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Abstract Increasing evidence suggests that perception

and action planning do not represent separable stages of a

unidirectional processing sequence, but rather emerging

properties of highly interactive processes. To capture these

characteristics of the human cognitive system, we have

developed a connectionist model of the interaction

between perception and action planning: HiTEC, based on

the Theory of Event Coding (Hommel et al. in Behav

Brain Sci 24:849–937, 2001). The model is characterized

by representations at multiple levels and by shared rep-

resentations and processes. It complements available

models of stimulus–response translation by providing a

rationale for (1) how situation-specific meanings of motor

actions emerge, (2) how and why some aspects of stimu-

lus–response translation occur automatically and (3) how

task demands modulate sensorimotor processing. The

model is demonstrated to provide a unitary account and

simulation of a number of key findings with multiple

experimental paradigms on the interaction between per-

ception and action such as the Simon effect, its inversion

(Hommel in Psychol Res 55:270–279, 1993), and action–

effect learning.

Introduction

Coordinating our actions in response to environmental

demands is an important cognitive activity. Indeed, actions

that are not guided by perception would not only be inef-

ficient but might also be rather dangerous. In general,

natural environments offer an overwhelming number of

perceivable objects, and natural bodies allow for a virtually

unlimited number of different responses. Intriguingly, our

cognitive system usually seems to cope quite well with this

complexity. It is generally hypothesized that the task

context triggers the implementation of a task set (Monsell,

1996) that focuses the cognitive system on relevant per-

ceptual events and appropriate actions. It is, however,

unclear how such a task set may configure the cognitive

system—in terms of representations and processes—to

effectively coordinate our actions in response to stimuli.

Traditionally, responding to stimuli in our environment

has theoretically been conceived as a sequence of separable

stages of processing (e.g., Donders, 1868; Neisser, 1967;

Sternberg, 1969), such as ‘perceptual analysis’, ‘decision

making’, ‘response selection’, and ‘response execution’

(Ward, 2002). Interestingly, empirical findings in psy-

chology have demonstrated that parts of human informa-

tion processing do not seem to involve conscious cognitive

decision making. Features of perceived objects (such as

location, orientation, and size) can influence actions di-

rectly and beyond (tight) cognitive control, as illustrated by

stimulus–response compatibility (SRC) phenomena, such

as the Simon effect (Simon & Rudell, 1967). In the typical

Simon task, stimuli vary on a spatial dimension (e.g.,

randomly appearing on the left or right) and on a non-

spatial dimension (e.g., having different colors). Partici-

pants are to respond to the non-spatial stimulus feature by

performing a spatially defined response (e.g., pressing a left
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or right key). Although the location of the stimulus is

irrelevant for the response choice, it nevertheless influences

response time and accuracy: participants respond faster

(and more accurately) when the stimulus location is con-

gruent with the response location than when the stimulus

location is incongruent with the response location. This

finding suggests that there is a direct interaction between

stimulus perception and response planning. The Simon

effect is a very robust finding, has been replicated

numerous times and has been used frequently as a

methodological tool to investigate perception, action, and

cognitive control (for general overviews, see Hommel,

2011; Proctor, 2010).

To account for SRC phenomena cognitive theories and

computational models of stimulus–response translation

typically assume the existence of two translation ‘routes’

(e.g., DeJong, Liang, & Lauber, 1994; Kornblum, Has-

broucq, & Osman, 1990; Zorzi & Umiltà, 1995): a con-

trolled route for processing task relevant stimulus features

(e.g., stimulus color) and an automatic route for processing

task irrelevant stimulus features (e.g., stimulus location).

Both routes end in response codes labeled with the

response locations in the task (e.g., ‘left key’ and ‘right

key’). When the relevant stimulus feature and irrelevant

stimulus feature both activate the same response code,

processing is facilitated yielding smaller reaction times;

conversely, when they activate different response codes,

processing is interfered yielding larger reaction times.

Although these process models are typically able to fit

behavioral data quite well, they leave some issues—relevant

for understanding the interaction between perception and

action from a representational perspective—unaddressed.

The three issues we focus on here are: (1) a common

characteristic of these models is the use of response codes

with intrinsic connotations (e.g., direction or location) as

exemplified by their respective labels (e.g., ‘left key’). The

question then arises, how the cognitive system has acquired

this knowledge and how the knowledge is grounded in the

real world. In various empirical studies (e.g., Riggio,

Gawryszewski & Umilta, 1986; Guiard, 1983; Hommel,

1993), it has been shown that this connotation depends on

the task context. So, how may situation-specific meanings of

motor actions emerge? (2) How and why are some task

irrelevant features connected to response codes with an

automatic route? In these models automaticity is simply

assumed if stimuli and responses are ‘similar’ (e.g., ‘‘have

dimensional overlap’’, Kornblum, et al., 1990; Kornblum,

Stevens, Whipple & Requin, 1999) without providing a

theoretical rationale or a concrete mechanism accounting for

similarity. Finally, (3) various empirical studies (e.g.,

Haazebroek, van Dantzig & Hommel, 2013; Hommel, 1993)

show that the task context may substantially influence both

the occurrence and direction of SRC effects.

An influential model that addresses the influence of task

context on SRC effects explicitly in the context of the

Stroop task (Stroop, 1935) has been developed by Cohen,

Dunbar and McClelland (1990). This connectionist model

contains two sets of input units (i.e., red and green ink

color units; and RED and GREEN word units), a set of

intermediate units, and a single set of output units (‘‘red’’

and ‘‘green’’). Input units are activated and activation

propagates through connections, via the intermediate units,

towards the output units. This model too contains two

pathways: one for color-naming and one for word-reading.

When the input to the model consists of a congruent

stimulus, such as the word RED in ink color red, activation

propagates, through both pathways, towards the same

output unit ‘‘red’’. If the stimulus is incongruent, however,

(e.g., the word GREEN in ink color red), activation is

propagated to both the ‘‘red’’ and ‘‘green’’ output units.

Crucially, a set of additional input units, so-called task

demand units, are also connected to the intermediate units.

Their activation modulates which pathway is more domi-

nant in the activation of the output units. By activating the

‘word-reading’ task demand unit, the word is the task-rel-

evant feature and the ink color task-irrelevant, and vice

versa when input is given to the ‘ink color’ task demand

unit. This early model has been successful in simulating a

variety of behavioral data on the Stroop effect and made a

substantial contribution in the modeling of attention. The

model is strictly feedforward, and, in line with the PDP

tradition (e.g., Rumelhart, Hinton, & McClelland, 1986)

considered modular. Indeed, Cohen, et al. (1990) make it

clear that they assume that ‘some other module’ provides

the input for the task demand units. Moreover, the authors

state it has not been their focus to consider how task

interpretation occurs or how the allocation of attention is

determined.

This aspect, and the issues mentioned above, we address

explicitly in the model we propose: HiTEC, a connectionist

model in the same PDP tradition as the models by Cohen,

et al. (1990) and Zorzi and Umiltà (1995). HiTEC is

structured differently, however, containing so-called ‘fea-

ture’ units that are shared by perception and action control.

Also, the connections between these ‘feature’ units and

output units are not fixed, but are acquired through ideo-

motor learning (Hommel, 2009; James, 1890; Lotze, 1852;

Stock & Stock, 2004), which in turn creates stimulus–re-

sponse similarity through sharing of feature codes. More-

over, the model is not strictly feedforward and in that sense

promotes a more dynamic and integrative perspective on

perception and action than the modular views of traditional

connectionist models. The units in HiTEC do not originate

from a specific task or experimental paradigm, they rather

relate to different levels of representation as suggested by

the Theory of Event Coding (TEC, Hommel, Müsseler,
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Aschersleben & Prinz, 2001). TEC aims at capturing the

interaction between perception and action in terms of

representations and processes that fit well within common

neural constraints, and the way this interaction is mediated

by cognitive control. HiTEC in turn is based on TECs core

principles: (1) a level of common representations, where

stimulus features and action features are coded by means of

the same representational structures; (2) stimulus percep-

tion and action planning are considered to be similar pro-

cesses, both involve activating these common

representations; (3) action features refer to the perceptual

consequences of a motor action; when an action is exe-

cuted, its perceptual effects are associated with the active

motor code; one can subsequently plan an action by

anticipating the perceptual features belonging to this motor

code; and (4) representations are considered to be ‘‘inten-

tionally weighted’’ according to the task context (Fagioli,

Hommel, & Schubotz, 2007). HiTEC extends and further

specifies TEC in that it includes a task level and procedures

regarding task set implementation and action–effect

learning—cognitive control, that is, which was not the

main target of the original TEC. These additions enable

HiTEC to account for a series of key experimental findings

on the interaction between perception and action, ranging

from stimulus–response compatibility to action–effect

learning, in a unitary architecture and at a level of speci-

ficity that allows for computer simulation and concrete

empirical testing.

In earlier work, we have developed some of the modules

and principles integrated in HiTEC, and for instance shown

how basic stimulus–response translation may be used for

improving cognitive robotics (Haazebroek, van Dantzig, &

Hommel, 2011). We showed that the basic Simon effect

follows naturally from HiTECs architecture and related this

to the notion of affordances in robotics (Haazebroek, et al.

2011). In the following we provide a comprehensive and

detailed description of these and other modules, now

integrated into the HiTEC model, their interrelationships,

and their dynamics. We also present simulation results of

five different SRC paradigms. Some of these paradigms

have been modeled before using PDP models (e.g., Simon

and Stroop tasks, as discussed above), and so we do not

claim that our model is unique in accounting for these

effects in principle. What we do claim, however, is that

HiTEC provides a theoretical rationale and a mechanistic

basis explaining how and in particular why SRC occurs.

Hence, or a main goal is not efficiency or accuracy in

simulating particular outcomes but in gaining theoretical

insight through modeling. Crucially, the fifth simulation,

which targets the findings of Hommel (1993), demonstrates

HiTECs ability to account for the inversion of the Simon

effect, which has not been modeled before and clearly

shows the role of task context in action control and the

flexibility required to capture this effect. To summarize, the

focus in this article is not on predicting specific aspects of

RT distributions or optimizing particular model parame-

ters. Rather we aimed to provide a proof of principle that a

minimal set of strictly theoretically derived representa-

tional and interactive processing principles is sufficient to

characterize and explain different kinds of perception–ac-

tion interactions demonstrated in various empirical studies.

Moreover, we were interested to see whether the emer-

gence of the cognitive structure generating such interac-

tions can be made part of the modelling process; in other

words, we aimed at modelling both the generation of

cognitive representations and the processing dynamics they

engage in.

In the next section we discuss our design considerations

and present the HiTEC model. Then we present the results

of five simulations demonstrating HiTECs dynamics in

various SRC paradigms. Finally, in the discussion, we draw

a more elaborate comparison between HiTEC and existing

models focusing on the three issues discussed above.

HiTEC model

In this section we describe the HiTEC connectionist model

in full detail. We start out with discussing the general

cortical architecture of the primate brain and our general

connectionist modeling approach. Then we describe the

specific HiTEC architecture, followed by its computational

implementation. Finally, we discuss how HiTEC allows for

simulating behavioral studies and describe its general

dynamics during perception and action planning.

Levels of representation and interactivity

in the cerebral cortex

Neurons in the primate cortex appear to be organized in

numerous interconnected cortical areas. It is commonly

assumed that this organization allows the brain to encode

perceived objects in a distributed fashion. That is, different

features seem to be processed and represented across dif-

ferent cortical areas (e.g., Cowey, 1985; DeYoe & Van

Essen, 1988), coding for different perceptual modalities

(e.g., visual, auditory, tactile) and different dimensions

within each modality (e.g., visual color and shape, auditory

location and pitch). Sensory areas contain neurons that are

responsive to specific sensory features (e.g., a specific color

or a specific visual location). Areas in the motor cortex

contain neurons that code for more or less specific move-

ments (e.g., the muscle contractions that produce the

movement of the hand pressing a certain key). Higher up in

the processing stream there are cortical areas containing

neurons that are receptive to stimulation from different
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modalities. In effect, they are considered to integrate

information from different senses and modalities. Finally,

the prefrontal cortex contains neurons that are generically

involved in cognitive control of various tasks (Duncan &

Owen, 2000). These levels of representation form the basis

of the HiTEC model architecture. Crucially, cortical areas

for different levels of representation are not only inter-

connected by feedforward connections but there are also

dense neural pathways from centers of higher brain func-

tion back into perception centers (Braitenberg & Schüz,

1991; Young, 1995) suggesting top-down influence of

higher level areas on processing within lower level areas

(e.g., Prinz, 2006). This aspect of reciprocal connectivity

between various levels of representation is central to the

HiTEC connectionist model.

Connectionist approach

In line with the interactive activation connectionist mod-

eling approach (PDP; e.g., Rumelhart, et al., 1986), infor-

mation processing occurs through the interactions of a

large number of interconnected elements called units. Each

unit may stand for a group of neurons (i.e., localist coding).

Units are organized into higher structures representing

cortical layers. Each unit has an activation value indicating

local activity. Processing occurs by propagating activity

through the network; that is, by propagating activation

from one unit to the other, via weighted connections. When

a connection between two units is positively weighted, the

connection is excitatory and the units will increase each

other’s activation. When the connection is negatively

weighted, it is inhibitory and the units will reduce each

other’s activation. Processing starts when one or more units

receive some sort of external input. Gradually, unit acti-

vations rise and propagate through the network while

interactions between units control the flow of processing.

Some units can be designated output units. When activa-

tions of these units reach a certain threshold the network is

considered to produce the corresponding output(s).

HiTEC architecture

In line with the cortical representation principles and

interactivity discussed above, HiTEC has a multiple-layer

architecture (see Fig. 1) and recurrent interactions at mul-

tiple levels, including feedback to lower level units. In

HiTEC feedforward and feedback interactions are cooper-

ative and lateral interactions (i.e., within layers) are com-

petitive (see also Murre, Phaf & Wolters, 1992; van

Dantzig, Raffone & Hommel, 2011). The HiTEC neural

network is composed of excitatory and inhibitory neural

units in each layer. The coding functions are implemented

as excitatory units. The inhibitory units are only involved

in lateral competitive interactions; by contrast, the excita-

tory units can receive inputs from and send outputs to

associated units in other layers, yielding cooperative

interactions. Within each layer inhibitory units are acti-

vated by an associated excitatory unit and propagate inhi-

bition to the excitatory units that implement other codes in

the same layer.

We now first outline the general model architecture, and

then describe the model behavior and the computational

specification of the network units. HiTECs general archi-

tecture contains sensory layers, feature layers, a task layer

and a motor layer, as depicted in Fig. 1. Each layer

resembles a cortical circuitry and contains codes imple-

mented as excitatory connectionist network units as

described above.

Note that the connection weights can be different

(asymmetrical) for corresponding ‘forward’ and ‘back-

ward’ connections (e.g. different weights for the connec-

tion from feature codes to task codes, and the reciprocal

connection from task codes to feature codes). The different

codes (and related units) are characterized as follows.

Sensory codes

In HiTEC, different perceptual modalities (e.g., visual,

auditory, tactile, proprioceptive) are distinguished and

different dimensions within each modality (e.g., visual

color and shape, auditory location and pitch) are processed

and represented in different sensory layers. Each sensory

layer contains a number of sensory codes that are respon-

sive to specific sensory features (e.g., a specific color or a

specific location in the visual field). Sensory codes receive

external input and feedback activation from feature codes.

Crucially, the responsiveness of sensory coding units is

modulated by connected feature coding units. This is

realized by making the inputs from feature units to a sen-

sory coding unit dependent on that sensory coding unit’s

activation, which is primarily determined by its external

stimulation. This way, a sensory coding unit cannot

become highly active by mere top down input, which

would be the equivalent of a hallucination.

Motor codes

The motor layer contains motor codes, referring to more or

less specific movements (e.g., the movement of the hand

pressing a certain key or producing a verbal utterance).

Although motor codes could also be organized in multiple

layers (e.g. reflecting different body parts), in the present

version of HiTEC we consider only a single basic motor

layer with a set of motor codes. Motor codes are activated

by feature codes. When the activation level of one of the

motor coding units reaches a set response threshold, the
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motor code is assumed to be selected and executed. Sub-

sequent action effects in the environment are presented to

the sensory coding units allowing the model to learn

action–effect contingencies (see Ideomotor Learning

below). Note that our present account of motor information

represents a dramatic simplification. Movements are unli-

kely to be represented by coherent, encapsulated motor

programs (as considered by Keele, 1968) but, rather, in a

rather complex, distributed fashion (Hommel & Elsner,

2009; Wickens, Hyland, & Anson, 1994). However, this

simplification does not affect our main arguments and it

helps keeping the model and its behavior reasonably

transparent.

Feature codes

TEC’s notion of feature codes (Hommel, et al., 2001) is

captured at the feature level by codes that are connected to

and thus grounded in both sensory codes and motor codes.

Crucially, the same (distal) feature code (e.g., ‘left’) can be

connected to multiple sensory codes (e.g., ‘left proprio-

ceptive direction’ and ‘left visual shape’). Thus, informa-

tion from different sensory modalities and dimensions is

combined in one feature code representation. It is assumed

that feature codes arise from regularities in sensorimotor

experience, presumably by detecting co-occurrences of

sensory features. Since feature codes connect to both sen-

sory codes and motor codes, they can be considered com-

mon codes in the sense of Prinz (1990), subserving both

stimulus perception and response planning. When a certain

feature code is used to represent a task stimulus and this

same feature code is also used to represent a task response,

the resulting code overlap may result in compatibility

effects. Such compatibility effects are demonstrated in the

simulations discussed in the next section.

Task codes

The task layer contains generic task codes that reflect

alternative stimulus–response combinations resulting from

the task context. Different task codes reflect different

stimulus–response choice options within the task context.

Task codes connect bi-directionally to feature codes, both

the feature codes that represent stimuli and the feature

codes that represent responses, in correspondence with the

current task context. Note that task codes themselves are

Task Level

Sensory Level

Haptic

Feature Level

Motor Level

Haptic Dimension

S7 S8

Auditory

Auditory Dimension

S5 S6

Visual

Visual Dimension

S3 S4

Visual Dimension

S1 S2

Motor Codes

M1 M2

Feature Dimension

F1 F2

Feature Dimension

F3 F4

Feature Dimension

F5 F6

T1 T2

Fig. 1 General computational structure of HiTEC. Codes are

contained in layers at various levels, and are connected by excitatory

connections. Solid lines denote fixed weights, dashed lines are

connections with learned weights. Sensory codes receive modulated

excitatory input from feature codes, denoted by the open arrows. Note

that feature code–motor code associations are one-way connections

and that feature code–task code connections are non-modulated both

ways
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considered task-generic (i.e., labeled ‘T1’, ‘T2’ et cetera)

representations that are re-used across multiple tasks, in

line with findings of ad-hoc recruitment of neurons in PFC

for task-generic decision making (Duncan & Owen, 2000);

the meaning of a task code is different for each task and

completely derives from its connections with specific fea-

ture codes.

Basic model behavior

The presentation of a stimulus is simulated by feeding

external input to the appropriate (excitatory) sensory codes

relating to the various stimulus features (e.g., its location,

color, auditory tone et cetera). This results in a gradual

increase of their activation level, which is translated into

output to feature codes. Thus, activation flows gradually

from sensory codes to (stimulus related) feature codes to

task codes to (response related) feature codes to motor

codes. Once a motor code is activated strongly enough it is

assumed to lead to the execution of a motor response to the

presented stimulus. The gradual passing of activation

between codes in different layers along their connections is

iterated for a number of simulation cycles, which allows for

the simulation of reaction time (i.e., number of processing

cycles from stimulus onset to response selection). Crucially,

activation also propagates back from task codes to stimulus

related feature codes that in turn modulate the sensitivity of

sensory codes, thereby rendering an integrated processing

system with both feedforward and feedback dynamics rather

than a serial stage-like processing mechanism.

Ideomotor learning

In HiTEC, following TEC, connections between feature

codes and motor codes are not fixed but learned according

to the ideomotor principle (Hommel, 2009; James, 1890;

Lotze, 1852; Stock & Stock, 2004). This principle states

that when one executes a particular action and perceives

the resulting effects in the environment, the active motor

pattern is automatically associated to the perceptual input

representing the action’s effect. Based on these action–

effect associations, people can subsequently plan and

control a motor action by anticipating its perceptual effect.

In similar vein, learning in HiTEC is done by first

alternately activating motor codes, not unlike the explora-

tory movement behavior patterns of newborn infants

(motor babbling, see Meltzoff & Moore, 1997 for an

overview) or complete novices at a new task. When a

motor code reaches a threshold of activation, we assume

that the response is executed, resulting in perceivable

changes in the environment (action effects). In HiTEC

these action effects are perceived by stimulating the

respective sensory codes; activation is subsequently

propagated from these sensory codes towards feature codes

(cf. Elsner & Hommel, 2001). Finally, associations are

learned between these feature codes and the executed

motor code. During subsequent stimulus–response trans-

lation these associations enable activation of the appro-

priate motor action by activating the associated feature

codes. Thus, a motor action can indeed be selected by

‘anticipating its perceptual effects’ using feature codes.

Crucially these same feature codes are also used in stim-

ulus perception. This, in turn, sets the stage for compati-

bility effects which are the main focus of the current work.

Task internalization

In behavioral experiments both stimuli and responses can

have a variety of features. The task context dictates which

of these features are relevant (i.e., the features to look for

and to discriminate) and which are irrelevant. In HiTEC, a

task instruction is implemented by connecting feature

codes and task codes according to the actual task rules in

terms of stimulus features and response (i.e., action effect)

features. This procedure allows the task instruction to be

readily internalized in a principled manner. An example

task instruction ‘‘when you hear a high tone, press the left

key’’ can be implemented as connections from ‘High’ to

‘T1’ and from ‘T1’ to ‘Left’ and ‘Key’. During the subse-

quent stimulus–response translation, these connections

modulate the responsiveness of feature codes to bottom-up

input from stimulated sensory codes and through these

connections activation is propagated towards feature codes

associated to the proper motor responses in accordance

with task demands (cf., Miller & Cohen, 2001). This way,

appropriate goal oriented behavior can take place within a

certain task context.

Computational implementation

HiTEC codes are implemented as (excitatory) neural net-

work units, characterized by an activation level. These

units, which may stand for neuronal groups, receive exci-

tatory and inhibitory inputs from other units and back-

ground noise. Excitatory inputs can either be voltage

independent or voltage dependent, i.e. with a modulatory

role dependent on the voltage (‘activation’) of the receiving

unit. Indeed, cortical feedback connections are generally

voltage dependent, i.e. necessitate a sufficient level of

feedforward (stimulus related) synaptic input to be effec-

tive. In addition, the activation of the units is characterized

by a decay rate, so that in case of absence of any input the

activation will decay exponentially towards a resting level.

Units in the sensory layers can also receive an external

(stimulus related) input. Thus, on every cycle unit activa-

tions are updated according to the following equation:
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Aiðt þ 1Þ ¼ 1 � dað Þ � AiðtÞ þ c
� Exci � 1 � AiðtÞð Þ þ Inh i � AiðtÞð Þ ð1Þ

In this equation, da is the activation decay rate, Ai(t) is the

activation level of unit i at time t, Exci is the sum of its

excitatory input, Inhi is its inhibitory input and c is a

scaling term. Note that both excitatory and inhibitory

inputs are scaled in a way that the unit’s activation may

take on any real value between 0.0 and 1.0. The excitatory

input is computed as follows:

Exci ¼ ExcVI i þ ExcVD i þ Ext i þ Noise i ð2Þ

Here, ExcVIi is a voltage independent (‘non-modulatory’)

input from other units in the network, which does not

depend on the activation of the receiving unit; ExcVDi is a

voltage dependent input, which is instead dependent on the

activation of the receiving units (implicitly related to the

membrane potential of receiving neurons). These different

excitatory inputs stand for different synaptic currents in

cortical networks: feedforward signaling takes place by

voltage-independent synaptic currents, and feedback sig-

naling by modulatory voltage dependent currents (e.g.,

Dehaene, Sergent, & Changeux, 2003; Raffone & Pantani,

2010; Tononi, Sporns, & Edelman, 1992). Exti is input from

external stimulation (only for units in the sensory layers) and

Noisei is a noise term. This noise term is determined by

drawing a random value from a Gaussian distribution at each

update cycle and for each unit independently. Such noise

term is introduced to capture the stochastic background of

spiking activity in the cortex (Amit & Brunel, 1997;

Grossberg & Grunewald, 1997) and for variance in network

activity across simulation trials. The voltage independent

input is obtained by calculating the weighted sum of the

outputs of all connected units (apart from units where

voltage dependent input applies, see below):

ExcVIi ¼
X

k

wþ
k FðAkðtÞÞ ð3Þ

Here, w? are the positive weights of the connections from

other units k to unit i. The output of a unit is a non-linear

function of its activation value, using the following func-

tion (Grossberg & Grunewald, 1997; Grossberg & Somers,

1991), with parameters na and qa:

FðAiÞ ¼
Ana
i

ðqaÞna þ Ana
i

ð4Þ

Crucially, the responsiveness of sensory coding units is

modulated by connected feature coding units. This is

realized by making the inputs from feature units to a sen-

sory coding unit dependent on the sensory coding unit’s

activation, which is primarily determined by its external

stimulation. This way, a sensory coding unit cannot

become highly active by mere top down input. This voltage

dependent input from feature coding units to sensory

coding units is computed using the following equation (see

Tononi, et al., 1992, for a similar computation):

ExcVDi ¼
X

k

wþ
k FðAkðtÞÞ

� maxðAiðtÞ � ð1 � daÞ � VT; 0Þ
1 � VT

ð5Þ

Here, da is the activation decay rate and VT is the voltage

threshold. When the sensory coding unit has a (scaled)

activation level higher than this threshold, top down input

from connected feature coding units is taken into account,

rescaled in proportion to the voltage threshold and added to

the sensory coding unit’s excitatory input. If the sensory

coding unit’s scaled activation level is lower than the

voltage threshold, this input is discarded.

Activation of units is competitive, so that coding units

within the same layer (sensory layers, feature layers, task

layer, or motor layer) inhibit each other. This is computa-

tionally realized by the involvement of ‘paired units’. Each

of the inhibitory units receive activation from its excitatory

paired unit, and propagates inhibition (i.e., their ‘outgoing’

connections are negatively weighted) to all other excitatory

units within the same layer. Such inhibition is characterized

by non-linearity, i.e. inhibitory units propagate inhibition

when they approach a level of activation. This mechanism

ensures that within a layer only one unit becomes highly

active after a certain number of simulation cycles.

Inhi is computed using the following equation:

Inhi ¼
X

k

w�
k FðAkðtÞÞ ð6Þ

Here, k denotes the inhibitory units belonging to any other

unit than unit i in the layer, and w- are the negative con-

nection weights. The activation of inhibitory units is

updated in a similar fashion as the excitatory units, but

their input can only be excitatory from the associated

paired unit.

Connections

Weights between sensory coding units and feature coding

units reflect long term experience and are set by hand in

HiTEC. Weights of the connections between feature coding

units and task coding are also set by hand, closely fol-

lowing the task instruction. Only the weights from feature

coding units to motor coding units are learned using

Hebbian learning.1 Specifically, at the end of each learning

1 In HiTEC, action-effect learning internalizes the regularities in co-

occurrences of motor actions with their perceptual effects. In our view

this is most simply captured by a Hebb-like unsupervised learning

rule based on co-activation, in similar vein as in the models by Zorzi

and Umilta (1995) and Herbort and Butz (2012).
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trial, all weights are updated (synchronously) according to

the following set of equations:

wjkðt þ 1Þ ¼ ð1 � dwÞ � wjkðtÞ þ ActjðtÞ � ActkðtÞ
� 1 � wjkðtÞ
� �

ð7Þ

ActjðtÞ ¼
AjðtÞ � LT

1 � LT
if AjðtÞ[LT

ActjðtÞ ¼ 0 if AjðtÞ�LT

ActkðtÞ ¼
AkðtÞ � LT

1 � LT
if AkðtÞ[LT

ActkðtÞ ¼ 0 if AkðtÞ�LT

In these equations, wjk is the weight from feature coding

unit j to motor coding unit k, the dw weight decay rate

ensures that only repeated co-activations result in

stable weight learning, Actj(t) is a value based on the

activation of feature coding unit j, Actk(t) is a value based

on the activation of motor coding unit k, LT is the learning

threshold (above which the activation levels of both units

must be to engage in weight learning) and Aj(t) and Ak(-

t) are the actual activation levels at time t of feature coding

unit j and motor coding unit k, respectively. Note that we

rescale the activation of both units to their respective

proportion to the learning threshold and that the computed

connection weights are bound to vary between 0.0 and 1.0.

Also note that there are no weights from motor coding units

to feature coding units, so learning is one direction only.

The total number of codes (coding units) and connec-

tions varies with the specific instances of HiTEC used for

the different simulations. All parameters and weights

(when not learned) as used in the simulations are fixed

across all model instances. They are listed in the ‘‘Ap-

pendix’’. In general, higher decay rates make units decay

faster; lower decay rates keep units very active for a longer

period of time. Higher input values for external input and

stronger weights between units result in faster activation

propagation. Higher voltage thresholds make unit activa-

tion to a lesser extent enhanced by top down input; con-

versely, lower voltage thresholds lead to earlier and

stronger influence of top down modulation on unit activa-

tion. Stronger weights between excitatory and inhibitory

units strengthen the lateral inhibition mechanism. As a

result, they reduce the time required to settle the compe-

tition between the units within a shared layer, after which

only one unit remains strongly activated. Lower weights,

conversely, lengthen this time to convergence.

Parameters were thus chosen to enable feedforward

propagation of activation in the network to capture in an

idealized implementation neurally plausible properties of

temporal integration of signals and non-linear response

properties of excitatory and inhibitory neurons (Dehaene,

et al., 2003; Wilson & Cowan, 1972; Grossberg & Somers,

1991; Wang, 1999). The strength of voltage-dependent top-

down connections was chosen to enable their modulatory

action without causing spurious activations in the absence

of sensory input (Raffone & Pantani, 2010; Tononi, et al.,

1992). Taken together, such connection strength and tem-

poral integration and decay parameters were also chosen to

avoid the saturation of the activation level of the excitatory

units with feedforward input, so to enable sensitivity of

such activations to recurrent interactions involving multi-

ple units and top-down signals over time, in dynamic

balance with lateral (intra-layer) inhibitory interactions.

Note that our ambition for HiTEC has not been to search

for specific parameter values to optimally fit specific data

distributions. We rather set out to provide a proof of

principle as to how neurally inspired representations and

connectivity may realize stimulus–response translation

while addressing critical theoretical issues such as action

control, automaticity and coping with task context.

Simulating behavioral studies

To model a behavioral study or experimental paradigm in

HiTEC, a specific instance of the HiTEC model is con-

structed with layers, codes (coding units) and connections

that match the stimulus, response, and task characteristics

of the simulated experiment. Crucially, connections

between feature codes and task codes are set to reflect the

exact task instructions.

In each simulation there are two phases: first, action

effects are learned, reflecting the period in which the par-

ticipants get acquainted with the keypresses and their

effects, which is commonly part of behavioral experiments.

In this learning phase, we allow the model a set number of

learning trials (i.e., 20 learning trials, similar to the number

of learning trials in the various behavioral experiments) to

acquire the associations between feature codes and motor

codes. Note that when a motor code is executed, the

changes in the environment (i.e., its action effects) are

presented by supplying input to the sensory codes. Propa-

gating activation towards feature codes (i.e., for 50 cycles)

allows the model to subsequently learn the feature code–

motor code associations. Note that in behavioral experi-

ments the task context influences ideomotor learning. In

similar vein, in HiTEC, the task related representations and

connections are already in place during the learning phase.

This mere activity biases the learning process which results

in various behavioral phenomena as we will discuss in the

next section.

In the subsequent, experimental, phase the model is

presented with various stimuli by supplying input to

specific sensory coding units. Gradually, activation

spreads across all the involved coding units in the various

network layers. The trial is terminated at the selection of a
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motor response and the reaction time is determined based

on the number of cycles between stimulus onset and

response selection. This enables comparing simulated

reaction times with reaction times of human participants

in behavioral experiments, but the model also provides

insights into the dynamics of stimulus–response interac-

tions (Fig. 2).

Simulations

We simulated five key behavioral experiments on stimu-

lus–response processing using the HiTEC model. Taken

together, our five simulations demonstrate that HiTEC can

account for ideomotor learning (Elsner & Hommel, 2001),

response-effect compatibility (Kunde, Koch, & Hoffmann,

2004), stimulus–response and stimulus–stimulus compati-

bility, and the dependency of stimulus-responsive facts on

task intentions (Hommel, 1993). For each simulation we

discuss the specific results in the respective section and get

back to the general model behavior and the theoretical

implications in the Discussion.

Simulation 1: action–effect learning

Ideomotor theory assumes that action–effect acquisition

occurs on-the-fly and Elsner and Hommel (2001) were

indeed able to demonstrate that people learn action–effect

associations spontaneously. In their Experiment 1, partici-

pants responded to a visual cue stimulus by pressing a

randomly chosen left or right key. One keypress produced a

high tone and the other a low tone, which according to the

ideomotor principle should have induced bidirectional

associations between motor patterns and tone/pitch repre-

sentations. In the second phase, participants responded to

the tones that previously served as action effects by

pressing the same two keys, but now according to a specific

instruction (e.g., ‘when hearing a high tone, press the left

key’). In one (‘non-reversal’) group, the new instruction

heeded the learned relationship between tones and keys, so

that the tone that was previously produced by a particular

keypress was now signaling that keypress. In another

(‘reversal’) group, these relationships were reversed, so

that the tone that was previously produced by one keypress

was now signaling the other keypress.

If the tone-key combinations in the second phase mat-

ched the key-tone combinations from the first phase, par-

ticipants were faster than if the combinations did not

match. This suggests that in the first phase, the tones were

spontaneously associated with the keypresses that caused

them, and that the emerging associations were bidirec-

tional. Indeed, neuroscientific studies revealed that pre-

senting previously produced action effects activates the

corresponding action/motor representations (e.g., Melcher,

Weidema, Eenshuistra, Hommel, & Gruber, 2008).

To simulate Elsner and Hommel’s (2001) experiment,

we created an instance of the HiTEC model with sensory

codes for the registration of the visual cue, the auditory

pitch levels, and the haptically perceived locations of the

keys, with feature codes for the square shape, the pitch

levels, the locations, and the ‘Sound’ and ‘Key’ in general,2

and with motor codes for the two keypressing actions, as

illustrated in Fig. 3. Simulation of the study occurred in

two distinct phases: the learning phase and the experi-

mental phase.

During the learning phase motor patterns ‘M1’ and ‘M2’

were activated alternately and their respective action

effects were presented to the model. As a result, associa-

tions were learned between the motor codes and the active

feature codes.

Figure 4a shows a learning trial in which the motor code

‘M1’ was activated. This activation led to the simultaneous

perception of both a keypress and an auditory tone,

resulting in a relatively strong activation of some of the

feature codes, including ‘Left’ and ‘Low’. The regularity in

combinations of motor actions and their perceivable effects

resulted in systematic co-activation of specific motor codes

and feature codes. As a consequence, specific motor code–

feature code connections were strengthened over time, as is

illustrated by Fig. 4b.

In the second phase, we let the model instance respond

to auditory stimuli with high or low pitch. Note that the

change of task (i.e., ‘press a random key’ vs. ‘respond

selectively to auditory tones’) was reflected in the change

in connections between feature codes and task codes only

as illustrated in Fig. 5. The remainder of the model was

kept unchanged, most notably the just learned associations

between feature codes and motor codes. For this second

phase, two copy instances of the model were to respond to

stimuli according to two different instructions: the ‘non-

reversal’ model instance copy was to respond to the

learning-compatible stimuli (i.e., what had been the effect

on an action now became the stimulus signaling this

action), whereas the ‘reversal’ model instance was to

respond to auditory tones with responses that previously

produced the alternative tone.

In this second phase, in both model instances, stimulus

tones were presented by stimulating auditory sensory

codes. Activation subsequently flowed from these sensory

codes towards ‘Pitch’ feature codes, task codes and to the

‘Location’ feature codes and the ‘Key’ feature code. Also,

activation flowed through the learned associations towards

2 For the sake of simplicity, these feature codes are taken to represent

all object characteristics that are not represented by other, specific

feature codes, such as its color or location.
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the motor codes. Depending on the stimulus tone, either

one or the other motor code reached the response threshold

and simulation was terminated. In both conditions, acti-

vation flowed from pitch feature codes to task codes to

location feature codes, in accord with the task instruction.

Simultaneously, however, activation also flowed directly

from pitch feature codes to motor codes, along the just

acquired action–effect connections. Now, crucially, in the

‘non-reversal’ condition, these connections facilitated

processing, whereas these same connections caused inter-

ference in the ‘reversal’ condition. As a consequence, in

line with the behavioral findings of Elsner and Hommel
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Fig. 2 An illustration of the

model dynamics: stimulus-

induced activation propagates

from sensory to feature codes,

involving task and motor codes.

The figure shows incongruent

trial in the Simon task (see

below for more details). The

high-pitched, right stimulus tone

feeds into the sensory codes

‘Auditory high’ and ‘Auditory

right’ and activation propagates

towards feature codes. Due to

prior action–effect learning,

feature code ‘Right’ eventually

propagates activation to motor

code ‘M2’, while activation also

propagates from the ‘High’

feature code towards the task

codes, resulting in a more

strongly activated ‘T1’ and less

strongly activated ‘T2’. ‘T1’

further propagates activation

towards feature code ‘Left’,

whose activation level

eventually exceeds the level of

‘Right’. At the same time

activation propagates from

‘Right’ to the associated motor

code ‘M1’, which eventually

exceeds the activation level of

‘M2’ and reaches the response

threshold. At that point, feature

codes ‘Left’ and ‘Key’ are also

highly activated. Note that these

feature codes resemble the

action effect of the produced

response
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(2001) the model instance in the non-reversal condition

reached the response threshold (29.3 cycles on average)

faster3 than the instance in the reversal condition (38.5

cycles on average). This simulation demonstrates how

HiTECs representations and basic processing principles

readily give rise to the observed empirical results demon-

strated by Elsner and Hommel (2001).

Simulation 2: action planning

The observations of Elsner and Hommel (2001) confirm the

claim from ideomotor theory that action–effect associations

are automatically acquired as demonstrated in Simulation 1.

However, this does not yet speak to the further-reaching

claim of ideomotor theory that action effects play an

important role in the planning of intentional actions. Evi-

dence supporting that claim was provided by Kunde, et al.

(2004), who showed that choice performance is affected by

Task Level

Sensory Level

Haptic

Feature Level

Motor Level

Location

Left Right

Auditory

Pitch

Low High

Visual

Shape

Square

Motor Codes

M1 M2

Shape

Square

Pitch

Low High

Other

Sound Key

T1

Location

Left Right

Fig. 3 Specific HiTEC model instance for learning trials in Simu-

lation 1. Connections (dashed lines) between feature codes and motor

codes were learned. Note that in principle any feature code can be

connected to any motor code. However, only some of these possible

connections actually become (strongly) weighted as a result of the

perceived regularities in action effects
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Fig. 4 Code activation and connection weight time courses in

learning trials of Simulation 1. a Activation of feature codes during

learning trials as a consequence of perceiving the action effects of the

activated motor code. b Connections between motor codes and feature

codes got gradually stronger over multiple learning trials. Note that

feature codes ‘Key’ and ‘Sound’ are omitted from both figures for the

sake of clarity

3 t(38) = 53.42, p\ 0.001.
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the compatibility between haptic action effects of the

responses proper and novel (auditory) action effects. In their

experiment, for one group of participants, responses were

followed by a compatible action effect; the loudness of the

tone matched the response force (e.g., a loud tone appeared

after a forceful key press). In the other group of participants

the relationship between actions and action effects was

incompatible (e.g., a soft tone appeared after a forceful key

press). In both groups, subjects had to respond to a visual

cue stimulus by pressing the key softly or forcefully. It was

found that the group with action-compatible action effects

was faster on average than the group with incompatible

action effects. Given that the tones did not appear before the

responses were executed, this observation suggests that the

novel, just acquired action effects were anticipated and

considered in the response-selection process.

This effect of response-effect compatibility was simu-

lated in HiTEC. As shown in Fig. 6, the model instance

contained sensory codes for the visual colors, auditory

intensities and haptic intensities. Motor codes ‘M1’ and

‘M2’ represented forceful and soft keypresses, respectively.

Importantly, to the model these motor codes were not

intrinsically forceful or soft but were associated with (and

acquired their meaning from) these perceptual character-

istics only through learning.

In the HiTEC simulation, this learning was modeled

explicitly during a brief learning phase. In this learning

phase, motor codes were activated alternately and the

model was presented with the appropriate action effects

(i.e., haptic intensity and auditory intensity). Crucially, two

copy instances of the model received two different action

effects, in accord with the two groups in the empirical

study: one instance received consistent action effects (e.g.,

a forceful keypress with a loud tone); the other instance

received inconsistent action effects (e.g., a forceful key-

press with a soft tone). As a consequence, in the model

instance in the consistent condition, the active auditory and

haptic sensory codes activated the same intensity feature

code every time an action effect was presented. This

resulted in steady weight increase of motor code–intensity

feature code associations. Conversely, in the inconsistent

condition, the active auditory and haptic sensory codes

activated different intensity feature codes every time an

action effect was presented. Indeed, a forceful keypress

would coincide with a soft tone; and a weak keypress with

a loud tone. This resulted in only a mild weight increase of

motor code–intensity feature code associations. More

specifically, because the task instruction includes pressing

keys, the key feature code was connected to the task codes

(as depicted in Fig. 6), and because the key feature code
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Fig. 5 Specific HiTEC model for experimental trials in Simulation 1. Note that only the feature code–task code connections were adapted as

compared to Fig. 3, reflecting a new task instruction with the same model instance
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was connected to the haptic sensory codes, these haptic

sensory codes, when activated, automatically received

voltage dependent input from the key feature code. This

made them slightly more active than the auditory intensity

sensory codes which did not receive such enhancement. As

a result the intensity feature code that was activated by the

haptic sensory code was also slightly more active than the

intensity feature code that was activated by the auditory

intensity sensory code, during action–effect learning. As

this was the case for every action–effect learning trial, the

haptic intensity became the major determinant in the

weight learning of connections between ‘Intensity’ feature

codes and the motor codes. In more general terms, since the

task instruction was already internalized before presenting

the learning trials, it biased the learning of connections

between feature codes and motor codes. Note that in the

simulations discussed in the current work we allow a fixed

number of 20 trials of action–effect learning, similar to the

number of learning trials in the various behavioral exper-

iments. This, however, does not mean that compatibility

effects would vanish when the model would be given

unlimited number of trials. As shown in Fig. 4b, the

weights stabilize after a number of trials due to the decay

rate in weight learning. Moreover, action–effect learning

does not depend on imperative stimuli: motor codes are

activated and resulting action effects are presented to the

model enabling action–effect learning (cf., Herbort & Butz,

2012).

During the actual experimental trials, visual stimuli

were presented. This resulted in activation propagation

from the visual stimulus codes to the color feature codes to

the task codes towards the intensity feature codes and

finally the motor codes. Crucially, responding to stimuli

required the model to propagate activation along the just

acquired intensity feature code–motor code connections.

Because the strength of these connections differed for the

two different conditions, as a result of task-modulated

action–effect learning described above, the model instances

differed in their simulated response time. The ‘consistent’

model instance responded faster4 (24.0 cycles on average)

than the inconsistent model instance (26.0 cycles on

average), in line with the empirical data obtained by

Kunde, et al. (2004). This simulation demonstrates how

HiTEC uses acquired action–effect connections to plan

actions and, therefore, shows response-effect compatibility

effects. In the current simulation the model is required to

respond to stimuli: visual stimuli are presented to the
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Fig. 6 Specific HiTEC model instance for Simulation 2, including feature codes for all stimulus and response features

4 t(38) = 39.00, p\ 0.001. Since we opted for fixed parameters and

weights (when not learned) across instances, the model’s dynamics

are slightly different due to the varying number of codes and

connections between the instances. In Simulation 2 this results in a

rather small effect size.
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stimuli and the model activates action effects that are

associated with the motor codes. It is conceivable, how-

ever, that in a free-choice task (e.g., Pfister & Kunde, 2013)

the model would also produce a ‘response’ by anticipating

action effects. Varying consistency within action–effect

associations would then also lead to compatibility effects,

as the (in)consistency does not depend on the stimulus but

on the ‘internal’ consistency within the action effect (see

Pfirster & Kunde, 2013 for a discussion on interpretations

in terms of response-effect or effect-effect consistency).

Simulation 3: Simon effect

A key finding for understanding the interaction between

perception and action is the Simon effect. Simon and

Rudell (1967) showed that people respond faster to stimuli

if the location of the stimulus is compatible with (corre-

sponds to) the response location, even when stimulus

location is not task relevant. In the standard Simon task,

stimuli with a non-spatial stimulus feature (e.g., auditory

pitch) are presented at different locations (e.g., left or

right). Participants are instructed to respond to the non-

spatial feature by giving a spatially defined response (e.g.,

pressing a left or right key). Even though the location of the

stimulus is not relevant for this task, performance is

facilitated when the chosen response corresponds spatially

to the stimulus location.

The Simon effect was modeled in HiTEC, as shown in

Fig. 7, using sensory codes for auditory pitch, auditory

locations and haptic locations, feature codes for pitch,

location and for ‘Key’ and finally two motor codes, ‘M1’

and ‘M2’, representing pressing the left and the right key.

During the learning phase, ‘M1’ and ‘M2’ were activated

alternately and their respective action effects were pre-

sented to the model. As a result, associations were learned

selectively between the motor codes and the ‘Left’ and

‘Right’ feature codes.

In the experimental trials, tones were presented and

responded to by propagating activation from sensory codes

to pitch feature codes to task codes and to location feature

codes and finally motor codes. Crucially, the ‘Left’ and

‘Right’ feature codes were also activated when the tone

stimulus was presented on the left or right yielding dif-

ferent dynamics when the tone location coincided (com-

patible trial) with the key location of the anticipated

response than when the tone was on the opposite side (non-

compatible trial) as illustrated in Fig. 8.

Essentially, in the compatible condition, the stimulus

location already activated the ‘correct’ spatial feature code

and thereby sped up response selection. Conversely, in the
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Fig. 7 Specific HiTEC model instance for Simulation 3, including feature codes for stimulus pitch and location. Note that location feature codes

were used for encoding both stimulus location and response location
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incompatible condition, stimulus location activated the

‘wrong’ spatial feature code, which also already activated

the ‘wrong’ motor code. Meanwhile, however, the stimulus

pitch was translated—through the task codes—into the

correct spatial feature codes and the correct motor code.

This latter pathway overcame the head start due to the

overlap-pathway, but the code overlap did slow down the

overall translation as reflected in the results. In the com-

patible condition the HiTEC model was faster5 (19 cycles

on average) than in the non-compatible condition (38.5

cycles on average) with the neutral condition falling in

between (24.5 cycles on average), which is in line with the

empirical findings by Simon and Rudell (1967). This

simulation demonstrates that implementing a Simon task in

HiTEC using common feature codes for stimuli and

responses automatically yields the observed compatibility

effect.

Simulation 4: Stroop effect

As we do not differentiate between perceptual and action

stages, one could argue that stimulus–response compati-

bility and stimulus–stimulus compatibility would need to

work similarly in HiTEC. Stroop (1935) showed that if

people are instructed to name the ink color of color words,

they are slower if the word (e.g., ‘‘blue’’) appears in an

incompatible ink color (e.g., red). This compatibility effect

is dramatically reduced if non-verbal responses are

required (MacLeod, 1991), suggesting that the task-irrele-

vant words interfere (at least partly) with verbally naming

the colors. Note that this interpretation of the Stroop effect

bears a strong resemblance to the Simon effect as the effect

is now attributed to incompatibility between a stimulus

feature (ink color) and a response feature (verbal sound)

(Fig. 9).

In HiTEC the Stroop effect is simulated along the

same lines as the Simon effect in Simulation 3. In

similar vein, during the learning trials, the model alter-

nately executed ‘M1’ and ‘M2’, reflecting the ‘physical’

pronunciation of the respective words. The model was

subsequently presented with the auditory feedback (i.e.,

reflecting the perception of this pronunciation) and

associations were learned between motor codes and

feature codes. During experimental trials, naming ink

color of compatible color words benefitted from facili-

tation whereas naming the color of incompatible color

words suffered from interference. Indeed, responses were

faster6 in the compatible condition (19 cycles on aver-

age) and slower (38.5 cycles on average) in the incom-

patible condition, with the neutral condition falling in

between (24.5 cycles on average). This simulation

demonstrates that by treating stimulus features and

response features similarly, some cases of stimulus-

stimulus compatibility may be accounted for using the

exact same logic (and processing principles) as for

stimulus–response compatibility. In HiTEC, this results

in identical simulations.

Simulation 5: inverting the Simon effect

Hommel (1993) demonstrated that the Simon effect as

described in Simulation 3 can be ‘inverted’ by changing

the task instruction only. In this study participants

responded with left or right keypresses to the high vs. low

pitch of tones which were presented left or right. When a

key was pressed a flash light was presented on the

opposite side of the keypress. One group was instructed to

‘‘press the left/right key’’ in response to the low/high

pitch of the tone, whereas another group was instructed to

‘‘flash the right/left light’’ in response to the low/high

pitch. In other words, all participants carried out exactly
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Fig. 8 Time courses of feature code and motor code activations in

the experimental trials of Simulation 3. a Activations during a

compatible trial. Here ‘M1’ reached response threshold in 19 cycles.

b Dynamics in a non-compatible trial. Here ‘M1’ reached threshold in

41 cycles. Note that activations of other feature codes, task codes and

sensory codes are omitted for sake of clarity

5 F(2,56) = 11,230.03, p\ 0.001. 6 F(2,56) = 11,230.03, p\ 0.001.
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the same movements in response to the same stimuli, but

one group did that ‘‘in order to press the keys’’ while the

other did it ‘‘in order to flash the lights’’. This seemingly

minor manipulation had a major impact on the Simon

effect. Whereas the Key group showed a standard Simon

effect with faster responses for spatial correspondence

between tones and keys, the Light group showed the

opposite effect: faster responses for spatial correspon-

dence between tones and lights. This observation

demonstrates the crucial role of task instruction in stim-

ulus and response coding and, more generally, in per-

ception and action planning.

The empirical study was simulated in HiTEC using

two instances of the model. One instance was configured

according to the Key instruction, the other to the Light

instruction. The latter condition is depicted in Fig. 10.

Note that the difference in task instructions was reflected

in the task connections alone. Crucially, in the ‘Key’

model instance the mere connections between ‘Key’ and

the task codes enhanced the processing of haptic loca-

tions. In contrast, in the ‘Light’ model instance, the

connections between ‘Light’ and the task codes enhanced

visual locations. This specific wiring biased the action–

effect learning and the direction of the compatibility

effect during subsequent experimental trials. The results7

are illustrated in Fig. 11. Here, the ‘Key’ model instance

showed fastest responses in the congruent stimulus-key

condition (21.5 cycles on average), intermediate response

time in the neutral condition (25.7 cycles on average), and

slowest responses in the incongruent stimulus-key condi-

tion (39.4 cycles on average). In contrast, for the ‘Light’

model instance these results were inverted: fastest

responses in the incongruent stimulus-key condition (21.0

cycles on average), intermediate response time in the

neutral condition (25.7 cycles on average), and slowest

responses in the congruent stimulus-key condition (38.3

cycles on average). Together these results yield a pattern

similar to the empirical findings reported by Hommel

(1993). Note that in the behavioral study additional fac-

tors were at play that further influenced the results

yielding a non-symmetrical pattern. These factors include
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Fig. 9 Specific HiTEC model instance for Simulation 4, including

feature codes for stimulus colors and words. Crucially, word feature

codes were used for encoding both stimuli (i.e., the color words) and

responses (i.e., the words to name the ink color). Connections

between word feature codes and motor codes were learned during

learning trials (i.e., pronouncing the words). Note that this model

structure is in essence identical to the structure of the model used for

Simulation 3

7 Analysis of variance shows a significant interaction effect between

‘Key’ vs ‘Light’ and stimulus-key congruency on response time

(F(2,114) = 489.17, p\ 0.001). Specific analysis of Key model trials

shows a significant main effect for stimulus-key congruency

(F(2,57) = 165.93, p\ 0.001). Also, the specific analysis of Light

model trials shows a significant main effect for stimulus-key

congruency (F(2,57) = 767.62, p\ 0.001).
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possible individual problems with an unfamiliar instruc-

tion, but more importantly another difference between key

and light conditions: in the key condition not only the

goal (key location) was compatible or incompatible with

the stimulus, but also the anatomical location (i.e., hand).

In the light condition, only the goal (light location) was

compatible or incompatible with the stimulus. This may

have led to different patterns in both reaction times and

error rates (see Hommel, 1993 for a detailed discussion).

The notion of anatomical location is not modeled in the

current simulation, hence to the model the key and light

conditions are completely symmetrical whereas this is not

the case for human participants. Overall, this simulation

demonstrates that the basic principles of HiTEC allow a

task to be implemented in a way that stimuli and

responses are encoded flexibly and even ‘automatic’

aspects of stimulus–response translation can be modulated

by the task.
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Fig. 10 Specific HiTEC model instance for Simulation 5. Shown is the model instance for the Light condition. The Key condition differed only

in the connections from ‘T1’ and ‘T2’ to ‘Key’ instead of ‘Light’. Connections between feature codes and motor codes (dashed) are learned
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Discussion

In HiTEC the link between perception and action involves

representations on multiple levels in a connectionist net-

work, through the interplay of feedforward and feedback

connections. Stimuli are presented by feeding external

input to sensory codes. Responses are considered to exe-

cute when a motor code reaches the activation threshold.

Stimuli are translated into responses via an interactive

process in the network, with gradual feedforward and

feedback propagation of activation in it. Rather than a

sequential stepwise process from sensory codes through

intermediate representations to response codes, all repre-

sentations at all levels cooperate and compete and together

converge to a response outcome. Crucially, representations

at higher levels modulate representations at lower levels.

This allows both for direct interaction between perception

and action representations and modulation by the task

context. Although the rather simple HiTEC model is not

intended as a detailed neuroscientific model, it might be

worth noting that its components, as well as their con-

nectivity, do map in a gross way onto specific neural sys-

tems. The network architecture follows the same general

form as more neurobiologically oriented models of visual

attention and object selection do (e.g., Deco & Rolls,

2004).

More specifically, our approach is in line with the inte-

grated competition hypothesis (Duncan, Humphreys, &

Ward, 1997). This hypothesis proposes that visual attention

results from competition in multiple brain systems and rests on

the three following principles. First, different objects are

considered to compete for activation within multiple brain

systems. Second, although this competition takes place in

multiple brain systems, it is integrated between these systems

in such a way that units responding to the same object in

different brain systems support each other’s activity, whereas

units responding to different objects compete. Finally, com-

petition is considered to be directed on the basis of relevant

object properties based on the current task demands. Duncan,

et al. (1997) suggest top-down neural priming as a possible

control mechanism. HiTEC could be considered both a gen-

eralization and specification of this hypothesis. Due to the

common coding nature of feature codes, not only visual

attention but also action anticipation (and thus action control)

are considered to compete for activation, hence generalizing

the scope of the integrated competition account. HiTEC fur-

ther specifies a possible method of directing this competition

using task set connections rather than priming. Moreover,

HiTEC explicitly addresses how the task instruction could

implement such a task set and how task instruction could

influence both perception and action planning.

Our notion of interactive processing with mutual influ-

ences among multiple subsystems is shared by the early

selective action model of Ward (1999), who proposes that

action plans may bias selective perceptual processing

towards relevant objects (see Hommel, 2010). Like in

HiTEC, selected representations receive external input and

activation gradually spreads among various units coding

through the reciprocal connections converging to a selected

object and action. Task context is encoded by priming the

units that represent the task-relevant object and/or action

feature, which biases the competition between representa-

tions accordingly. Like HiTEC, and unlike most other

perception–action models, the selective action model can

thus account for effects of action planning on perception

and attention (e.g., Wykowska, Schubö, & Hommel, 2009).

The most important difference between Ward’s (1999)

model and HiTEC concerns the model architecture: Given

the emphasis on reaching and grasping, Ward distinguishes

explicitly between a ventral ‘what’ and a dorsal ‘where’

pathway (Milner & Goodale, 1995). While this distinction

can (and eventually should) be integrated with HiTEC

(Hommel, 2010), TEC and HiTEC are mainly concerned

with the ‘‘ventral’’ branch of this processing structure,

hence, with perception–action interactions at a common

coding level of feature representations. Another major

difference between the models refers to how a task is

internalized. In Ward’s model, a single task rule (e.g., ‘grab

the red object’) is set by supplying additional external input

to a selection of codes (e.g., ‘red’ and ‘grab’) which then

biases the processing of the stimulus input. That is, stim-

ulus presentation and task instruction occur simultaneously

and use the same mechanism of applying external input. In

HiTEC, task context is internalized instead by intercon-

necting feature codes and generic task codes based on the

task instruction. Then, these connections automatically

modulate the propagation of activation resulting from

stimulus presentation. Crucially, this allows HiTEC to

internalize multiple task rules at the same time that com-

pete during subsequent stimulus–response translation

effectively allowing for (minimalistic) decision making,

whereas Ward’s model is focused on executing one specific

task (e.g., ‘grab the red object’) at a time depending on the

codes that receive additional input bias during stimulus

processing. Indeed, Ward states that these external inputs

are meant to result from decisions that are made outside the

scope of this model, which is much in line with Cohen,

et al. (1990). The Ward model, however, does allow for

selective attention for targets among distractors in the

stimulus display, an aspect of attention that HiTEC cur-

rently lacks. Finally, although Ward, in accord with our

approach, aimed at addressing the interaction between
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perception and action, his model assumes the implications

for action of a given object by fixed connections between

given object features (e.g., vertical object orientation) and

given, rather specific, actions (e.g., vertical grasp). This

connection between perception and action planning is

addressed more generically and more explicitly in HiTEC

using the notion of common codes and ideomotor learning.

Accordingly, although HiTEC shares some core

assumptions with the Selective Action Model, we consider

the former as much broader than the latter, which also

holds for the recent extension of the selective action model

by Botvinick, Buxbaum, Bylsma, and Jax (2009). More-

over, none of these two versions of the selective action

model addresses empirical findings of automaticity (i.e.,

stimulus–response compatibility), which is a major draw-

back for models targeting the interaction between percep-

tion and action. Let us now turn to the three major

questions that have guided our study: how can actions

acquire situation-specific meanings, how does automatic

stimulus–response translation emerge, and how does task

context modulate stimulus–response processing?

Meaning of action

Action control in HiTEC is based on the ideomotor prin-

ciple, which addresses both the acquisition of action–effect

associations and the use of these associations in action

planning. Simulation 1 addresses how novel action-con-

tingent perceivable effects are (spontaneously) associated

to the actions that yield these effects. Simulation 2

demonstrates how the (internal) consistency of these

effects influences the representations of these effects. As

action–effect learning depends on the activation of both

motor codes and feature codes, the consistency of feature

code activation has consequences for the resulting associ-

ation strengths. And because these associations have a

crucial role in planning actions in response to stimuli,

subsequent stimulus–response translation is influenced by

the strengths of these associations. As a result, action

planning takes the contextual meaning (e.g., consistency

among action effect features) of motor actions into account

as represented in the acquired action–effect associations.

Importantly, Simulation 1 demonstrates that in HiTEC

novel action effects become (at the distal level) associated

to motor codes. The connection between sensory and fea-

ture code is the result of (earlier) grounding processes; the

connection between motor code and feature code results

from action–effect learning as demonstrated in both sim-

ulations. That is, execution of a motor code results in

changes in the environment that are ‘picked up’ by sensory

codes and distally represented by feature codes. Multiple

encounters of this sensorimotor co-occurrence is consid-

ered to strengthen the connection between motor codes and

feature codes. Moreover, different sensory codes may

activate the same feature code. This is the case in Simu-

lation 2 where both auditory and haptic sensory codes

project to the same distal feature codes that code for ‘in-

tensity’. Consistent action effects activate these feature

codes more strongly and, therefore, lead to stronger action–

effect associations as compared to inconsistent action

effects, as suggested by the findings of Kunde and col-

leagues addressed in Simulation 2. Crucially, in the HiTEC

simulation of this experiment, the auditory and haptic

sensory codes receive equal external stimulation upon

perceiving the action effect. It is due to the top down

modulation of the task-feature connections with the ‘key’

code that the haptic sensations are enhanced and thus play a

dominant role in representing the action effect as compared

to the auditory sensations. It is this task set modulation of

action effect representation (and its influence on action–

effect learning and subsequent stimulus–response transla-

tion) that creates situation-specific meanings of actions.

Note that this flexibility is only possible because of the

distinction that HiTEC makes between motor codes (which

are unaffected by task set) and action–effect codes (which

are affected by task set). To appreciate this point, consider

the study by Wallace (1971). In one of his conditions, the

participant’s left and right hands were held in parallel (i.e.,

placed on the spatially corresponding left and right keys)

but they were crossed in another condition. In both con-

ditions, left stimuli facilitated responses with the left key

and right stimuli facilitated responses with the right key,

irrespective of which hand was used to operate the key. In

other words, what mattered for stimulus–response com-

patibility was the spatial relationship between stimuli and

hand locations, but not the relationship between stimuli and

particular hands. Considering that the motor program

driving the keypress response of a particular hand is largely

the same whether the hand is located on the left or right

side of one’s body, it is impossible to model such a finding

with a model that connects stimulus to motor codes—as the

compatibility model suggested by Zorzi and Umilta (1995)

and Kornblum, et al. (1990, 1999). Rather, stimulus codes

must be related to some abstract action code that can be

flexibly related to particular motor outputs (Wallace,

1971), exactly as suggested by HiTEC. It is this action or

action–effect code, rather than motor codes, that intentional

agents use to control their intentional actions—by ‘‘antic-

ipating the intended action effects’’, as ideomotor theory

suggests. Given that they anticipate only the intended parts

of all the action effects that a given action has been learned

to produce, ideomotor action control can be considered to
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be a process comprising of attentional selection. If, for

instance, a particular motor program (like pressing a key) is

carried out by one’s right-hand located on the left side, the

corresponding motor code is associated with both a ‘‘Left’’

code representing the hand’s location and a ‘‘Right’’ code

representing its anatomical identity. What matters in the

task like that used by Wallace (1971) is the location, agents

would ‘‘attend’’ and ‘‘intentionally weigh’’ the ‘‘Left’’ code

more/higher than the ‘‘Right’’ code, which effectively

renders the action ‘‘Left’’—a situation-specific meaning.

This first version of HiTEC considers action–effect

learning as a rather reactive/passive process. Interestingly,

the basic principle of picking up sensorimotor (or action-

perception) contingencies is consistent with the sensori-

motor theory of O’Regan and Noë (2001). In their

approach, perceiving is a way of acting, actively exploring

the environment rather than merely registering and repre-

senting the outside world, so that the process of active

seeing (which includes the movement of body, head, and

eyes) is directly producing the very changes that are picked

up by visual receptors. The active perceiver/actor, so

O’Regan and Noë argue, would need to learn how his/her

own actions influence perceptions (sensorimotor contin-

gencies) and perceiving the world builds on this knowl-

edge. Although HiTEC does not model learning such

contingencies per se, it does share the idea of acquiring

grounded representations of sensorimotor regularities in

interactions with the world and using those representations

both for perception (as suggested in the sensorimotor the-

ory) and actions, which indeed lead to perception, both in

the sensorimotor account and in HiTEC.

One possibility to endow HiTEC with the more active

learning strategy that O’Regan and Noë suggest is by

means of action monitoring. The anticipated action effects

are a trigger for action selection, but also form an expec-

tation of the perceptual outcome of the action. Differences

between this expectation and reality lead to adjusting the

action on a lower sensorimotor level than is currently

modeled in HiTEC. What matters now, is that the feature

codes are interacting with the sensory codes, making sure

that the generated perception is within the set parameters,

as determined by the expected action outcome. If this is not

(well enough) the case, the action should be adjusted.

However, when a discrepancy of this expectation drasti-

cally exceeds ‘adjustment thresholds’, it may actually

trigger action effect learning (phase 1). Apparently, the

action–effect associations were unable to deliver an apt

expectation of the actual outcome. Thus, anticipating the

desired outcome falsely led to the execution of this action.

This may trigger the system to modify these associations,

so that the motor codes become associated with the correct

action effect features. Such a monitoring system could

work along the lines of (Botvinick, Braver, Barch, Carter,

& Cohen, 2001). The experience of response conflict and/

or of negative feedback might strengthen the activation

state of goal codes and their impact on stimulus–response

processing, which would tend to prevent errors in the future

(van Steenbergen, Band, & Hommel, 2009).

Furthermore, anticipation based action control (see also

Butz & Pezzulo, 2008; Haazebroek & Hommel, 2009) is

consistent with basic concepts in research on human

motor control (e.g., Wolpert & Ghahramani, 2000). Here,

the motor system is considered to form a loop in which

motor commands lead to muscle contractions which cause

sensory feedback, which in turn influences future motor

commands. Neural circuits are considered to form internal

models that control motor action: forward models are

considered to model the causal relationship between

actions and their consequences and inverse models

determine the motor command required to achieve the

desired outcome. These concepts clearly resonate with the

role of action–effect associations in the HiTEC model.

Also, our approach is much in line with the work by

Herbort and Butz (2012) who used a computational model

to test action–effect learning in a similar way. Their

model consists of action codes and effect codes only, and

their simulations focused on various conditions of actions

and effects (e.g., number of actions and effects, noise in

effect representations, actions executed in parallel, dif-

ferent actions with the same effects, sequences of actions

et cetera). In contrast, HiTEC also addresses stimulus

perception and how stimulus perception and action plan-

ning using common codes may result in compatibility

effects.

Automaticity

Phenomena of stimulus–response compatibility are com-

monly considered to reflect the parallel processing of task-

relevant information (such as color in a Stroop task) and

task-irrelevant information (such as word meaning in a

Stroop task). Accordingly, models of such phenomena

distinguish between an intentional route, which processes

instructed, task-relevant information, and an automatic

route, which processes irrelevant information (e.g., Cohen,

et al., 1990; Kornblum, et al., 1990, 1999; Zorzi & Umilta,

1995). The degree to which automatic processing occurs is

assumed to depend on the strength of associations between

stimulus and response codes, which either is assumed as a

not further explained given (Kornblum, et al., 1990, 1999;

Zorzi & Umilta, 1995) or attributed to stimulus–response

learning.
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HiTEC can also be construed as a dual-route model that

processes relevant and irrelevant information in parallel,

and the degree to which that occurs also depends on

learning. And yet, the logic underlying the processing of

irrelevant information is different and the degree to which

that occurs is entirely independent of stimulus–response

learning. First, ‘‘automatic’’ processing of actually task-

irrelevant information occurs if and because there is feature

overlap between stimulus and response representations.

Although some other models have considered feature

overlap as an important criterion (Kornblum, et al.,

1990, 1999), they have failed to explain how this overlap

translates into automatic processing—they simply assume

that it does.

HiTEC provides a straightforward theoretical reason: if

the stimulus event feature-overlaps with an action event,

their representations are partially identical, which means

that activating one necessarily activates the other to some

degree. Second, the intentional-weighting principle of TEC

and HiTEC implies that feature overlap can render task-

irrelevant feature dimensions task-relevant. Take the

Simon task: the emphasis of task instructions on response

location will induce the intentional weighting of the loca-

tion dimension. Given that HiTEC does not distinguish

between stimulus location and response location, this

means that increasing the weight of the response-location

dimension necessarily implies higher weights on stimulus

location. Accordingly, HiTEC considers automaticity a

byproduct of intentional task preparation (Hommel, 2000).

Note that this automaticity does not rely on stimulus–re-

sponse learning (and can thus occur for entirely novel

stimulus–response combinations) but on action–effect

learning, through which actions acquire their features.

This logic is illustrated in Simulation 3, where stimulus–

response compatibility/automaticity follows from the fact

that responses are coded in terms of their spatial perceptual

consequences, due to ideomotor learning. In similar vein,

in Simulation 4, the task-irrelevant word feature only has

influence because the response is coded in terms of these

features (a result from action–effect learning). If the

response would not be verbally defined (e.g., but in terms

of key presses, which in HiTEC would be spatially repre-

sented) the compatibility effect is indeed dramatically

reduced or eliminated, especially in tasks preventing

internal naming (MacLeod, 1991).

Task demands

In line with TECs general ‘intentional weighting’ principle

(Memelink & Hommel, 2013), HiTEC explicitly addresses

how task instructions are implemented in terms of

representations and connections, and how they affect sub-

sequent processing. The model is initially as task ignorant

as humans are, until it ‘receives the task instruction’. A task

instruction is implemented by connecting feature codes and

task codes following the actual task rules in terms of

stimulus features and response (i.e., action effect) features.

Here, we hypothesize that feature codes can be accessed by

means of verbal labels and that receiving a task instruction

can activate these feature codes and connect them to gen-

eric task codes (i.e., some sort of internal simulation of the

translation from stimulus features to response features).

This allows the task instruction to be readily internalized as

connections from feature codes to task codes to feature

codes. As an example, the instruction ‘‘when you hear a

high tone, press the left key’’ (taken from Simulation 5)

would be implemented as connections from ‘High’ to ‘T1’

and from ‘T1’ to ‘Left’ and ‘Key’. These connections

subsequently enable the model to produce stimulus–re-

sponse translations in accordance with task demands. Note

that apart from this instruction-based wiring we do not

assume any other type of task-specific addition to the

model (i.e., no additional ‘task inputs’ or biases during

stimulus–response translation as is the case in the model of

Cohen, et al., 1990).

These feature code–task code connections have two

main consequences for subsequent processing: (1) they

propagate activation from stimulus features towards

response features that in turn excite motor codes and (2)

they top down modulate lower level processing due to their

recurrent nature. Arguably, this essentially constitutes ‘at-

tention’: sensory codes that are connected to feature codes

are enhanced, sensory codes that are not connected (i.e.,

stimulated by ‘the other’ elements in the scene) are not

enhanced. Moreover, relative higher activation of feature

codes also results in relative stronger enhancement of

sensory codes. This enhancement of lower level represen-

tations is crucial both in stimulus–response translation (i.e.,

responding to a stimulus is an integrated process) and

during action–effect learning where it focuses attention on

the relevant action effect features.

Moreover, as stimuli and responses are both defined in

terms of common feature codes, it could happen that a

response feature code included in the task set may be

activated by a sensory code due to perceiving a (albeit task-

irrelevant) stimulus feature (automatic task cuing). In that

case the feature code would receive both exogenous exci-

tation directly originating from a sensory code due to

stimulus perception and endogenous excitation originating

from response planning. Note that the latter form of exci-

tation indirectly also originates from the stimulus but is

mediated by the task set. As a result, response planning
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may be facilitated or hampered due to interaction between

these pathways, yielding stimulus–response compatibility

(SRC) effects.

Crucially, these effects depend on both stimulus and

response coding. In HiTEC, responses are coded in terms

of their perceptual effects. During the action–effect learn-

ing phase, associations are strengthened between motor

codes and feature codes. The strengths of these associations

depend on the co-activation of these motor codes and

feature codes, which depends on both external stimulation

(not explicitly modeled in current simulations, all sensory

codes receive the same external input when excited) and

top down modulation (i.e., connectivity between sensory

codes, feature codes and task codes). Thus, as stated above,

the task set not only determines actual stimulus–response

translation (both controlled and automatic), it also influ-

ences how responses are coded (during action–effect

learning) and thereby how (controlled and automatic)

subsequent stimulus–response translation is carried out.

This influence of task instruction on stimulus–response

translation is explicitly demonstrated in Simulation 5,

where the instruction based connections automatically

result in specific recurrency that selectively enhances either

the ‘key’ or ‘light’ feature codes that in turn selectively

enhance either the haptic location codes or the visual

location codes when perceiving action effects. This leads to

differences in action–effect weight learning and subse-

quently in how a response is encoded. These differences in

response coding, in turn, influence the degree in which the

feature codes representing stimuli and responses overlap,

giving rise to different SRC effect directions across

conditions.

Note that all simulated studies are based on the main

assumption that in experimental settings human partici-

pants generally only respond to particular stimuli with

particular responses because they are instructed to do so.

Indeed, it has been shown that the stimulus-induced

response activation that underlies SRC effects can only be

obtained after the participant has implemented the required

task set (Valle-Inclán & Redondo, 1998). In this study, the

stimulus–response mappings of the task (i.e., the task

instruction) varied randomly from trial to trial. In some

trials, the mapping instruction was presented followed by

the target stimulus. In other trials, the stimulus preceded

the mapping instruction. Their results showed that the

Simon effect was only observed in trials where the map-

ping instruction was presented before the stimulus. This

suggests the task set must be implemented before SRC can

occur.

Thus, understanding the task demands configures the

cognitive system to modulate both stimulus perception and

response planning. This involves attending to task-relevant

stimulus features (e.g., a high or low auditory pitch) and

preparing a small selection of motor schemas (e.g., press-

ing keys). In more general terms this process of configuring

the cognitive system is what we consider the main contri-

bution of cognitive control; it prepares the system to sub-

sequently act according to instruction—it in a sense turns

the system into a ‘prepared reflex’ (Hommel, 2000; see also

Bargh, 1989). Note that instruction wiring by itself ensures

attention for the right dimension(s), for example key

locations vs. light locations in Simulation 5. Indeed, as

cognitive control is implemented as mere connectivity

resulting from task instructions, there is—at least with

respect to the simulated experiments—no need for addi-

tional online control of the inner mechanisms.

Addressing the apparent crucial role of task goals in

SRC, Ansorge and Wühr (2004) formulated the response-

discrimination hypothesis that states that response repre-

sentations are not automatically formed, but rather top-

down controlled. Only spatial features that discriminate

between alternative responses are represented and thus give

rise to a Simon effect. This resonates well with the con-

clusions in a general review by Proctor and Vu (2006) that

the Simon effect does not result from an automatic acti-

vation of a corresponding response by means of a hard-

wired (e.g., Kornblum, et al., 1990) or over-learned (e.g.,

Umiltà & Zorzi, 1997) route; rather the task defines S–R

associations that mediate this responding. HiTEC is clearly

consistent with this response-discrimination hypothesis and

provides a rationale, in terms of internalization of an

explicit task set using codes that are grounded in sensori-

motor experience, for how and why these response repre-

sentations are formed and top down modulated.

Limitations and future work

Although we have demonstrated that the current version of

HiTEC can simulate a variety of perception–action

experiments, its principles, processes, and properties are

still far from sufficient to account for all known phenomena

in this domain. Most notably, HiTEC yet lacks the ability

to bind features—an ability that was emphasized in the

original TEC (Hommel, et al., 2001). When an agent is

presented with two visual objects, say one blue and one

red, both ‘Blue’ and ‘Red’ sensory codes will be activated

concurrently and the present model has no means to code

or keep track which color belongs to which object (the

classic ‘binding problem’: Treisman, 1996). Given that

several empirical phenomena in the domain of perception–

action interactions are likely to reflect feature-binding

processes (Müsseler & Hommel, 1997; see Hommel, 2004,

for an overview), extending HiTEC to include a binding

mechanism seems essential. From a modeling perspective,

such a binding mechanism may protect active representa-

tions from catastrophic interference (see Hommel, et al.,
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2001). Closely related is the impact of episodic memory on

perception and action planning (Waszak, Hommel, &

Allport, 2003). Not only the current task set but also recent

experiences with particular stimuli and actions (e.g.,

affective connotations, Haazebroek, van Dantzig, &

Hommel, 2009) under a particular task set can play a large

role in the later interpretation of stimuli and responses and

the efficiency with which their processing can be controlled

(Nuxoll & Laird, 2004).

In addition, action planning in HiTEC is currently

greatly simplified as we only allow one rather simple action

to be planned at a time. A more realistic model of action

control would include the planning, programming, and

coordination of more complex, hierarchical actions (Logan

& Crump, 2010) and action sequences (Herbert & Butz,

2012; Tubau, Hommel, & López-Moliner, 2007). More-

over, the notion of planning may imply intention, a delib-

erate action actively chosen by an actor, rather than a

response. Indeed, we have not addressed intention explic-

itly and have focused primarily on responding to stimuli.

However, it is conceivable that also intended action may be

realized by actively anticipating action effects (see Hom-

mel, 2009 for a more detailed discussion). Another strong

addition would be the inclusion of conflict monitoring and

performance feedback along the lines of (Botvinick, et al.,

2001). The experience of response conflict and/or of neg-

ative feedback might strengthen the activation state of goal

codes and their impact on stimulus–response processing,

which would tend to prevent errors in the future (van

Steenbergen, et al., 2009).

Nevertheless we hope to have shed some light on the link

between perception and action codes in cognitive processing

across different experimental paradigms. Although HiTEC

may seem to be a simple model considering its architecture,

its recurrent connections yield complex dynamics. HiTEC

complements available models by providing a rationale for

why some stimulus–response relationships are privileged,

and how they can be both automatic and context-dependent

at the same time, how situation-specific meanings of

responses emerge, and how they modulate sensorimotor

processing. The HiTEC model is intended as a proof of

principle, how common representations may mediate the

interaction between perception and action in a stage-less

way, addressing issues of action knowledge, automaticity

and task demands, all relevant for effective behavior.
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Appendix

See Table 1.

Table 1 Parameters and values as used in the HiTEC simulations discussed in this article

Category Parameter Value

External inputs External input (stimulus, motor execution) 0.5

Sensory weights Sensory—feature forward 0.4

Sensory—feature backward 3.0

Task—feature weights (Stimulus) feature—task forward, and task—(response) feature forward 1.3a

(Response) feature—task backward, and task—(stimulus) feature backward 0.2

Inhibition Excitatory to inhibitory paired unit 1.25

Inhibitory to other excitatory codes within layer -0.75

Activation parameters da Decay parameter 0.1b

qa Sigmoid parameter in response function 0.9

na Sigmoid parameter in response function 4

c Scale parameter 0.9

Noise Mean 0.025

Standard deviation 0.001

Thresholds Voltage threshold (VT) 0.5

Learning threshold (LT) 0.55

Response threshold for motor code selection 0.7

Weight parameters Weight decay (dw) 0.0005

a 0.8 for ‘other’ features (i.e., key, light, sound)
b 0.2 for sensory codes
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