranes (30 nm pores) using various transmembrane pressures and membrane-
rotation rates. Note that the upper plot uses a log-scale y-axis. Dashed lines are simulated passages
assuming a surface charge density of −2.2 mC/m2, a pore diameter of 30 nm, and a boundary layer
thickness that is calculated from the Levich equation (Table 1). The simulation also incorporates a
0.1% membrane defect area.
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Figure 11. Qualitative K+ and Li+ concentration profiles within a nanopore. Dashed lines are profiles
at a higher transmembrane pressure.

As the K+ concentration in the membrane pore declines, Li+ must compensate the
membrane fixed charged to maintain electroneutrality. Thus, increased K+ depletion within
the nanopores at high flow rates leads to more Li+ in the nanopores (Figure 11). Partly for
this reason, Li+ passage increases while K+ passage decreases at higher flow rates.

Unfortunately, the lowest K+ passage obtained experimentally was 0.3%, whereas
numerical simulations (not shown) predict much smaller values at the highest pressures (K+

passage <0.001%). The unwanted experimental K+ passage could result from membrane
defects and imperfect taping by the “mask”. In Figure 10, the simulation incorporates an
additional 0.1% membrane defect area that has 100% ion passage, and the experimental
results agree qualitatively well with simulations at 600 and 1000 rpm. For 95 rpm, there is
a significant mismatch between experimental data and simulations, which suggests that
CP is greater than the simulation suggests. Section S2 in the supplementary materials uses
increased boundary layer thicknesses and an optimized surface charge to better fit the
trends in the data. For 95 rpm, simulations with the increased boundary layer thickness
(see Figure S4) show an increase in the K+ passage at the highest pressures and a better fit
to the experimental data. As mentioned in the description of the simulations, higher than
expected CP might result from imperfect sealing of the tape mask or clustering of pores to
give an increased local flow velocity.

Despite the relatively poor agreement between simulations and experiment in Figure 10,
numerical simulations still provide insights into these experimental results. As the membrane
rotation rate decreases, both K+ and Li+ passages increase in experimental results and in
simulations. Clearly, CP plays an important role in selectivities. For example, at 6.9 bar of
transmembrane pressure, the experimental Li+/K+ selectivity decreases from 150 at 1000 rpm
to 1.3 at 95 rpm, a decline of two orders of magnitude. Table S3 of the supplementary materials
presents the data in Figure 10 along with selectivities. These results show the importance of
using a rotating membrane cell to explore the impact of CP.

The effects of CP on Li+/K+ selectivities are two-fold. First, the rejected ions that
accumulate near the membrane entrance increase the local ionic strength, and the streaming
potential decreases because Donnan exclusion weakens. With severe CP at low rotation
rates, the streaming potential is not large enough to give a K+ electromigration velocity
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that exceeds its advection velocity in magnitude, and the K+ passage is relatively high.
Furthermore, in some cases the K+/Li+ concentration ratio at the membrane surface can
significantly increase above the bulk ratio because K+ is rejected more by the membrane.
For example, in Figure 10 at 6.9 bar of pressure and a 95 rpm rotation rate, the simulated
K+/Li+ concentration ratio at the membrane surface is 1.9, whereas the bulk ratio is 1 (see
Figure S8 in the supplementary materials). This inherently decreases selectivity, and it also
may lead to lower streaming potentials as the next section shows.

3.3.2. Effect of Feed K+/Li+ Molar Ratios on Separations

CP can alter the K+/Li+ concentration ratio at the membrane surface and decrease
selectivities. Even without CP, however, the K+/Li+ ratio in the feed solution affects
selectivity. Figure 12 shows that as the K+/Li+ concentration ratio in the feed solution
increases, both K+ and Li+ passages increase. These results suggest that the streaming
potential decreases with a larger K+/Li+ feed ratio. The ionic strength (0.1 mM) is constant
in all the experiments and simulations in Figure 12, so the Donnan exclusion (imbalance of
cations and anions within the nanopores) should be the same in all cases. Thus, changes in
total cation to anion ratios in the membrane should not occur for the conditions of Figure 12
and should not decrease the streaming potential when the K+/Li+ feed ratio changes at
a constant ionic strength. However, as mentioned in Section 3.2, the magnitude of the
streaming potential depends on the cation. The electromigration flux is proportional to the
product of diffusivity and electric field, so the electric field needed to give zero current is
smaller with K+ than Li+ because K+ has a higher electrophoretic mobility than Li+. Thus,
as the K+/Li+ concentration ratio in the feed solution increases, the streaming potential
decreases to give higher ion passages. As discussed above, the key to obtaining high K+/Li+

selectivities is to achieve a streaming potential that gives a K+ electromigration velocity that
exceeds its advection velocity in magnitude. With a high K+/Li+ concentration ratio in the
feed solution, the streaming potential may not give enough K+ electromigration velocity to
completely offset advection, and the K+ passage is undesirably high.

Unfortunately, with a 9:1 K+/Li+ ratio in the feed solution and high transmembrane
pressures, the experimental K+ passage is much larger than the simulated value. Sim-
ulations with a larger boundary layer thickness fit the data better (see Figure S5 in the
supplementary materials) and suggest the actual extent of CP is again larger than what the
Levich equation predicts.

3.3.3. Effect of Feed Ionic Strength

In addition to CP and the Li+/K+ ratio in the feed solution, the ionic strength of the
feed solution will affect the Li+/K+ selectivities by altering exclusion of anions from the
membrane pores. In short, ion passages increase with feed ionic strength (Figure 13), and
the separations become less effective. For example, at 6.9 bar of transmembrane pressure
and a rotation rate of 1000 rpm, the Li+/K+ selectivity decreases from 150 to 22 as the
solution ionic strength increases from 0.1 mM to 0.5 mM. Thus, high selectivities are only
possible in dilute solutions. Table S5 in the supplementary materials provides the data in
Figure 13 and lists the selectivities.



Membranes 2022, 12, 631 17 of 22

Membranes 2022, 12, x FOR PEER REVIEW 17 of 22 
 

 

that exceeds its advection velocity in magnitude. With a high K+/Li+ concentration ratio in 
the feed solution, the streaming potential may not give enough K+ electromigration veloc-
ity to completely offset advection, and the K+ passage is undesirably high. 

Unfortunately, with a 9:1 K+/Li+ ratio in the feed solution and high transmembrane 
pressures, the experimental K+ passage is much larger than the simulated value. Simula-
tions with a larger boundary layer thickness fit the data better (see Figure S5 in the sup-
plementary materials) and suggest the actual extent of CP is again larger than what the 
Levich equation predicts. 

 
Figure 12. K+ (A) and Li+ (B) passages during flow of various 0.1 mM ionic strength KCl and LiCl 
mixtures through track-etched membranes (30 nm pores) using various transmembrane pressures 
and a 1000 rpm rotation rate. Dashed lines are simulated passages assuming a surface charge den-
sity of −2.2 mC/m2, a pore diameter of 30 nm, and a boundary layer thickness of 19.4 µm. The sim-
ulation also incorporates a 0.1% membrane defect area. Table S4 in the supplementary materials 
gives the experimental data and selectivities. 

3.3.3. Effect of Feed Ionic Strength 
In addition to CP and the Li+/K+ ratio in the feed solution, the ionic strength of the 

feed solution will affect the Li+/K+ selectivities by altering exclusion of anions from the 
membrane pores. In short, ion passages increase with feed ionic strength (Figure 13), and 
the separations become less effective. For example, at 6.9 bar of transmembrane pressure 
and a rotation rate of 1000 rpm, the Li+/K+ selectivity decreases from 150 to 22 as the solu-
tion ionic strength increases from 0.1 mM to 0.5 mM. Thus, high selectivities are only 

0.01

0.1

1

10

100

0 2 4 6 8

K
+

Pa
ss

ag
e 

(%
)

Pressure (bar)

9:1 K⁺ /Li⁺ Ratio
4:1 K⁺ /Li⁺ Ratio
1:1 K⁺ /Li⁺ Ratio

(A)

0

20

40

60

80

100

120

140

0 2 4 6 8

Li
+

Pa
ss

ag
e 

(%
)

Pressure (bar)

9:1 K⁺ /Li⁺ Ratio
4:1 K⁺ /Li⁺ Ratio
1:1 K⁺ /Li⁺ Ratio

(B)

Figure 12. K+ (A) and Li+ (B) passages during flow of various 0.1 mM ionic strength KCl and LiCl
mixtures through track-etched membranes (30 nm pores) using various transmembrane pressures
and a 1000 rpm rotation rate. Dashed lines are simulated passages assuming a surface charge density
of−2.2 mC/m2, a pore diameter of 30 nm, and a boundary layer thickness of 19.4 µm. The simulation
also incorporates a 0.1% membrane defect area. Table S4 in the supplementary materials gives the
experimental data and selectivities.

At sufficiently high ionic strength, the streaming potential becomes negligible because
the electrical double layer no longer spans the pore. This work employs pores with a
diameter of 30 nm, which limits the feed-solution ionic strength to below 1 mM (10 nm
Debye length) to achieve high selectivity. However, practical separations typically occur in
much more concentrated solutions such as 1 M salt (0.3 nm Debye length), where a pore
diameter of 0.3 nm is required for strong anion exclusion. As mentioned in Section 3.3,
effective separations occur at large flow velocities within the nanopores, and it is difficult
to obtain such high flow velocities with a pore diameter less than 0.3 nm (for 0.3 nm
pores, according to the Hagen–Poiseuille equation, one needs 70,000 bar of transmembrane
pressure to get the same maximum flow velocity that was used with 30 nm pores in
this work; such high pressures are clearly not feasible). Unfortunately, although the
separation mechanism examined in this work can separate among monovalent ions in
dilute solutions, it does not apply at higher concentrations. Applied potentials can provide
similar separations at higher concentrations, but this requires relatively high currents that
lead to a large power consumption [43].
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Figure 13. K+ (A) and Li+ (B) passages during flow of equimolar KCl and LiCl mixtures at various
ionic strengths through track-etched membranes (30 nm pores) using various transmembrane pres-
sures and a 1000 rpm rotation rate. Dashed lines are simulated passages assuming a surface charge
density of −2.2 mC/m2, a pore diameter of 30 nm, and a boundary layer thickness of 19.4 µm. The
simulation also incorporates a 0.1% membrane defect area. Figure S6 shows fits to the data with a
higher boundary layer thickness.

3.3.4. Comparison to Other Studies

As mentioned in the introduction, selective separations among ions that have the same
charge are more difficult than monovalent/multivalent ion separations because Donnan
exclusion does not separate ions that have the same charge. This work examines the use of
opposing flow and electromigration for separating ions that have the same charge. Many
other studies have employed different mechanisms/strategies for such separations, and
Table 2 summarizes some of the results.

The studies listed in Table 2 as well as others demonstrate that membrane processes
show promising selectivities for industry-scale ion separations. The unique feature of this
research is that high selectivities do not require modification of membranes with highly
selective functional groups, precise control of sub-nanometer pore sizes, or complicated
experimental setups that include electrodes. However, Li+/K+ separations that utilize
spontaneously arising streaming potentials require low ionic strengths, relatively high
Li+/K+ molar ratios, and minimal concentration polarization.
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Table 2. Some literature studies that examine membrane-based separations among ions that have the
same charge.

Mechanism Selectivity

Differences in dehydration energy and mobility
between ion species

K+/Na+ ~850 in electrodialysis [44]
Sr2+/Mg2+ ~900 in electric field-assisted

nanofiltration [45]
K+/Li+ and Na+/Li+ selectivities ~ 100 [16]

Molecular recognition
Li+/Na+ ~280 and Li+/K+ ~360 in dialysis [46]

K+/Na+ ~20 in conductivity measurements
[23]

Opposing flow and electric field
Li+/K+ ~150 in dead-end filtration (this work)
K+/Li+ ~30 in hybrid electro-baromembrane

process [47]

4. Conclusions

Pressure-driven flow through negatively charged polycarbonate track-etched mem-
branes gives rise to spontaneously arising streaming potentials across the nanopores. These
potentials induce ion electromigration that leads to salt rejections, even though the pore size
(30 nm diameter) is two orders of magnitude larger than the hydrated diameters of the ions.
The streaming potential depends on the solution ionic strength, membrane surface charge
density, and more interestingly, the choice of salt. Because Li+ has a smaller diffusivity than
K+, flow of a LiCl solution through the membrane yields a larger streaming potential than
flow of a KCl solution. This larger streaming potential increases the net flux through the
membrane due to its effect on the anion flux.

Spontaneous streaming potentials can lead to remarkable Li+/K+ selectivities in mixed-
salt studies. Because K+ has a larger aqueous electrophoretic mobility than Li+, electro-
migration retards K+ more than Li+, and membranes selectively reject K+ more than Li+.
More importantly, when the magnitude of K+ electromigration exceeds its advection, the
K+ passage approaches 0 at large transmembrane pressures, and the Li+/K+ separation
becomes very effective and can break the permeability-selectivity tradeoff.

Effective separation requires a sufficiently strong streaming potential, and that imposes
limitations on the experimental conditions. The ionic strength of the feed solution needs
to be low enough to give extensive Donnan exclusion of the anion. The molar ratio of
Li+ to K+ in the feed must be sufficiently large, as large amounts of K+ decrease the
streaming potential. Finally, CP must be minimized to avoid its deleterious effects on
Donnan exclusion and the Li+/K+ ratio at the membrane surface. Failure to fulfill any of
these conditions can significantly weaken the streaming potential, and when the magnitude
of K+ electromigration no longer exceeds its advection, K+ passage is undesirably high.

In natural aqueous resources, the K+/Li+ wt% ratio is typically larger than 50, therefore
the Li+/K+ selectivity should be larger than 10,000 to obtain battery-grade Li+ product
(>99.5% wt%). A two-stage separation with a selectivity larger than 100 in each stage
should suffice. Unfortunately, when separating ions using flow and streaming potentials,
such high selectivity is difficult to achieve with a high K+/Li+ wt% ratio in the feed or
a high ionic strength. However, opposing flow with an externally applied electric field
should address these challenges [43] because the electrical potential drop is not limited
by ionic strength, feed composition, and CP. However, the applied potential introduces a
significant electrical energy cost that may limit commercialization.

This work focuses on Li+/K+ separations to elucidate the separation mechanism us-
ing two ions whose electrophoretic mobilities differ greatly. However, due to the low
electrophoretic mobility of Li+, the separation mechanism should also apply to the sepa-
ration of Li+ from cations other than K+, albeit with lower selectivity. For example, the
electrophoretic mobility of Li+ is about 20% smaller than that of Na+. Thus, in separations
based on opposing flow and electromigration, Li+ will have a higher passage through the
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membrane than Na+ [43]. Future work could examine Li+ separations from cations other
than K+.

Supplementary Materials: These materials are available online at https://www.mdpi.com/article/
10.3390/membranes12060631/s1. Figure S1: SEM images of polycarbonate track-etched membranes;
Figure S2: Salt passages during flow of 0.1 mM KCl or 0.1 mM LiCl through track-etched membranes,
along with simulation results using a thick boundary layer; Figure S3: Salt passages during flow of
LiCl solutions of various ionic strengths through track-etched membranes, along with simulation
results using a thick boundary layer; Figure S4: K+ and Li+ passages during flow of a 0.05 mM
KCl, 0.05 mM LiCl mixture through track-etched membranes, along with simulation results using a
thick boundary layer; Figure S5: K+ and Li+ passages during flow of various 0.1 mM ionic strength
KCl and LiCl mixtures through track-etched membranes, along with simulation results using a
thick boundary layer; Figure S6: K+ and Li+ passages during flow of equimolar KCl and LiCl
mixtures at various ionic strengths through track-etched membranes, along with simulation results
using a thick boundary layer; Figure S7: Simulated LiCl or KCl passages through 30 nm pores
in single-salt filtration with and without consideration of CP; Figure S8: Simulated Li+ and K+

concentrations within a boundary layer; Figure S9: A side-view SEM image of a polycarbonate track-
etched membrane; Figure S10: Photograph of the experimental setup for filtration through a rotating
membrane; Table S1: Simulated streaming potentials and K+ electromigration velocities during
filtration of a 0.1 mM KCl solution; Table S2: Simulated streaming potentials and Li+ electromigration
velocities during filtration of a 0.1 mM LiCl solution; Table S3: Experimental K+ and Li+ passages
and Li+/K+ selectivities during flow of a 0.05 mM KCl, 0.05 mM LiCl mixture through track-etched
membranes; Table S4: Experimental K+ and Li+ passages and Li+/K+ selectivities during flow of
various 0.1 mM ionic strength KCl and LiCl mixtures through track-etched membranes; Table S5:
Experimental K+ and Li+ passages and Li+/K+ selectivities during flow of equimolar KCl and LiCl
mixtures at various ionic strengths through track-etched membranes; References [24,33,48] are cited
in Supplementary Materials.
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