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Kin selection and multilevel selection theory are often used to interpret
experiments about the evolution of cooperation and social behaviour
among microbes. But while these experiments provide rich, detailed fitness
data, theory is mostly used as a conceptual heuristic. Here, we evaluate how
kin and multilevel selection theory perform as quantitative analysis tools.
We reanalyse published microbial datasets and show that the canonical
fitness models of both theories are almost always poor fits because they
use statistical regressions misspecified for the strong selection and non-
additive effects we show are widespread in microbial systems. We identify
analytical practices in empirical research that suggest how theory might be
improved, and show that analysing both individual and group fitness
outcomes helps clarify the biology of selection. A data-driven approach to
theory thus shows how kin and multilevel selection both have untapped
potential as tools for quantitative understanding of social evolution in all
branches of life.
1. Introduction
For biologists seeking to understand the evolution of cooperation and social be-
haviour, mathematical theory has been a valuable guide for empirical research.
Kin selection theory, for example, has been enormously influential in part because
it shows that social evolution can be understood from just a few important quan-
tities: how a behaviour affects the fitness of an actor, how that behaviour affects
the fitness of other individuals, and the genetic relatedness between social part-
ners [1,2]. This theory was developed with a major focus on animal behaviour,
so its mathematical form was developed in terms of the quantitative-genetic phe-
notypes most easily measured in animal systems [3]. Similarly, evolutionarily
stable strategy (ESS) models of kin selection were formulated to facilitate predic-
tions and empirical tests using comparative data [4] with substantial success [5–7].

More recently, microbial systems have become popular for addressing social
evolution [8]. Aside from these organisms’ intrinsic biological interest and
importance as pathogens and mutualists, they allow for empirical methods
that would be impractical or impossible in non-microbial systems. Fitness, for
example, is notoriously difficult to measure in multicellular organisms [9].
In microbial systems, though, it is common practice to directly measure the fit-
ness effect of a defined change in genotype or environment under controlled
laboratory conditions. Evolution can even be observed as it happens and
replayed under different conditions [10,11].

Microbial systems also have their challenges. It can be challenging to measure
or even identify the phenotypes responsible for some fitness effect. And since
meiotic sex is often infrequent or absent, studies of microbial genetics tend to
focus on the effects of defined, discrete genotypes instead of quantitative genetic
analyses of continuous-valued traits (but see [12]). It can also be difficult to study
microbial behaviour in natural environments, making comparative tests of ESS
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Figure 1. (a) Mix experiments investigate the fitness effects of microbial interactions by manipulating local genotype frequency. Illustration shows design of a mix
experiment for a hypothetical ‘cheating’ interaction where a strain benefits from an external good without paying the cost to produce it. (b) The canonical versions of
kin and multilevel selection both use statistical regression models poorly specified for the strong selection and non-additive fitness effects in microbial data. Plots
show example dataset from Pseudomonas bacteria that do or do not produce a secreted iron-chelating siderophore (PAO1 + PAO6609) [27]. Lines show fit of
canonical fitness models, whose additive fitness effects mischaracterize data and predict nonsensical results like negative cell number. Non-additive effects include
strains responding differently to mixing- and frequency-dependent selection within groups.
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models rare. So the mathematical formulations of social evol-
ution theory used in metazoan research are poorly suited to
the types of data microbiologists most often collect. Perhaps
as a result, microbial researchers often use ad hoc methods
to analyse and interpret their data, only using theory as a
conceptual heuristic or source of qualitative predictions.

Microbes are not intractable to mathematical theory, how-
ever. In the epidemiology of infectious disease, for example,
there is extensive close interaction between models and
data, with models formulated to make predictions in terms
of the data empiricists collect [13,14]. Models are tailored to
the richness of available data and then used to make quanti-
tative predictions. Deviation of data from these predictions is
then used to refine models in an iterative cycle of improve-
ment. One of the most important results to come out of this
theory is a summary statistic called R0: the average number
of secondary infections from a single infected individual in
a wholly susceptible population [13–15]. R0 provides an esti-
mate of outbreak population dynamics and pathogen fitness,
allows researchers to compare very different infectious
agents, and guides public health responses to diseases like
SARS [16,17], Ebola [18] and COVID-19 [19].

What would a mathematical formulation of social evol-
ution look like if it were able to engage with the quantitative
details of data from microbial experiments? Perhaps the
weak, additive fitness effects common in canonical theory
[2,3,9,20,21] are problematic in microbial systems where large
populations and rapid reproduction make selection especially
effective. Is kin selection theory the best approach, or would
it be more promising to use multilevel selection, which exam-
ines how selection acts within and between groups of
interacting individuals [22–24]? The proper formulation of
social evolution theory has been contentious [25,26], but it
has been debated mostly as abstract mathematics or as verbal
interpretations of specific models and results.

Here, we evaluate kin and multilevel selection as tools
for quantitative analysis of microbial data. We focus on a
common experimental design we call a ‘mix experiment’
(figure 1a). Mix experiments investigate the fitness effects of
microbial interactions by manipulating local genotype
frequency. One can, for example, compare the fitness of geno-
types when they are separate to their fitness when they are
allowed to interact. Fitness is typically measured by comparing
the initial and final states of an experimental population. In
practice, mix experiments examine how selection acts in a
local subpopulation during one part of a microbe’s life
cycle—within a single infected host, for example. Their results
can then be used to estimate how selection in a larger metapo-
pulation would depend on genetic social structure at this scale
(the distribution of initial genotype frequencies among sub-
populations). Mix experiments do not typically measure
microbial behaviour or other social phenotypes directly.

We conduct kin andmultilevel selection analyses of datasets
from published mix experiments and use quantitative measures
of statistical performance to assess what these approaches do
well, where they run into problems, and how often these pro-
blems occur. For guidance on how theory might better handle
the challenges of microbial data, we also identify analytical
practices in empirical research that are robust across different
microbial systems, provide insight into the causes of selection,
and allow quantitative comparison of social selection across
systems. A quantitative, data-driven approach can be a pro-
ductive way forward to identify how theory can best aid our
understanding of social evolution in all branches of life.
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2. Methods
(a) Datasets
We surveyed published literature for mix experiments with differ-
ent genotypes of the samemicrobial species, focusing on studies of
social evolution. We included experiments published in the last 20
years that measured the asexual survival and reproduction of
strains as a function of their initial frequency, holding constant
the total number of individuals. We aimed for breadth of species
and social trait, prioritizing studies with several mixing frequen-
cies (initial genotype frequencies) over those with a single 50 : 50
mix. We identified 39 studies with experiments matching our cri-
teria. We sought raw data from journal websites, public data
archives and directly from study authors. So that our results
would not be overly dominated by a few studies withmany exper-
iments, we included amaximum12 datasets per study, prioritizing
those with most replication and covering the observed range of
interactions. In all, we obtained 80 datasets from 20 different
studies for further analysis (electronic supplementary material,
table S1).
8:20201657
(b) Applying theory
Taking mix experiments as assays for the fitness effects of inter-
actions within a single group of cells or virions, we let a strain’s
Wrightian fitness w be its final absolute abundance divided by
its initial abundance (electronic supplementary material, equation
(S3)) and let itsMalthusian fitness bem = lnw.w andmmeasure the
net performance of a strain over the entire course an experiment,
potentially including multiple rounds of reproduction. Electronic
supplementary material, table S2 summarizes our notation.

Kin and multilevel selection are different frameworks for
understanding natural selection when individuals interact.
For the same biological situation, these theories use different
terms to describe which individuals interact and how those inter-
actions affect fitness outcomes. Because social phenotypes are not
typically not measured in mix experiments, we use theory
formulated in terms of genotypes and fitness. We call these for-
mulations ‘canonical’ because they are among the most general
descriptions of social selection and are common touchpoints in
theoretical discussion.

A common form of kin selection theory is neighbour-
modulated fitness, which describes fitness as a function of one’s
own genotype and that of one’s social partners [2,28]. If strain gen-
otype is g, with g = 1 for the focal strain of interest and g = 0 for its
partner, andG is mean group genotype (the initial frequency of the
focal strain), then kin selection canonically describes fitness using a
multiple least-squares regression of the form w∼ g +G (electronic
supplementary material, figure S1 and equation (S6)). The slope
of w with respect to g is the direct effect of individual genotype
(the private cost of cooperation, for example), and the slope of w
with respect to G is the indirect effect of neighbour genotype
(e.g. the shared benefit of cooperation).

A common form of multilevel selection theory uses the Price
equation to describe fitness within and between groups [22,23].
If total group fitness is W and the within-group fitness difference
between strains is Δw, then multilevel selection canonically
describes fitness using least-squares regressions of the form
W∼G and Δw∼ 1 (electronic supplementary material, figure S1
and equation (S9)). The slope of W with respect to G is
the among-group selection gradient, and mean Δw is the
within-group gradient.
(c) Calculations and statistics
We analysed all data using R [29]. We assigned wild-type and
ancestral strains to reference genotype and mutants and labora-
tory-evolved derivatives to focal genotype. We fitted statistical
models by least-squares regression (lm() command), excluding
zeroes for comparison involving log-transformed quantities.

We evaluated model performance using the Akaike infor-
mation criterion (AIC) [30,31] calculated via AIC(). AIC
measures goodness of fit discounted by the number of model
parameters. AIC ¼ 2k � 2 ln L̂, where k is the number of par-
ameters and L̂ is maximum likelihood. AIC comparisons are
meaningful even when models are not nested and have different
predictors. A common rule of thumb is models perform substan-
tially differently if |ΔAIC| > 2, equivalent to adding a parameter
without improving goodness of fit. The best-performing model is
the one with the least AIC.

We sometimes compared the best-performing models (least
AIC) from sets of candidates (see electronic supplementary
material, table S3 for model details). To compare models fit to
linear or log-transformed fitness outcomes, we calculated the
AIC of logarithmic models, as measured on the linear scale, as
AIC() plus the Jacobian of the log transform: 2

P
ln yj, where

the yj are the fitted values [32]. To compare models fit to different
fitness outcomes, we calculated predicted values for the other
outcome set (electronic supplementary material, equations (S11)
and (S12)) then fit a Gaussian error parameter via maximum like-
lihood (mle() command) so that models would have the same
error structure. We counted M and Δm as part of the same
model so that neighbour-modulated and multilevel fitness
models each used four parameters and ΔAIC measured relative
goodness of fit.

To compare fitness effect sizes, we fit ‘log-linear’ models of
the form m∼ g +G + gG, M∼G and Δm∼G, where slopes are
comparable to intercepts because they measure the total effect
of group genotype from zero to one. We calculated unstandar-
dized effect sizes as the regression coefficients β in fitted
models and scaled effect sizes as b0 ¼ b=

P jbj, where the sum
includes all four coefficients.
3. Results
To evaluate social evolution mathematics as tools for analys-
ing microbial data, we performed kin and multilevel selection
analyses of published datasets that share a common ‘mix
experiment’ design (figure 1a). We found that the canonical
fitness models used by both theories were almost always
poor choices for extracting quantitative summary statistics
because they used statistical regressions misspecified for the
strong selection and non-additive effects we found were
widespread in microbial systems.
(a) Strong selection is widespread in microbial data
Kin and multilevel selection are canonically formulated in
terms of Wrightian fitness—the number of individuals in the
descendant population per individual in the ancestral popu-
lation (electronic supplementary material, equation (S3)).
Measured over the entire course of amicrobial mix experiment,
this value can span several orders of magnitude (e.g. figure 1b).
As a result, the additive fitness models used by both theories
mischaracterize data in regions of low fitness and predict non-
sensical results like negative cell number. The linear scale over
which these theories describe social selection is also a poor
choice for visualizing data because many values cluster near
zero (electronic supplementary material, figure S2).

To assess how common strong fitness effects are in
microbial systems, we measured the range of fitness values
in published datasets (electronic supplementary material,
figure S3). Mixing frequency typically affected strain and
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total group fitness by orders of magnitude. Within groups,
the fitness of one strain was often orders of magnitude greater
than the other. Inmost datasets, strong selectionwas the norm.
We even found strong effects in experiments measuring the
survival of starving Myxococcus bacteria to become spores in
fruiting bodies, with little to no reproduction.

Many studies dealt with strong selection by analysing
experimental data over logarithmic scales (electronic sup-
plementary material, table S4). To evaluate this approach,
we compared models fit to linear or log-transformed fitness
outcomes with the same predictors. Log-scale models
almost always outperformed linear models (figure 2a).

(b) Non-additive fitness effects are widespread in
microbial data

Kin and multilevel selection are canonically formulated with
additive fitness effects, corresponding to statistical models
with linear, independent effects on Wrightian fitness (elec-
tronic supplementary material, figure S1). In the datasets
we analysed, fitness effects were often strongly non-additive
(e.g. figure 1; electronic supplementary material, S2). Fitness
responded nonlinearly to mixing frequency, for example,
there were interaction effects between self and neighbour
genotype, and there was frequency-dependent selection
within groups (within-group fitness was a function of initial
genotype frequency). As a result, kin and multilevel fitness
models were frequently poor fits.

To quantify the extent of non-additivity, we compa-
red additive models to those with non-additive terms.
Non-additive models almost always performed better for
neighbour-modulated and within-group fitness (figure 2b).
For total group fitness they performed at least as well. In
most datasets, non-additivity was the norm.

Strong selection can create fitness effects that are multipli-
cative rather than additive, with independent linear effects
over logarithmic scales. To assess how much this contributed
to non-additivity, we compared multiplicative models to
those that could include interaction and nonlinear terms.
Nonmultiplicative models almost always performed better
(figure 2c).

Model performancewas particularly improved byallowing
frequency-dependent selection within groups and interactions
between individual and neighbour genotype (electronic sup-
plementary material, figure S4). These additional terms were
not justminor complications—theywere typically a substantial
proportion of all fitness effects and could be the strongest social
effect (figure 3; electronic supplementary material, S5 and S6).
Initial frequency often determined which strain was more fit
(e.g. figure 1b).
(c) Strain and group fitness outcomes are both useful
Kin and multilevel selection focus on different fitness out-
comes. For microbial mix experiments, kin selection focuses
on strain fitness, while multilevel selection focuses on total
group fitness and the relative fitness of strains within groups
(electronic supplementary material, figure S1). What are the
consequences of analysing a particular set of outcomes?

In the datasets we examined, we found cases where one
set of fitness outcomes revealed some biological result the
other did not. Analysing data from multiple perspectives
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also revealed similarities between systems that would not
have been otherwise visible. During multicellular sporula-
tion of Myxococcus bacteria, for example, evolved strain
PX inhibits sporulation of its ancestral wild-type but is
itself unaffected by mixing (figure 4a). Researchers were
aware of this one-way mixing effect (G. J. Velicer 2019,
personal communication), but because they only reported
multilevel fitness outcomes it is not apparent in the
original study [33], nor is its similarity to later findings in
Dictyostelium amoebae (electronic supplementary material,
figure S16) [34].
To quantify the extent to which effects seen in one set
of fitness outcomes were apparent in the other set, we fitted
neighbour-modulated and multilevel fitness models to each
dataset and then compared analogous effect sizes. Strain and
multilevel fitness mostly told similar stories, with the notable
exception that mixing frequently affected strain fitness much
more than total group fitness (figures 4b; electronic supplemen-
tary material, S6). In many datasets, there was strong selection
within groups but little change in total group fitness, a situ-
ation known as soft selection [24,35]. As a result, multilevel
selection could consistently describe data using fewer effective
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parameters (electronic supplementary material, figure S7).
Some datasets were easier to analyse with strain fitness and
others with multilevel fitness, but there was no strong trend
(electronic supplementary material, figure S8).

Strain and multilevel fitness outcomes were both effective
for quantitatively comparing social selection in different data-
sets. The impact of social interaction varied considerably
among systems (figure 3; electronic supplementary material,
figure S5). In datasets concerning multicellular sporulation of
Myxococcus or Dictyostelium, for example, most fitness effects
were social. The effects of shared external goods like sidero-
phores or secreted enzymes, on the other hand, were often
minor compared to base strain or group fitness.

Together, these results suggest it is empirically useful to
analyse both strain and multilevel fitness, then use whatever
is most convenient or informative. The studies we analysed
most often reported multilevel fitness (electronic supplemen-
tary material, table S4 and figure S9), even those verbally
framed in terms of kin selection [27,36–38]. Multilevel selec-
tion thus appears to hold substantial intuitive appeal, and
there is scope for more extensive use of strain fitness data.
1657
4. Discussion
(a) Disconnect between theory and data
To evaluate kin and multilevel selection theory as tools for
analysing data about microbial cooperation and social behav-
iour, we reanalysed the results of published mix experiments
using both approaches. We found that while the different
fitness outcomes emphasized by each theory were both
useful, the canonical fitness models in both theories were
poor choices for quantitative analysis and comparison that
were almost always a poor fit for the strong selection and
non-additive effects that we found were widespread in
microbial data.

The fitness terms in kin and multilevel selection are stat-
istical regressions made over the individuals and groups in
the population they are meant to describe. This approach is
general and exact even when fitness effects are not weak or
additive [2]. We are not claiming that kin or multilevel selec-
tion theory are conceptually incorrect, nor that they make
incorrect assumptions. But when the regression models do
not match the relationships in the data, the regression coeffi-
cients will not be true for other populations with a different
genotype frequency or a different distribution of genotypes
among groups, even if eveything else is the same [21,39,40].
So the fitness terms in these misspecified regressions are
not very useful summary statistics for quantifying and com-
paring social selection in microbial systems. It is perhaps
unsurprising then that empirical microbiologists use other
methods to analyse and interpret their data.

Non-additivity is an active area of research in social evol-
ution theory [2,3,21]. Non-additivity may not be a problem
for the weak selection and qualitative predictions common in
metazoan research [2,9,20], but it has caused problems for
attempts to measure the parameters of Hamilton’s rule in
microbial systems [39,41]. Nonlinear responses are common
in microbiological research [27,42,43], but ad hoc data analyses
have so farmade it difficult to assesswhat implications this has
for theory. By analysing microbial datasets using the same
quantitative fitness models as theory, we found that the
problems posed by non-additivity are widespread, strong,
and beset both kin and multilevel selection.

The culprit was the functional form of fitness models, not
the fitness outcomes themselves. Analysing strain fitness (like
in kin selection theory) or fitness within and between groups
(like in multilevel selection theory) are both useful approaches
to microbial data. Different fitness outcomes can reveal results
that would not be otherwise visible. Which approach is best
will depend on the system and question being investigated,
and may not be obvious beforehand. So while the proper for-
mulation of social evolution theory is sometimes contentious
[25,26], it is practically useful to examine data from multiple
perspectives [44]. An analogy might be how physics embraces
different representations of the same process if they are
more convenient or provide deeper insight—different coordi-
nate systems, for example, or classical versus Lagrangian
mechanics—even when they make the same predictions.

The datasets we analysed measured the net result of all
interactions over the lifetime of the microbial group studied in
a mix experiment. Many included several rounds of reproduc-
tion, which can compound fitness effects across generations
and increase their measured magnitude. Canonical theory
might perform better over shorter timescales, but measuring
and analysing fitness outcomes for individual cells and virions
is unlikely to resolvemost issues.We found strong non-additive
effects, for example, in datasets measuring the survival of star-
ving Myxococcus or Dictyostelium cells to become spores in
fruiting bodies with little to no reproduction over the course
of the experiment. And in many experiments initial frequency
determined which strain was most fit—a result that cannot be
caused by independent additive effects of self and neighbour
genotype. More generally, biologically important interactions
among microbes are often difficult to express in terms of
single-generation effects on individual fitness. A key benefit
of shared external goods like siderophores and virulence
toxins, for example, is often that they increase local carrying
capacity to allow further rounds of cell growth and division.
Because microbes reproduce quickly, their social groups and
interactions often span generations.

For many research questions, general social evolution
theory may not be ‘the right tool for the job’. General
theory is best for comparing different systems on the same
terms and deriving general principles. For specific biological
questions, though, it is often best to use models tailored to the
biology of the system [20,45]. Biologically specific models can
help researchers understand the often nontrivial fitness
effects of microbial phenotypes [42,43,46]. Even fixed differ-
ences in reproductive rate or lag time, for example, can
have frequency-dependent and non-additive fitness effects
when there is local resource competition [47]. Following the
time dynamics of mix experiments can be especially informa-
tive, as the specificity and richness of time-series data allows
strong tests of hypotheses that would otherwise be indistin-
guishable based on the initial and final time points alone
[47]. Analytical results are useful because they can clearly
identify all the effects and interactions in a model. But the
complexity of biologically specific models often requires
numerical solution, making them more difficult to analyse.
(b) Reformulating theory: challenges and prospects
If we wanted social evolution theory to be more useful for
quantitative analysis of microbial data, what does it need to
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do? Kin and multilevel selection are statistical descriptions of
evolution. Like statistical mechanics in physics, they describe
the behaviour of aggregate properties of a system (allele fre-
quency, genotype fitness, etc.) in terms of the probabilistic
behaviour of its individual parts. So we can frame the theoreti-
cal challenge in statistical terms: How should we specify the
statistical model describing social selection? What variables
should it include, and in what functional form?

The main problem with canonical kin and multilevel
selection theory is their quantitative genetic approach for-
mulated in terms of additive, independent effects on
Wrightian fitness—appropriate for macroscopic phenotypes
like sex ratio, perhaps, but not for microbial fitness. To be
analytically useful for microbes, theory would allow fitness
effects spanning orders of magnitude with generically non-
linear, genotype-dependent responses. It would also be
expressible in terms of both strain and multilevel fitness out-
comes, be robust to different types of biological interaction,
and allow quantitative comparisons across very different
systems.

One approach is to extend existing theory—adding terms
to Hamilton’s rule to handle non-additive effects, for example
[3,39], or including multilevel selection terms for trait inter-
actions, intermediate optima and selection peaks [24,48].
But this approach still requires researchers to translate their
ad hoc data analyses into the terminology of theory. Another
approach is to reformulate theory in terms more easily
applied to microbial data. Modelling fitness and frequency
effects over logarithmic scales seems especially promising,
though it is unclear how to best deal with zeroes that occur
in single-strain groups and when a genotype becomes
undetectible in the descendant population.

(c) Conclusion
Mathematical theory can play many roles in biological
research. Theory can be a conceptual or heuristic guide. It
can be a proof of concept to test the verbal logic of hypotheses
[49]. It can also be an analytical tool that provides quantitative
insight into the biology of a system—epidemiology’s R0, for
example. We found that kin and multilevel selection theory
are both conceptually useful for microbial data, but they also
both have substantial analytical shortcomings. The early devel-
opment of these theories explicitly consideredmicrobes [50,51],
but they have mostly been formulated for metazoan biology. If
applying theory developed for one set of taxa to another very
different set is a test of that theory’s explanatory power, kin
and multilevel selection both have room for improvement.
Taking a quantitative, data-driven approach can help us
move beyond verbal and conceptual arguments to find a pro-
ductive path where both theories are useful analytical tools
for understanding social evolution in all branches of life.
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