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Abstract

Highly coordinated water molecules are frequently an integral part of protein-protein and

protein-ligand interfaces. We introduce an updated energy model that efficiently captures

the energetic effects of these ordered water molecules on the surfaces of proteins. A two-

stage method is developed in which polar groups arranged in geometries suitable for water

placement are first identified, then a modified Monte Carlo simulation allows highly coordi-

nated waters to be placed on the surface of a protein while simultaneously sampling amino

acid side chain orientations. This “semi-explicit” water model is implemented in Rosetta and

is suitable for both structure prediction and protein design. We show that our new approach

and energy model yield significant improvements in native structure recovery of protein-pro-

tein and protein-ligand docking discrimination tests.

Author summary

Well-coordinated water molecules—those forming multiple hydrogen bonds with nearby

polar groups—play an important role in the structure of biomolecular systems, yet the

effect of these waters is often not considered in molecular energy computations. In this

paper, we describe a method to efficiently consider these water molecules both implicitly

and explicitly at the interfaces formed by two polar molecules. In computations related to

determining how a protein interacts with binding partners, we show that the use of this

new method significantly improves results. Future application of this approach may

improve the design of new protein and small molecule drugs.

This is a PLOS Computational Biology Methods paper.
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Introduction

Water plays a significant role in biomolecular structure. The hydrophobic effect drives the col-

lapse of proteins into their general shape while highly coordinated water molecules (water

molecules making multiple water-protein hydrogen bonds) on the surface of a protein may

confer specific conformations to nearby polar groups. Furthermore, water plays a key role in

biomolecular recognition: when a ligand binds its host in an aqueous environment, it must

displace water molecules on the surface and energetically compensate for the lost interactions

[1]. Coordinated water molecules may also drive host-ligand recognition by bridging interac-

tions between polar groups on each side of the complex.

Simulations of proteins in explicit solvent have been successful in predicting folded confor-

mations[2] as well as computing binding free energies[3] with high accuracy. Explicit solvent

calculations are computationally expensive, particularly in Monte Carlo simulations where a

long water equilibration period might be required. Such a cost may be alleviated through the

use of an implicit solvent[4] model, which while more efficient, incurs a loss of accuracy by

disregarding the energetics of highly-coordinated water molecules[5]. Thus, an approach com-

bining the efficiency of implicit solvation with the ability to recapitulate well-coordinated

water molecules is desired. Several such methods have been developed but tend to be devel-

oped for specific types of interactions (eg. protein-protein or protein-small molecule ligand)

[6–11] or are computationally expensive[12].

In this paper, we describe the development of general methods for capturing the energetic

effects of explicit solvent, but with the computational efficiency of an implicit solvent model.

Our intent is that this energy model is better at discriminating the correct binding modes of

protein-protein and protein-ligand complexes. These new methods include: 1.) a new energy

function that implicitly captures the energetics of protein and coordinated-water interactions

and 2.) a conformational sampling approach that efficiently samples protein and explicit water

conformations simultaneously. We show that these methods enable us to predict water posi-

tions accurately, as well as improving our ability to discriminate native protein-protein and

protein-ligand interfaces from non-native decoy conformations.

Results

Our approach for modeling coordinated water molecules using Rosetta, fully described in

Methods, is briefly presented here. We have developed two complimentary approaches for cap-

turing coordinated-water energetics. We hypothesize that more accurately modeled interface

waters will lead to better discrimination of correct binding modes from incorrect (decoy)

binding modes. First, Rosetta-ICO (Implicit Consideration of cOordinated water), implicitly

captures pairs of polar groups arranged such that a theoretical “bridging” water molecule may

form favorable hydrogen bonds to stabilize the interaction. This calculation is efficient but

ignores multi-body interactions that may favor, for example, waters coordinated by >2 hydro-

gen bond donors or acceptors. While this implicit water model is more accurate than our prior

model, which did not consider these water molecules at all, modeling a subset of waters explic-

itly should further improve model accuracy. Therefore, we have also developed Rosetta-ECO
(Explicit Consideration of cOordinated water), in which Rosetta’s Monte Carlo (MC) simula-

tion is augmented with moves to add or remove explicit solvent molecules from bulk. By sam-

pling water orientations at sites where predicted bridging waters overlap (Fig 1E), we properly

coordinate water molecules to optimize hydrogen bonding.

For both approaches, the Rosetta energy function has been reoptimized using the dualOptE
framework described by Park et al.[14]. In this optimization, several meta-parameters describ-

ing the shape of the Rosetta-ICO potential; several terms controlling the strength and shape of
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protein-water interactions; and ~50 other per-atom polar parameters were optimized to allow

for compensating changes to the new energy terms. Energy function parameters for polar

groups, including partial atomic charges, were refit using the same training tasks originally

used in the parameterization of the opt-nov15 energy function[14], now called REF2015[13].

While all parameters were optimized for Rosetta-ICO (see S7–S10 Tables in S1 Text for final

values), only a subset of water-specific parameters were refit when developing the explicit

water terms for Rosetta-ECO. The results in this section are shown with the updated energy

functions compared to baseline tests run using the REF2015 energy function[14].

Rotamer and water recovery at protein-protein interfaces

A set of 123 native protein-protein interfaces from high-resolution X-ray crystal structures was

used to test how well the new energy models perform at simultaneously predicting amino acid

side chain conformations and coordinated water sites (data set details may be found in S2

Text). Tests involved the re-sampling of side chain conformations of interface residues on a

fixed backbone in MC simulations and evaluating resulting predicted side chains against the

deposited density maps. In tests involving semi-explicit water molecules (Rosetta-ECO), we

simultaneously sample protein side chain conformations and water placements. A baseline

rotamer recovery error of 9.73 ± 0.13% was obtained using the REF2015 energy function for

the 7040 flexible side chains of the test set. A marginal improvement is made with Rosetta-
ICO, reducing error to 9.52 ± 0.04%. Inclusion of explicit water molecules in this test fails to

Fig 1. Implicit and explicit treatment of water In Rosetta. Implicit water score function potentials, panels A-D. Potential plots

were generated by orienting the N-H and C = O groups of two ALA residues along the same axis with a H—O distance of 1.3 Å
(origin). The donor residue is then shifted +/- 7 Å to generate a planar cut of the solvation potentials between the N and O atoms. All

plots have units of kcal/mol[13, 14]. (A) fa_sol term: isotropic desolvation penalty implemented in Rosetta using the Lazaridis-Karplus

model. (B) lk_ball term: anisotropic correction for polar atom types, first introduced into the REF2015 score function. (C) lk_bridge

term: anisotropic solvation reward introduced into the Rosetta-ICO score function. (D) Composite of panels A-C, using the finalized

Rosetta-ICO score term weights. Explicit water placement with Rosetta-ECO, Panels E-H. (E) Initial possible solvation sites (blue)

are based on statistics of water positions around backbone polar atoms in addition to sites around side chain polar atoms considering

all possible non-clashing rotamers. Pictured is the interface of PDB ID 1P57, between the N-terminal (pink) and catalytic (teal)

domains of hepsin, with crystallographic waters in transparent grey. (F) After an initial stage of Monte Carlo packing of both the

possible water sites and surrounding protein side chains, a cutoff is applied based on the water occupancy of each site over the

simulation (blue = 0% occupancy, green = 25%, red = 50%). (G) Remaining water sites are clustered, and a second cumulative dwell

time cutoff is applied. (H) The final predicted water sites are converted into three-atom water molecules and the orientation is

reoptimized together with nearby sidechain conformations using the Rosetta all-atom energy function.

https://doi.org/10.1371/journal.pcbi.1008103.g001
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further decrease the overall rotamer recovery error beyond the improvements observed with

Rosetta-ICO, with a Rosetta-ECO error of 9.59 ± 0.15%, while predicting ~19 explicit water

molecules per protein-protein interface. For reference, side chain packing tests that use

“native” water molecules (this would be the result of perfect water recall and precision)

achieves a rotamer side chain recovery error of 8.36 ± 0.04%, while random perturbation of

these waters suggest a placement tolerance of less than 0.8 Å (S17 Fig).

In addition to measuring side chain rotamer recovery at the protein-protein interfaces, we

also analyzed the recovery of water positions found in the high-resolution X-ray crystal struc-

tures when implementing the Rosetta-ECO solvation method. For water recovery tests, mod-

eled water positions are considered “correct” if they are placed within 0.5 Å of the native water

or if they are coordinated by the same polar atoms. Using this strict criteria, Rosetta-ECO is

able to recover 17.7% of native water molecules with a precision of 17.7%. Details of Rosetta-
ECO water recovery are shown in Table 1. These data show that our approach is most effective

at predicting “buried” waters (28.3% recovery) and highly coordinated waters (31.8% recovery

of triply coordinated waters). Unsurprisingly, Rosetta-ECO is also much more effective at pre-

dicted backbone-coordinated waters, correctly predicting 50.0% of backbone-only coordi-

nated waters. An example of two correctly predicted water sites is illustrated in Fig 1H.

Rosetta-ECO predicts an average 9.1 waters per 1000 Å2, compared to an observed average

of 9.3 waters per 1000 Å2 of interface surface area, which is in line with previous analyses of

interface solvation[15]. Thus, the ECO protocol hydrates protein interfaces to a similar degree

as to what has been observed in crystallographic structures.

Finally, the results of Rosetta-ECO were compared against solvent placement using the

3D-RISM methodology as implemented in AmberTools19[16]. 3D-RISM, like most other

water site prediction methods, operates on a fixed protein model (in this case, the crystallo-

graphic structures). In our tests, 3D-RISM recovered 22.9% of the full interface water data set,

~5% more than ECO when calibrated to the same level of precision (See S2 Table for detailed

results). Rosetta-ECO, which predicts water positions in addition to protein side chain

Table 1. Classification of predicted native waters (test set of 123).

Rosetta-ECO
Type1 Subset Size % recovered2 % precision3

All 2815 17.7 (0.08) 17.7 (0.08)

Exposed 630 6.0 (0.13) 4.7 (0.1)

Partially Buried 1803 19.5 (0.39) 21.7 (0.5)

Buried 382 28.3 (1.19) 27.5 (1.3)

1 protein coord 770 6.3 (0.12) 5.0 (0.2)

2 protein coord 1077 27.2 (0.24) 25.3 (0.3)

3 protein coord 399 31.8 (0.43) 26.2 (0.4)

BB only 330 50.0 (1.24) 23.1 (0.4)

SC only 333 7.8 (0.65) 18.1 (1.1)

BB+SC 440 27.6 (0.18) 26.6 (0.3)

1Three groups of categorization of type of predicted water molecules. First, waters are classified ‘buriedness’ based on

number of amino acid neighbors (nCβ) with Cβ within 10 Å. Exposed: nCβ< = 15; partially buried: 15 < nCβ< =

25; buried: nCβ> 25. Second, classification by 1, 2, or 3 protein coordination partners within 3.2 Å. Finally, by type

of coordinating protein atoms with 3.2 Å of the water O atom: at least two backbone only (BB only), side chain only

(SC only) or a mix of backbone and side chain coordination (BB+SC).
2-3Percent of specific types of waters recovered using recovery criteria described in Methods, averaged over three runs

with standard deviations in parentheses.

https://doi.org/10.1371/journal.pcbi.1008103.t001
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conformations, performs particularly strongly at recovering waters that are exclusively coordi-

nated by backbone groups (Table 1), outperforming 3D-RISM by 35% for this classification of

water. Overall, the 3D-RISM calculations take ~20-fold longer to run (S3 Table).

While other computational water predictions methods exist that are faster or more accurate

than Rosetta-ECO, to our knowledge, they are all benchmarked against static protein struc-

tures, making direct comparison to Rosetta-ECO inappropriate. For example, WaterDock[9],

which uses AutoDock Vina to predict water positions using a grid-based docking approach,

was developed for computational drug design purposes, with a focus on small molecule bind-

ing sites as opposed to large protein-protein interfaces. Using a recovery cutoff of 1.4 Å,

WaterDock reports a recovery of 87% of crystallographic waters to a set of 14 OppA crystal

structures bound to different KXK tripeptides, with runtime on the order of seconds. Water-

Map[11], on the other hand, relies on 2 ns MD simulations on a fixed protein. This leads to

significantly longer run times (on the order of hours), but can yield highly accurate results: in

a study using a dataset of 41 crystallographic water sites at nine bromodomain/ligand complex

interfaces, WaterMap accurately predicted more than 70% of the experimental water positions

within 0.5 Å[17]. 3D-RISM, which was also benchmarked in this study, recovered slightly

more than 30% using the same recovery cutoff.

Finally, we also applied Rosetta-ECO to CAPRI Target 47[18], a homology modeling chal-

lenge of a protein/protein interface including the blind prediction of water molecules at the

modeled interface. Our results, described in detail in S3 Text, places our best modeling effort

with within range of the top-scoring submissions to the modeling challenge. One of our mod-

els places 13 water molecules at the modeled protein/protein interface, 11 of which come

within 2.0 Å of one of the 22 crystallographic interface water molecules, making for a true posi-

tive prediction rate of 50% while only placing two additional water molecules not observed in

the crystal structure.

Native interface recapitulation

We next tested the ability the new energy model to recapitulate near-native conformations of

protein-protein interfaces (PPIs) and protein-ligand interfaces. In these tests, which were not

used at all in parameter training, the binding free energies for a number of near-native and

incorrect (decoy) docking conformations of each complex are computed with the aim of dis-

criminating the correct binding poses from the decoys. PPI decoys were sampled using a com-

bination of Zdock[19] and RosettaDock[20], while protein-ligand decoys were generated

using RosettaLigand[21]. Both datasets were enriched for water-rich interfaces, leading to 53

protein-protein and 46 protein-ligand interface datasets. Predicted interface energies, ΔGbind,

were calculated for all decoys as described in Methods. We assess the ability to predict the

near-native conformations using a “discrimination score,”[14] which computes the Boltzmann

weight of near-native structures. The values range from 0 to 1, with higher values showing bet-

ter discrimination. We also assess with a noisier (but more interpretable) “percent correct”

metric, which identifies the number of cases in which near-native bound conformations have

lowest energy. An overview of the results is shown in Table 2, while results for all cases are pre-

sented in S2 Fig through S10 Fig. Select cases in which the inclusion of predicted explicit water

molecules improved native discrimination are detailed below.

Protein-protein docking discrimination

In protein-protein docking discrimination tests with binding modes that broadly sample con-

formational space[14], significant improvements are observed when comparing Rosetta-ICO
to the baseline results, with the discrimination score increasing from 0.63 to 0.74. Rosetta-ECO
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further improves this discrimination score to 0.79. We also consider the “success rate,” the

time the lowest-energy conformation is within 2.0 Å of native: the ECO model enables success-

ful prediction of a near-native conformation in 8 additional cases out of the set of 53, a ~15%

improvement. This comes at a modest increase in computational cost, with an average 1.25-

and 2.59-fold increase in runtime for ICO and ECO, respectively.

As illustrated in Fig 2A, Rosetta-ECO improves the discrimination score for 38 of 53 cases,

adding 13.4 water molecules to the average bound state and 15.0 water molecules to the aver-

age unbound state. These average improvements remain statistically significant. Looking at

one such case (adrenodoxin reductase/adrenodoxin, PDB ID 1E6E), we see that while all three

energy models correctly predict a near-native conformation, the “energy gap” between native

and non-native conformations is improved under Rosetta-ECO (Fig 2B). Closer investigation

of the near-native models shows 21 explicit water molecules added to the binding interface.

The combined electrostatic and hydrogen bond energy contributions compose a large propor-

tion of the improved binding energy, 5.2 kcal/mol more favorable than Rosetta-ICO for this

particular binding configuration.

Protein-ligand docking discrimination

For protein-ligand docking discrimination tests, Rosetta-ICO again shows an improvement

over REF2015, with average discrimination score increasing from 0.75 to 0.81. Rosetta-ECO
further increases the discrimination score to 0.87. In terms of “success rate”, we see the same

trend as with PPIs: Rosetta-ECO enables the correct prediction (within 1.0Å of native) in 7

additional cases out of the 46. These results indicate that both Rosetta-ICO and ECO help dis-

criminate distant decoys from native conformations when compared to the REF2015 energy

model, with the inclusion of explicit water modeling in ECO conferring the largest benefit.

This also comes at only a modest increase in run time: about 10% increased time for ICO, and

about 52% increased computation time for ECO.

The improvements in discrimination score on a per-case basis are illustrated in Fig 3A.

Here, we see that Rosetta-ECO provides a nearly across-the-board improvement in native dis-

crimination compared to the baseline calculations. The individual energy distributions for

Table 2. Performance of solvation schemes on protein-protein and protein-small molecule docking discrimination.

REF2105 Rosetta-ICO1 Rosetta-ECO2

Protein-small molecule
discrimination score3 0.749 ± 0.003 0.807 ± 0.002 0.873 ± 0.003

percent correct4 77.1 ± 2.1 77.8 ± 1.8 94.1 ± 1.1

run time5 1.00 1.09 1.52

Protein-protein

discrimination score 0.628 ± 0.014 0.739 ± 0.006 0.794 ± 0.004

percent correct 63.6 ± 0.9 74.9 ± 0.9 79.9 ± 2.3

normalized

run time

1.00 1.25 2.59

1Implicit consideration of coordinated water molecules
2Inclusion of well-ordered explicit water molecules
3Reported are the average Boltzmann-weighted discrimination scores ± 1σ averaged over three independent runs for 46 protein-ligand and 53 protein-protein docking

cases
4The percentage of cases in which the lowest scoring model is within 1.0 Å of the native conformation for protein-ligand docking and 2.0 Å for protein-protein docking,

averaged over 3 independent runs
5Run time, normalized to baseline, is the sum of individual run times to calculate ΔGbind for each near-native and decoy conformation

https://doi.org/10.1371/journal.pcbi.1008103.t002
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PDB ID 1X8X (tyrosyl t-RNA synthase / tyrosine) in Fig 3B show how both REF2015 and

Rosetta-ICO incorrectly favor a decoy 6.6 Å from native. Rosetta-ECO’s explicit waters dramat-

ically alter the binding energy landscape, improving the discrimination score from 0.27 to

0.89, and energetically favoring a structure only 0.43 Å from native. The ECO model predicts

two water molecules that bridge the carboxyl group of the tyrosine ligand to interactions with

an arginine side chain and a backbone nitrogen group (Fig 3C). Comparing the structure to

the native crystal structure (at 2 Å resolution), we find that these two waters are 0.25 Å and

0.93 Å from native water positions; a third, more exposed water—also visible in Fig 3C—

comes within 1.6 Å of a native water. Additional examples comparing recovered waters to

crystal structures (PDB IDs 1N2J and 1U4D, at 1.8 Å and 2.1 Å resolution, respectively) are

illustrated in panels 3E-H, illustrating four waters all within 1 Å from a crystallographic water

position (see S11 Fig & S12 Fig for full solvated binding modes).

Ligand docking scoring comparison

Finally, the new energy functions were compared against the results of a state-of-the art dock-

ing approach on a standardized dataset. A recent survey[22] of widely-used small molecules

docking programs tested for performance against the Astex Diverse Set[23] which includes 85

Fig 2. Protein-protein docking results. (A) Scatter plot comparing results of 53 cases between REF2015 and Rosetta-
ECO. Values are the average Boltzmann-weighted discrimination score ± 1σ from three independent runs. (B) Energy

funnels for PDB ID 1E6E, adrenodoxin reductase bound to adrenodoxin (red data point in 2A), plotting computed

ΔGbind vs. RMSD from the native binding conformation for three different scoring methods. Discrimination scores for

each distribution are noted in bottom right of each plot. (C) Explicitly solvated near-native docking pose

(RMSD = 0.14 Å; pink data point in 2B) with the reductase in grey and adrenodoxin in rainbow (N- to C-terminus

colored blue to red). (D) Coordination of some predicted interface waters.

https://doi.org/10.1371/journal.pcbi.1008103.g002
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targets with ligands of pharmaceutical interest. We generated decoys for a 67-target subset

(omitting cases where the ligand was additionally coordinated by an ion) using the docking

software GOLD[24]. The GOLD-sampled structures were then rescored using the REF2015,

ICO, and ECO energy functions of Rosetta. The results, fully presented in S1 Fig and S1 Table,

show that while the Rosetta-rescored structures are more accurate than GOLD (78.2% versus

67.7% accuracy within a 1 Å RMSD cutoff; 94.6% versus 80.7% accuracy within 2 Å RMSD

cutoff), little improvement is observed between REF2015 and ICO/ECO. While these results

suggest Rosetta may be a powerful tool for this dataset, the restricted conformational sampling

obtained from GOLD (see S13 Fig for examples of sampling in RMSD space) does not benefit

from the water model developments presented here and prevents a thorough evaluation of the

energy functions. It is likely that a more evenly distributed set of docking conformations

Fig 3. Protein-ligand docking results. (A) Scatter plot comparing results of 46 cases between baseline (REF2015) and

Rosetta-ECO. Values are the Boltzmann-weighted discrimination score ± 1σ from an average of three independent

runs. (B) Energy funnels, similar to Fig 2, for PDB ID 1X8X, tyrosyl t-RNA synthase bound to tyrosine (red data point

in 3A) C. Explicitly-solvated, near-native docking pose in pink (RMSD = 0.43 Å; pink data point in 3B) with native

ligand in transparent blue. (D) Explicitly-solvated decoy binding pose (RMSD = 6.57 Å; yellow data point in 3B).

(E-H) A comparison of recovered waters (red) to high-resolution crystallographic waters (green spheres) from PDB

ID: 1N2J (Panels E-G) and PDB ID: 1U4D (Panel H).

https://doi.org/10.1371/journal.pcbi.1008103.g003
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would yield results similar to the score function improvements observed in the more tightly-

curated protein/protein and protein/ligand data sets described above.

Discussion

We have presented two approaches for considering coordinated water molecules in the predic-

tion of native protein-protein and protein-ligand interfaces: Rosetta-ICO, which very effi-

ciently captures the energetics of bridging waters implicitly, and Rosetta-ECO, which allows a

small set of waters to emerge from bulk, resulting in a more physically complete representation

of protein surfaces and interfaces. Both methods show improvements in protein interface reca-

pitulation tasks with different levels of efficiency/accuracy tradeoffs: Rosetta-ECO more is

accurate when it comes to decoy discrimination tests but 1.5–2 times slower than Rosetta-ICO
depending on interface size. The level of native water recovery for Rosetta-ECO is about ~5%

less than 3D-RISM for a similar precision level, yet the ECO model performs this task at

~10-fold increased speed while simultaneously predicting interface side chain configurations.

While the precision and recall reported by our explicit method might seem low, this is due

to several factors. First, we are using a very strict recovery tolerance (0.5 Å, compared to 1.4–

2.0 Å used elsewhere[9, 18]. Second, Rosetta-ECO is performing (and was designed to per-

form) a fundamentally different task than other approaches: simultaneously predicting both

side chain geometry and coordinating waters. Nevertheless, our native water recovery num-

bers are encouraging when compared to a fixed-structure approach such as 3D-RISM, where

results are similar when both methods are applied to the same PPI data set using the same

recovery criteria.

Furthermore, while this work highlights the results of water prediction and protein inter-

face recapitulation, we might expect the Rosetta-ICO energy function to show modest

improvements at tasks related to monomeric structure prediction and protein sequence

design. Indeed, that seems to be the case: when tested on independent datasets, modest

improvements were observed in decoy discrimination with ICO. All other metrics were com-

parable between the two energy functions, leading us to conclude that the ICO model is a rea-

sonable general-purpose energy function.

The improvement in both the protein and ligand docking tests suggests that these new

energy functions may prove useful in the design of novel proteins intended to bind a particular

ligand or protein. Successful design of protein-protein interfaces is often driven by van der

Waals interactions that arise from shape complementarity, however better consideration of

ordered solvent molecules may allow for the design of more natural interfaces which include

numerous polar residues. Application of these new methods need not be limited to the solva-

tion of interfaces or the description of binding partners. For example, the methods may be

applied to more accurately predict the folded state of monomeric proteins in which buried sol-

vent plays an important structural role or for prediction of the stabilizing or destabilizing effect

of mutated residues on the surface of a protein. Additionally, the experiments described herein

only consider the solvation of proteins and small molecules, however the framework can be

easily extended to solvate other biomolecules such as nucleic acids.

Methods

Two new biomolecular solvation methods are introduced here. The first (Rosetta-ICO) builds

upon the existing implicit water model used in Rosetta to not only account for the energy of

desolvating protein functional groups, but to additionally energetically favor conformations

that are suitable to accommodate bridging waters. The second model (Rosetta-ECO) places
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well-coordinated water molecules on the surface or at interfaces of biomolecules based largely

on statistics from high-resolution experimental data.

Implicit solvation (Rosetta-ICO)

An additional energy term is added to the Rosetta’s implicit solvation model that models the

energetic costs of highly ordered water molecules coordinated by multiple protein polar

groups. The term builds upon our previously developed anisotropic solvation model[14],

where for each polar group, one or more virtual water sites are placed in a configuration ideal

for hydrogen bonding with the corresponding polar group. An energetic bonus is then given

when the water sites of multiple polar groups overlap in such a way that a single water could

coordinate, or “bridge”, these polar groups:

Elk� bridgeðri; rjÞ

¼ ðEði;jÞlk Þ � Gðmaxðminwi ;wj
kwi � wjk � D0

len; 0Þ; S
0
lenÞ þ ðE

ði;jÞ
lk Þ

� Gðkbi � bjk � D0
angle; S

0
angleÞ

With:

G x; S0ð Þ ¼
1 �

x2

S0

2

� �2
 !2

x 2 ½� S0; S0�

0 x=2½� S0; S0�

8
>><

>>:

Here, Elk
(i,j) is the isotropic solvation term between atoms i and j (the fa_sol score term in

the Rosetta energy function, see Fig 1A), wi is the xyz coordinate of a theoretic water oxygen

atom corresponding to polar group ri; bi is the xyz coordinate of the base heavy atom used to

construct the water (e.g., the backbone N or O), and D0
len, D0

angle, S0
len, and S0

angle are parame-

ters that are optimized during energy function evaluation, with final values of 0.5 Å, 4.33 Å,

1.61 Å, and 2.69 Å, respectively. Since a single polar atom may have multiple putative water

binding sites, we take the minimum distance between all water sites corresponding to atoms i

and j (the first term of the equation). Overall, the two terms in the equation characterize the

overlap between potential water sites and the angle formed between polar groups that poten-

tially coordinate a bridging water molecule.

This energy term was added to the current anisotropic solvation model in Rosetta (illus-

trated in Fig 1A–1D), and optimization of all polar terms was carried out (see S1 Text). Since

this term does not prevent certain disallowed coordination geometries (e.g., 3 donors or 3

acceptors coordinating a single water site), we have introduced the Rosetta-ECO model to

include fully modeled water molecules at possible hydration sites that can help filter out con-

formations with poor coordination geometry. Additionally, because this two-body energy

term is only dependent upon the configuration of pairs of protein polar groups, it can be used

in all Monte Carlo minimization methods used in Rosetta[25], with negligible computational

overhead.

Additionally, to properly handle the geometry of water-protein and water-water hydrogen

bonds, we modified the functional form of sp3-hybridized hydrogen bond acceptors. Previ-

ously, the interaction between a hydrogen bond donor and the lone pair electrons of sp3-

hybridized acceptors was described by an angle and torsional term about the base atoms[26];

e.g., for serine, the angle CB-OG� � �Hdonor and the pseudo-torsion HG-CB-OG� � �Hdonor. For

water, however, this led to an undesirable property in that the potential was not symmetric

about the two water hydrogens. Therefore, in Rosetta-ICO (and Rosetta-ECO) we replace the
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torsional term for sp3 hydrogen bond acceptors with a “softmax” potential between both

atoms bonded to the sp3-hybridized acceptor:

Esp3� chiðai; hjÞ ¼ M � logð
X

bkbound toai

expðEBAHðbk; ai; hjÞ=MÞÞ

Above, M describes the "softness" of the softmax with a default value of 0.4 kcal/mol (lower

values make this function behave more like a “max”). The variables bk, ai and hj are the accep-

tor base atom, acceptor heavy-atom and donor hydrogen, respectively; and EBAH is the angular

potential about the heavy-atom[26]. The summation is carried out over all bound atoms to the

acceptor. For water acceptors, this would be over both hydrogens. In the serine example

above, the angular potential is applied to both CB-OG� � �Hdonor and HG-OG� � �Hdonor, with

the softmax giving a score roughly equal to the worse of the two angular potentials. This

ensures the potential is symmetric about both water hydrogens.

Explicit solvation model (Rosetta-ECO)

One key challenge in prior explicit water modeling[27] is the large conformational space a sin-

gle water molecule can adopt. This is an issue in applications (like those in this manuscript)

where it is desirable to simultaneously sample side chain conformations and water positions.

Rosetta-ECO makes use of a two-stage approach to navigate this problem (Fig 1E–1H). In the

first stage, rotationally independent “point waters” are sampled using a statistical potential; not

considering water rotation lets thousands of putative water positions be sampled efficiently. In

the second stage, for the most favorable water positions (typically only several dozen) we con-

sider rotations of these molecules using a physically derived potential.

In both steps of the protocol, Monte Carlo sampling is used to simultaneously sample side

chain and water conformational states. In both stages, water molecules may be set to “bulk,”

losing an entropic penalty by doing so. This entropy bonus value, Ebulk, ultimately controls the

number of explicit water molecules placed by the algorithm, requiring sufficient favorable

physical interactions to overcome the entropic cost of coming out of bulk. This parameter was

fit to a value of 1.22 kcal/mol. The atoms of any water molecule introduced into a model are

subject to the same treatment by the full-atom Rosetta force field as any other atom, including

interacting with bulk solvent via the lk_ball solvation model[14, 27]. Finally, rotational sam-

pling of waters uses a uniform SO3 gridding strategy[28] with 30˚ angular spacing, leading to

270 rotational conformers per water.

Derivation of the statistical point water potential

The first step in determining possible water sites involves a low-resolution, statistical water

potential to quickly evaluate the interaction between possible water sites and nearby polar

groups of biomolecules. This potential, which we are calling the “point water potential”, treats

water molecules as simple, uncharged, points with attractive and repulsive Lennard-Jones

terms.

The point water potential takes the form of:

Epoint� waterðW ¼ fwi; . . . ;wngÞ ¼
X

waters i

X

polar

atoms j

� log Pðkwi; xik; yðwi; xj; x
base
j ÞÞ
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� K �
X

waters k

i 6¼ k

exp½� ðkwi;wkk � 2:7Þ
2
=s2� þ Epwat bulk

Here, P is the statistical point-water distribution, parameterized over distance and angle; d
gives the distance between a water and polar atom, and θ gives the angle between the water posi-

tion, the polar atom, and its “base atom.” The point water energy term also considers other nearby

point water sites, k, as Gaussian distributions with width σ and height K (with min energy at a dis-

tance of 2.7 Å), which was determined by averaging water-water distances observed in high reso-

lution crystal structures. K and σ were optimized, yielding values of 0.52 kcal/mol and 0.24 Å,

respectively. Finally, an overall energetic cost of bringing the water molecule “out of bulk,” Epwat_-

bulk, is added for each water, with a value of 2.71 kcal/mol. These parameters were fit using crystal-

lographic waters in the Top8000 database (see Supporting Information for more details).

Identifying and sampling point waters positions

A key challenging in building possible water sites is the desire to simultaneously sample side

chain conformations along with water positions. Thus, the initial placement of water mole-

cules to be optimized by the point water potential come from two sources: a) ideal solvation

about protein backbones and b) possible solvation sites from side chain rotamers. For back-

bone waters, point generation is straightforward: 1 "ideal" site for each backbone N-H group

and 10 “ideal” sites are generated from each backbone C = O group (based on clustering waters

from crystal structures, S15 Fig & S16 Fig).

Generation of side chain-coordinated waters is more involved. Considering all possible

water molecules that may coordinate the polar groups of all side chain rotamers leads to water

conformer sets that are unmanageably large to sample. Thus, we again build off prior work[29]

and consider instead the overlapping hydration sites that emanate from two different side

chain or backbone groups. That is, we collect the idealized hydration sites for all possible side

chain rotamers and identify all positions where there is overlap (within 0.75 Å) between two

potential water sites originating from different side chains or backbone groups. A 3D hash

table makes this calculation efficient even when there are millions of putative water positions.

Finally, to further reduce conformational sampling, during the Monte Carlo “packing” algo-

rithm, when both side chain and point water positions are sampled, all putative point waters

are clustered into sets in which only one site can be occupied.

A modified version of Rosetta’s traditional packing algorithm[30] is used when point waters

are present. Typically, Rosetta uses simulated annealing to find the discrete rotamer set mini-

mizing system energy, where the temperature of the trajectory is slowly annealed from

RT = 100 to RT = 0.3 kcal/mol. With the point water potential, we do not expect the force field

(which does not consider water rotation) to be perfect, and we want the packer not to optimize

total energy but to simply separate reasonable from unreasonable water positions for a more

expensive subsequent calculation. Thus, we instead used long simulations at low temperatures

(RT = 0.3) at which the "dwell time" of each state is recorded, with intervening high-tempera-

ture “spikes” (RT = 100) used to periodically scramble the state which may settle into various

low-energy minima of the potential energy surface. Then, instead of taking the lowest energy

state sampled, we measured water “occupancy” at each position, taking point water positions

with a “dwell time” greater than 2% (ignoring occupancy counts during the high-temperature

steps and the first 1/6 of low-temperature steps of each iteration).
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Water positions passing this criterion, typically on the order of dozens to hundreds, are

then filled with three-point water molecules which are allowed to rotate about fixed oxygen

positions and are sampled (along with all surrounding side chains) using Rosetta’s standard

simulated annealing rotamer optimization routine. The Monte Carlo algorithm is unaltered

from the standard packing routine in Rosetta, in that a random rotamer (side chain or water)

is selected and tested against a Metropolis criterion. The only exception here is that when a

water rotamer, which is a rotational state about a fixed oxygen position, is selected for sam-

pling, there is a 50% chance that the “virtual” state/rotamer of the water molecule is sampled

instead. Given that the first stage in the solvation routine places a substantially larger than

expected population of water sites on the surface of the biomolecule, a majority of these sites

will not result in water conformations that are well-coordinated by the surrounding protein or

ligand polar atoms. This adjustment to the sampling of water states helps with the convergence

of the sampling problem with so many potential false positive water molecules.

Finally, during subsequent minimization of the water-containing model, the kinematics

used to minimize water molecules (the fold tree) in Rosetta optimizes 6 degrees of freedom for

each water, representing the rigid-body transformation between the water and nearest amino-

acid (using Rosetta terminology, the “jump” is defined between the nearest amino acid and the

water).

Datasets

Four different data sets were used in the testing of the new energy functions described here.

The first includes 153 high-resolution crystal structures of protein-protein interfaces (PPIs)

that was used for both native water and rotamer recovery at the interfaces. Two docking data

sets were used to test the ability of the new energy functions to discriminate near-native from

decoy docking conformations, a subsets of those used by Park et al.[14], but selected for water-

rich interfaces (and to exclude problematic cases such as PPIs with disulfides across the inter-

face or ions contributing to binding). For protein-protein interactions, a 53-case subset of the

ZDock 4 Benchmark set[31] was used, while a 46-case subset of the Binding MOAD database

[32] was used for protein-ligand interactions. Finally, another ligand docking set, generated

with GOLD on a subset of the Astex Diverse Set[23] was used to compare the new energy func-

tions against an established docking score function. All conformational sampling to generate

the docking datasets was performed with fixed protein backbones. There is no overlap between

the datasets used for parameter training and those used for the docking discrimination tests,

and while there is significant overlap between the protein-ligand and Astex sets, these were

used for different purposes and with significantly different sampling strategies. Additional

details on the datasets, including lists of PDB IDs used are included in the Supporting

Materials.

Benchmarking against 3D-RISM water site predictions

The water site predictions in Rosetta were compared against those predicted by the 3D-RISM

method[33] as implemented in AmberTools19[16, 34]. Briefly, RISM calculations were per-

formed for pure water at a concentration of 55.5 M with a 0.5 Å grid spacing. Using a buffer of

7 Å, as opposed to the default 14 Å, was found to be speed up calculations while not hurting

recovery for our dataset which consists of water molecules found at PPIs. The Placevent algo-

rithm[35] was used to determine explicit water sites, which were truncated to be found within

6 Å of all CB atoms (CA for GLY) of the residues that form the interfaces of the test set. This

was done to be comparable to the Rosetta-ECO results, in which water sampling was limited to

protein/protein interfaces. Finally, the results were further trimmed by the 3D-RISM water-
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protein radial distribution function (RDF > = 10.2) to achieve the same level of precision as

Rosetta-ECO.

Binding energy calculations

The binding energies, ΔGbind, were calculated for the near-native and incorrect (decoy) dock-

ing poses by taking the difference between the computed energies of the bound and unbound

states. This is accomplished in Rosetta by first calculating the energy for the bound system,

then re-computing the energy when the two binding components are separated to obtain

unbound state energies. An important part of interface energetics involves computing the

energy cost of water displacement[36], making treatment of explicit waters of the unbound

state an important consideration. Due to size differences of the average interface, we found

slightly different treatment performed better with PPIs versus protein-ligand interfaces. In

both PPIs and protein-ligand interfaces, the bound states are solvated (including reoptimiza-

tion of interface side chains), using the two-stage Monte Carlo procedure described above,

restricting water placement to only the biomolecular interface of interest. Given that this mode

of solvation samples both side chain and water orientations, our strategy considers the induced

fit effect on a fixed backbone level. Then all side chains are minimized and, for protein-ligand

interfaces only with the ICO model, the rigid-body transformation between receptor and

ligand is also minimized. Interface components are then separated and re-solvated. Copies of

the waters from the bound state are duplicated such that one copy belongs to both ligand and

receptor, while the re-solvation protocol restricts new water placement to the same region that

defined the interface in the bound state. During the resampling of the unbound state, side

chains that previously defined the interface are once again reoptimized, allowing waters that

were previously highly coordinated in the bound state to be liberated to bulk if a sufficient part

of this coordination was lost in the unbinding process. Any water molecules that remain un-

liberated to bulk following sampling are considered part of the bound/unbound states for scor-

ing purposes.

RMSD values reported for docking are of the small molecule or protein ligand with respect

to the native experimental structure. Ligand Cα RMSDs are used for protein-protein docking

cases, where the ligand is the second chain in the experimental PDB file, while heavy atom

RMSDs are used for small molecule docking cases. Sample XML scripts used for the protein/

protein and protein/ligand rescoring are included in the Supporting Information.

Training tasks

The training tasks used for energy function parameterization are the same as detailed in the

development of the REF2015 Rosetta energy function[14] and are summarized in the Support-

ing Information.

Supporting information

S1 Data. Data Set 1. PDB files used for water recovery tests. Protein-Protein (16 GB) and Pro-

tein-Ligand (1.6 GB) decoys sets available at https://github.com/rpavlovicz/rpavlovicz-

docking_data_sets.

(DOCX)

S1 Fig. Rescoring GOLD docking results with Rosetta. Results for rescoring Astex Diverse

Set. Docking conformations initially generated and scored by GOLD (red) were rescored with

the Rosetta REF2015 energy function (blue). The theoretical scoring success is determined by

the initial GOLD sampling (black dashed) for the 67 cases of the Astex Diverse Set that do not
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coordinate an ion in the binding site.

(PNG)

S2 Fig. Protein-protein docking scoring results (part 1). Recalculation of protein-protein

docking interface scores (ΔGbind) for three different Rosetta scoring functions: REF2015,

Rosetta-ICO, and Rosetta-ECO. Data points represent the average of three runs with the stan-

dard deviation as error bars. The average Boltzmann discrimination scores +/- standard devia-

tion for each distribution is found in the bottom right corner of each plot.

(TIF)

S3 Fig. Protein-protein docking scoring results (part 2). Recalculation of protein-protein

docking interface scores (ΔGbind) for three different Rosetta scoring functions: REF2015,

Rosetta-ICO, and Rosetta-ECO. Data points represent the average of three runs with the stan-

dard deviation as error bars. The average Boltzmann discrimination scores +/- standard devia-

tion for each distribution is found in the bottom right corner of each plot.

(TIF)

S4 Fig. Protein-protein docking scoring results (part 3). Recalculation of protein-protein

docking interface scores (ΔGbind) for three different Rosetta scoring functions: REF2015,

Rosetta-ICO, and Rosetta-ECO. Data points represent the average of three runs with the stan-

dard deviation as error bars. The average Boltzmann discrimination scores +/- standard devia-

tion for each distribution is found in the bottom right corner of each plot.

(TIF)

S5 Fig. Protein-protein docking scoring results (part 4). Recalculation of protein-protein

docking interface scores (ΔGbind) for three different Rosetta scoring functions: REF2015,

Rosetta-ICO, and Rosetta-ECO. Data points represent the average of three runs with the stan-

dard deviation as error bars. The average Boltzmann discrimination scores +/- standard devia-

tion for each distribution is found in the bottom right corner of each plot.

(TIF)

S6 Fig. Protein-protein docking scoring results (part 5). Recalculation of protein-protein

docking interface scores (ΔGbind) for three different Rosetta scoring functions: REF2015,

Rosetta-ICO, and Rosetta-ECO. Data points represent the average of three runs with the stan-

dard deviation as error bars. The average Boltzmann discrimination scores +/- standard devia-

tion for each distribution is found in the bottom right corner of each plot.

(TIF)

S7 Fig. Protein-ligand docking scoring results (part 1). Recalculation of protein-ligand

docking interface scores (ΔGbind) for three different Rosetta scoring functions: REF2015,

Rosetta-ICO, and Rosetta-ECO. Data points represent the average of three runs with the stan-

dard deviation as error bars. The average Boltzmann discrimination scores +/- standard devia-

tion for each distribution is found in the bottom right corner of each plot.

(TIF)

S8 Fig. Protein-ligand docking scoring results (part 2). Recalculation of protein-ligand

docking interface scores (ΔGbind) for three different Rosetta scoring functions: REF2015,

Rosetta-ICO, and Rosetta-ECO. Data points represent the average of three runs with the stan-

dard deviation as error bars. The average Boltzmann discrimination scores +/- standard devia-

tion for each distribution is found in the bottom right corner of each plot.

(TIF)
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S9 Fig. Protein-ligand docking scoring results (part 3). Recalculation of protein-ligand

docking interface scores (ΔGbind) for three different Rosetta scoring functions: REF2015,

Rosetta-ICO, and Rosetta-ECO. Data points represent the average of three runs with the stan-

dard deviation as error bars. The average Boltzmann discrimination scores +/- standard devia-

tion for each distribution is found in the bottom right corner of each plot.

(TIF)

S10 Fig. Protein-ligand docking scoring results (part 4). Recalculation of protein-ligand

docking interface scores (ΔGbind) for three different Rosetta scoring functions: REF2015,

Rosetta-ICO, and Rosetta-ECO. Data points represent the average of three runs with the stan-

dard deviation as error bars. The average Boltzmann discrimination scores +/- standard devia-

tion for each distribution is found in the bottom right corner of each plot.

(TIF)

S11 Fig. 1N2J binding mode with Rosetta-ECO model. The near native Rosetta-ECO model

is in thicker stick representation with full-atom water molecules and the ligand depicted in

pink. The experimental ligand (pantoate) position is in transparent blue, water oxygen posi-

tions as green spheres, and native side chains are in black wire representation. If the native

ligand or side chain positions cannot be seen, it is because they are obscured by the Rosetta

model. Panel A highlights the overall binding pocket, while panels B-D focus on recovered

water positions.

(TIF)

S12 Fig. 1U4D binding mode with Rosetta-ECO model. The near native Rosetta-ECO model

is in thicker stick representation with full-atom water molecules and the ligand depicted in

pink. The experimental ligand (debromohymenialdisine) position is in transparent blue, water

oxygen positions as green spheres, and native side chains are in black wire representation. If

the native ligand or side chain positions cannot be seen, it is because they are obscured by the

Rosetta model. Panel A highlights the overall binding pocket, while panels B and C focus on

recovered water positions.

(TIF)

S13 Fig. Comparison of docking scores/energies for conformations sampled By GOLD for

select cases. The RMSD of the ligand from the experimental conformation is plotted against

the computed score (ChemPLP) for GOLD and ΔGbind for Rosetta. Note that the sampling

from GOLD is often focused in small number of docking conformations, leaving gaps in the

sampled space.

(TIF)

S14 Fig. Derivation of a statistical water potential. Upper left: Distribution of waters about

histidine residues over a range of distance from the HD1 atom and a range of angles from the

HD1 and ND1 atoms [-log(HISHD1_ND1)] Upper right: Distribution of waters about a non-

polar reference [log(ALAHB1_CB1)] Lower left: The sum of the upper two figures: the statistical

potential for histidine Lower right: Final, modified histidine potential filtered for noise and

second solvation shell effects.

(PNG)

S15 Fig. Sample statistics of waters about peptide C = O groups. Upper right: distance and

angle of all waters measured (grey) and those used for statistical placement about the polar

group (purple). Bottom left: Angle and dihedral distribution with histogram projections in

upper left (angle) and lower right (dihedral).

(PNG)
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S16 Fig. Position of cluster representatives for solvation of C = O backbone groups. The

crystallographic water positions used for statistical placement of potential solvation sites about

C = O backbone polar groups are shown here in red, with the k-means cluster centroids

(k = 10) illustrated in yellow. Two views of these data are shown about an arbitrary alanine res-

idue.

(PNG)

S17 Fig. Rotamer recovery error as a function of native water positions randomly per-

turbed. Crystallographic water molecules in our benchmark set were randomly perturbed 0.0

to 1.6 Å and the interface residues were repacked in Rosetta. Data points represent the average

of three independent runs with 95% confidence interval error bars. The baseline of packing

the interfaces without any water molecules (REF2015 score function) is shown as a dashed

grey line with 95% confidence intervals from three runs shaded in light grey.

(PNG)

S1 Table. GOLD docking and Rosetta rescoring results of Astex Diverse Set.

(DOCX)

S2 Table. 3D-RISM results on interface water test set.

(DOCX)
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