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Increasing evidence has revealed that the rostromedial tegmental area (RMTg)
mediates many behaviors, including sleep and addiction. However, presynaptic patterns
governing the activity of γ-aminobutyric acid-releasing (GABAergic) neurons, the main
neuronal type in the RMTg, have not been defined. Here, we used cell-type-specific
retrograde trans-synaptic rabies viruses to map and quantify the monosynaptic afferents
to RMTg GABAergic neurons in mouse whole brains. We identified 71 ascending
projection brain regions. Sixty-eight percent of the input neurons arise from the ipsilateral
and 32% from the contralateral areas of the brain. The first three strongest projection
regions were the ipsilateral lateral hypothalamus, zone incerta, and contralateral pontine
reticular nucleus. Immunohistochemistry imaging showed that the input neurons in
the dorsal raphe, laterodorsal tegmentum, and dorsal part of zone incerta were
colocalized with serotoninergic, cholinergic, and neuronal nitric oxide synthetase-
expressing neurons, respectively. However, in the lateral hypothalamus, a few input
neurons innervating RMTg GABAergic neurons colocalized orexinergic neurons but
lacked colocalization of melanin-concentrating hormone neurons. Our findings provide
anatomical evidence to understand how RMTg GABAergic neurons integrate diverse
information to exert varied functions.

Keywords: rostromedial tegmental area (RMTg), GABAergic neurons, mouse, rabies virus retrograde tracing,
monosynaptic inputs

INTRODUCTION

The rostromedial tegmental area (RMTg) was first defined in rats. When rats are administered
psychostimulants, such as cocaine, a large number of neurons in the RMTg express the immediate-
early gene product c-Fos (Geisler et al., 2008). It has been demonstrated that the RMTg is primarily
innervated by the lateral habenula (LHb) in the thalamus (Herkenham and Nauta, 1979; Jhou
et al., 2009b) and sends particularly dense projections to the ventral tegmental nucleus (VTA) or
substantia nigra compacta (SNc), and the dorsal raphe nucleus (DR) (Sego et al., 2014; Metzger
et al., 2019). Thus, the RMTg has been proposed to be implicated in the aversive emotion process
(Glover et al., 2016; Fu et al., 2017). However, increasing evidence has illustrated that the RMTg
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plays crucial roles in many other regulatory functions, such as
sleep-wake regulation (Yang S. R. et al., 2018), depression (Proulx
et al., 2018; Elmer et al., 2019), and substance abuse disorders
including opioid and alcohol addictions (Zhao et al., 2020). Li
et al. (2019b) recently reported that the RMTg drives triply
dissociable responses to aversive cues, outcomes, and prediction
errors from the prelimbic cortex, brainstem parabrachial nucleus
(PB), and LHb, respectively. These studies showed that the
heterogeneous functions of the RMTg are likely mediated by
multiple afferents. Conventionally, fluorogold and cholera toxin
subunit b (CTb) are two widely utilized retrograde tracers in
tracing studies. Traditional tracing approaches provide important
classifications of major afferent inputs; however, traditional
tracing cannot distinguish between cell types. Moreover, the
traditional tracers are less efficient. There is a decrease in
fluorescent intensity or the number of labeled cells with time
(Dederen et al., 1994; Novikova et al., 1997). Although the
RMTg is primarily composed of γ-aminobutyric acid-releasing
(GABAergic) neurons, they account for about 70–92% of the total
neurons (Jhou et al., 2009a). Previous anatomical and functional
studies of the RMTg were mainly conducted in rats; however,
the common use of transgenic mice, together with optogenetics
and chemogenetics, has made it possible to manipulate specific
subtypes of certain nuclei. In addition, most recent functional
studies of the RMTg have been performed in mice (Li et al.,
2019b; Taylor et al., 2019; Markovic et al., 2021; Vlasov et al.,
2021).

Recently, the development of the genetically modified
retrograde trans-synaptic rabies virus (RV) has allowed us to
identify the whole-brain presynaptic input neurons in a specific
neuronal population within a complicated neural network. In
combination with immunohistochemistry, neuronal types of
specific inputs can be further characterized (Yuan et al., 2018; Xu
X. et al., 2020). To overcome the limitations of traditional tracing
technology, we utilized the viral tracing method to map the
whole-brain monosynaptic afferent inputs to RMTg GABAergic
neurons in mice. We then labeled several molecular markers
related to sleep-wake regulation and compared the statistical
differences between ipsilateral and contralateral inputs. Our
findings provide a structural framework for understanding the
diverse physiological functions of RMTg GABAergic neurons.

MATERIALS AND METHODS

Animals
All protocols were approved by the Committee on the Ethics
of Animal Experiments of the School of Basic Medical Sciences,
Fudan University, China, with the license identification number
20210302-105. Male and female vesicular GABA transporter
(VGAT)-Cre mice (Jackson Laboratory stock 017535) at 8–
10 weeks old were used in this study (Chao et al., 2010). Mice
were housed in a 12-h light-dark cycle (lights on at 07:00
and off at 19:00, illumination intensity approximately 100 lx)
at ambient temperature (22 ± 0.5◦C), and with a relative
humidity of 60 ± 2%. Food and water were provided ad libitum
(Yan et al., 2021).

Viruses and Viral Injections
All viruses used in this study were purchased from BrainVTA
(Wuhan, China). Mice were anesthetized with 1.5–2% isoflurane
and placed on a stereotaxic apparatus. After asepsis, the skin
was cut to expose the skull, and the overlying connective tissue
was removed. A small craniotomy was performed above the
superficial layer of the RMTg. A 20-nL mixture of the help
viruses of AAV (adeno-associated virus)–EF1α-DIO-H2B-eGFP-
T2A-TVA (tumor virus receptor A) and AAV-EF1α-DIO-RG
(rabies glycoprotein) was slowly injected (40 nL/min) into one
side of the RMTg. The mice were surgically sutured and kept on
a heating pad until they awoke from the anesthesia. Two weeks
later, 50 nL of EnvA-RG-deleted and dsRed-expressing RV (RV-
EnvA-1G-dsRed) was microinjected in the same site. The viral
injection coordinates in the RMTg refer to the bregma−3.8 mm,
0.5 mm from midline, and at a 4.0 mm depth from the dura.
Considering the valid viral infection and neurotoxicity of RV, the
mice were perfused one week later after RV delivery (Ciabatti
et al., 2017; Chen et al., 2022).

Immunohistochemistry
After being deeply anesthetized, mice were transcardially
perfused with phosphate-buffered saline (PBS), followed by
4% paraformaldehyde in PBS. For fixation, brains were kept
overnight in 4% paraformaldehyde. Each brain was placed in
30% sucrose in PBS for approximately 48 h. After embedding
and freezing, the brains were sectioned into 30 µm coronal slices
using a microtome (CM1950, Leica, Germany).

For the immunofluorescence assay, brain slices were washed
three times using PBS and then incubated with primary
antibodies [rabbit anti-Foxp1, 1:20,000, ab16645, Abcam,
Waltham, MA, United States (Lahti et al., 2016; Smith et al.,
2019); goat anti-choline acetyltransferase (ChAT), 1:1000,
AB144P, Millipore, Sheboygan Falls, WI, United States (Van
Dort et al., 2015); goat anti-hypocretin A (Hcrt), 1:600, sc-80263,
Santa Cruz Biotechnology, Dallas, TX, United States (Li et al.,
2022); rabbit anti-melanin concentrating hormone (MCH),
1:1000, H-070-47, Phoenix Pharmaceuticals, Burlingame, CA,
United States (Apergis-Schoute et al., 2015); rabbit anti-serotonin
(Sero), 1:5000, S5545, Sigma, St. Louis, MO, United States (Baum
et al., 2018); goat anti-parvalbumin (PV), 1:1000, PVG213,
Swant, Burgdorf, Switzerland (Schwaller et al., 1999); rabbit
anti-neuronal nitric oxide synthase (nNOS), 1:200, 61-7000,
Thermo Fisher, Waltham, MA, United States (Ding et al.,
2005; Li and Spitzer, 2020)] dissolved in PBS-Triton (0.3%
Triton X-100 in PBS) overnight at 4◦C. The next day, slices
were washed with PBS and incubated with Alexa Fluor 488-
conjugated IgG secondary antibodies (donkey anti-rabbit,
1:1000; Jackson ImmunoResearch, United States; donkey anti-
goat, 1:1000, Jackson ImmunoResearch, United States) for 2 h
at room temperature. The immunohistochemical reaction was
terminated by washing three times with PBS. Next, the sections
were stained for nuclei with 4’, 6-diamidino-2-phenylindole
(DAPI, 1:10000, D9542, Sigma-Aldrich, United States) for
10 min. Finally, the sections were mounted on glass slides
and cover-slipped with Fluoromount GTM (Southern Biotech,
Birmingham, AL, United States) for imaging.
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Imaging and Data Analysis
For whole-brain retrograde tracing, one out of every four sections
was captured using a 20 × objective on a microscope (VS-
120, Olympus, Tokyo, Japan). Other fluorescence images were
captured using a confocal microscope (Nikon AIR-MP). Each
slice was matched to the corresponding atlas level of the mouse
brain atlas (Franklin and Paxinos, 2001). The dsRed-expressing
neurons in individual nuclei within each whole brain were
quantified semi-automatically using ImageJ software. First, the
images were converted into 8-bit grayscale and adjusted using
a threshold. Before automatic quantification with analysis of
particles, cell size and circularity were set accordingly. Next,
dsRed-labeled cells were manually checked. The proportion
of input neurons from each of the 71 brain regions was
calculated as the ratio of the total number of dsRed-labeled
cells in each brain (including both sides with the injection
site excluded). The neurons in each brain region, with a
proportion of more than 0.1% of the total monosynaptic inputs,
were calculated. Based on the proportion of dsRed-labeled
cells in each nucleus, we defined the following four grades of
afferent inputs: numerous inputs (over 6%), large inputs (3–
6%), moderate inputs (1–3%), and few inputs (<1%), as shown
in Figures 6, 7. All data are presented as mean ± standard
error of the mean.

RESULTS

Mapping Monosynaptic Inputs to
Rostromedial Tegmental Area
GABAergic Neurons Using the Rabies
Virus-Mediated Trans-Synaptic Tracing
System
To identify the monosynaptic afferents to RMTg GABAergic
neurons, we used RV-mediated, trans-synaptic retrograde tracing
on a transgenic mouse line expressing Cre recombinase in
GABAergic neurons. This system has been shown to efficiently
label monosynaptic inputs to specifically infected starter cells
(Wickersham et al., 2007).

Using VGAT-Cre mice, the avian TVA and the RG were first
expressed in RMTg GABAergic neurons achieved by unilateral
injection of two kinds of helper viruses (AAV-EF1α-DIO-H2B-
eGFP-T2A-TVA and AAV- EF1α-DIO-RG) into the RMTg.
After 2 weeks, glycoprotein (G) gene-deleted RVs expressing
dsRed (RV-EnVA-MG-dsRed) were injected into the same site,
where the RVs only infected TVA-expressing cells and required
RG expression to spread retrogradely into presynaptic cells
(Figures 1A,B). The starter neurons, which are shown in yellow,
were characterized by the expression of both the helper virus
and RV. We found that 67% of the eGFP-expressing neurons
co-expressed RV within the RMTg region, but only about
4% in the adjacent area of the RMTg. The results indicated
that the dsRed-expression of the RV primarily limited to the
RMTg region. The starter neurons were shown to co-express
Foxp1, which is recognized as a molecular marker of the
RMTg. There were some neurons infected only with RV but

not the helper virus in the RMTg, indicating the existence
of local monosynaptic inputs to RMTg GABAergic neurons
(Figures 1C–E).

In addition, we mapped the starter neurons in the RMTg
from five brain slice levels for each of the four mice and showed
that they were mostly limited to the RMTg. The starter neurons
were mainly observed in the coronal planes between −3.96 and
−4.84 mm from the bregma (Figure 2).

Overview of Input Patterns to
Rostromedial Tegmental Area
GABAergic Neurons
To investigate the whole-brain input regions to RMTg
GABAergic neurons, we cut and examined serial coronal
sections after sufficient infection time for the three kinds of
viruses. Representative sections from a VGAT-Cre mouse
revealed that RMTg GABAergic neurons are innervated by
whole-brain inputs. The dsRed-labeled afferent neurons were
mainly located in the thalamus, hypothalamus, midbrain, and
pons, such as the LHb, lateral hypothalamus (LH), zona incerta
(ZI), superior colliculus (SC), DR, and laterodorsal tegmental
nucleus (LDT) (Figure 3).

The images in Figure 4 depict selected representative
inputs innervating RMTg GABAergic neurons in detail.
The representative input neurons are located in the nuclei
of the following regions: the isocortex, specifically from
the secondary motor cortex and cingulate cortex; lateral
preoptic area (LPO); substantia innominata (SI); magnocellular
preoptic nucleus/nucleus of the horizontal limb of the
diagonal band; medial preoptic area (MPA); ZI, dorsal part
(ZID); LH; LHb; anterior pretectal nucleus, dorsal part;
magnocellular nucleus of the posterior commissure/nucleus
of the posterior commissure; periaqueductal gray (PAG);
retroparafascicular nucleus; deep mesencephalic nucleus
(DpMe); medial mammillary nucleus; deep gray layer of the
superior colliculus; deep white layer of the superior colliculus;
intermediate gray layer of the superior colliculus; intermediate
white layer of the superior colliculus; median raphe nucleus
(MnR); pontine reticular nucleus (Pn), oral part; DR, dorsal
part; DR, ventral part; DR, ventrolateral part; raphe cap;
dorsal raphe, caudal part; LDT; locus coeruleus; pontine
reticular nucleus, caudal part; lateral parabrachial nucleus;
prepositus nucleus; gigantocellular reticular nucleus (Gi), ventral
part (Figure 4).

Immunostaining dsRed-Labeled Neurons
With Several Neuronal Markers of
Neurons Implicated in Sleep-Wake
Regulation
Immunofluorescence assays showed that the monosynaptic
inputs to RMTg GABAergic neurons colocalized with several
markers of neurons implicated in diverse physiological functions,
including the sleep-wake cycle. In the LH, the strongest
presynaptic input nucleus to RMTg GABAergic neurons
demonstrated in the present study, 12% of the dsRed-labeled
neurons colocalized with hypocretin neurons which involved
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FIGURE 1 | Virus injection and starter neurons in the rostromedial tegmental area (RMTg) in the vesicular GABA transporter (VGAT)-Cre mice. (A) Schematic diagram
of injection of helper viruses, including adeno-associated virus (AAV) expressing tumor virus receptor A (TVA) with a green fluorescent protein
(AAV-EF1α-DIO-H2B-eGFP-T2A-TVA) or expressing rabies glycoprotein (RG) (AAV-EF1α-DIO-RG) into the RMTg in a VGAT-Cre mouse, followed by injection of
modified rabies virus (RV) expressing dsRed (RV-EnVA-MG-dsRed). (B) Experimental timeline for injection of helper viruses, RV, and perfusion. (C) Immunostaining
showed the presence of merged neurons (yellow) in the RMTg. The dashed square region is the magnification of the indigo square region in the left upper islet.
(D) Higher magnification of the dashed square region in C. Red, RV-infected neurons; green, helper virus-infected neurons with no RV infection; purple, neurons
stained with Forkhead box protein 1 (Foxp1); yellow, starter neurons merged with both helper viruses and RV. (E) Co-expression rate of dsRed-labeled neurons in
eGFP-expressing neurons. In, inside the RMTg; Out, outside the RMTg. n = 4, each data point represents one experimental mouse.

wakefulness. There were almost no dsRed-labeled neurons (2%)
that colocalized with MCH-expressing neurons, which are known
to promote rapid eye movement (REM) sleep (Scammell et al.,
2017; Liu and Dan, 2019). Given that excitatory glutamatergic
and inhibitory GABAergic neurons make up a large number of
cell populations in the LH (Mickelsen et al., 2019), the dense
monosynaptic projections to RMTg GABAergic neurons may
result from glutamatergic or GABAergic neurons.

In contrast, in the DR, most dsRed-labeled neurons, which
accounted for 76%, colocalized with serotonergic neurons, which
are known to regulate wakefulness and REM sleep. Although
almost no dsRed-labeled neurons (1%) colocalized with ChAT in
the basal forebrain (BF), many input neurons, which accounted
for 26% in the LDT, were co-expressed with cholinergic neurons,
which participate in REM sleep initiation (Scammell et al.,
2017). Interestingly, a large number of dsRed-labeled neurons
accounting for 90% in the ZID were colocalized with nNOS-
expressing neurons. Unlikely, only 6% of the input neurons in

the reticular part of the substantia nigra (SNr) colocalize with PV
neurons (Figure 5).

Statistics of Ipsilateral and Contralateral
Input Neurons Innervating Rostromedial
Tegmental Area GABAergic Neurons
After identifying the brain regions with monosynaptic inputs to
RMTg GABAergic neurons, we performed a statistical analysis of
the distribution of the input nuclei according to the percentage
of the number of dsRed-labeled afferent neurons in each brain
region to the total number of dsRed neurons in each of the
whole brains (Figure 6, n = 4). We have identified 71 nuclei that
had monosynaptic connections with RMTg GABAergic neurons,
with each brain region having several dsRed-labeled neurons
making up more than 0.1% of the total labeled neurons. Among
these monosynaptic input neurons in the entire brain, 68.2%
of the dsRed-labeled neurons were located on the ipsilateral
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FIGURE 2 | Mapping of the starter neurons in the rostromedial tegmental area (RMTg) in vesicular GABA transporter (VGAT)-Cre mice (A–D). Coronal sections
showing the distribution of starter neurons in the RMTg (between −3.96 mm and −4.84 mm from bregma) of four VGAT-Cre mice. The area of starter neurons is
depicted by the orange shaded region.

side, while 31.8% were located on the contralateral side. The
total afferent neurons originated from the following 11 brain
structures: the isocortex, olfactory area, striatum, pallidum,
preoptic areas, amygdala, thalamus, hypothalamus, midbrain,
pons, and medulla.

Among the ipsilateral inputs, the secondary motor cortex
(1.26 ± 0.21%) and cingulate cortex (0.90 ± 0.13%) comprised
more dsRed-labeled neurons in the isocortex. In the striatum,
the accumbens nucleus (Acb) provided the highest number of
inputs (2.62 ± 0.40%). The first and second higher proportions
of the total afferent neurons in the pallidum were in the
ventral pallidum (VP) (0.85 ± 0.14%) and SI (0.49 ± 0.08%),
respectively, while in the preoptic area, the LPO (0.91 ± 0.08%)

and MPA (0.43 ± 0.03%) had more dsRed-labeled input cells
than other regions. The LHb had the most input neurons in the
thalamus (3.13± 0.24%). In the hypothalamus, the brain regions
sending the first and second largest number of input neurons to
RMTg GABAergic neurons were the LH (8.49 ± 0.51%) and ZI
(5.95± 1.01%), respectively. In the midbrain, pons, and medulla,
a lot of nuclei had stronger monosynaptic connections with
proportions over 1% of total input neurons to RMTg GABAergic
neurons, including the PAG (4.37 ± 0.67%), DR (4.13 ± 0.38%),
SC (3.23 ± 0.18%), DpMe (2.30 ± 0.48%), interpeduncular
nucleus (IPN) (2.23 ± 0.59%), SNr (1.44 ± 0.33%), VTA
(1.26 ± 0.32%), Pn (3.41 ± 0.30%), LDT (3.28 ± 0.31%), MnR
(1.90± 0.20%), and Gi (1.84± 0.10%).
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FIGURE 3 | Whole-brain monosynaptic inputs to rostromedial tegmental area (RMTg) γ-aminobutyric acid (GABA)-releasing neurons in vesicular GABA
transporter-Cre mice. Regions are labeled according to the mouse brain atlas (Franklin and Paxinos, 2001). Abbreviations: LPO, lateral preoptic area; BNST, bed
nucleus of the stria terminalis; MPA, medial preoptic area; M2, secondary motor cortex; LHb, lateral habenular; LH, lateral hypothalamus; ZI, zona incerta; MM,
medial mammillary nucleus, medial part; ZID, zona incerta, dorsal part; fr, fasciculus retroflexus; SC, superior colliculus; SNr, substantia nigra, reticular part; SNc,
substantia nigra, compact part; IPN, interpeduncular nucleus; LDT, laterodorsal tegmental nucleus; CnF, cuneiform nucleus; PPT, pedunculopontine tegmental
nucleus; PnO, pontine reticular nucleus, oral part; DR, dorsal raphe; MnR, median raphe nucleus; DRC, dorsal raphe, caudal part; DMTg, dorsomedial tegmental
area.

In addition, we compared the proportions of the ipsilateral
inputs with contralateral inputs. We found that RMTg
GABAergic neurons were preferentially innervated by
neurons on the ipsilateral side rather than their contralateral
counterparts, but there were some exceptions. The contralateral
Pn (5.99 ± 0.35%), MnR (4.64 ± 0.40%), reticulotegmental
nucleus of the pons (RtTg, 0.43 ± 0.18%), paragigantocellular
nucleus (PGi, 0.34 ± 0.03%), and lateral (dentate) cerebellar

nucleus (Lat, 0.44 ± 0.10%) sent more monosynaptic
projections to RMTg GABAergic neurons than their ipsilateral
counterparts (Figure 6).

To compare the broad distribution of the input neurons more
intuitively in the whole brain, we showed sagittal sections for
schematic illustrations of the proportion of input neurons within
each nucleus on either the ipsilateral or the contralateral side
of the whole brain monosynaptic inputs to RMTg GABAergic
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FIGURE 4 | Representative nuclei with monosynaptic inputs to RMTg γ-aminobutyric acid-releasing (GABAergic) neurons. Abbreviations: M2, secondary motor
cortex; Cg, cingulate cortex; LPO, lateral preoptic area; SI, substantia innominate; MCPO/HDB, magnocellular preoptic nucleus/nucleus of the horizontal limb of the
diagonal band; MPA, medial preoptic area; ZID, zona incerta, dorsal part; ZIV, zona incerta, ventral part; fr, fasciculus retroflexus; PSTh, parasubthalamic nucleus;
LH, lateral hypothalamus; LHb, lateral habenular; MHb, medial habenular; APTD, anterior pretectal nucleus, dorsal part; MCPC/PCom, magnocellular nucleus of the
posterior commissure/nucleus of the posterior commissure; RPF, retroparafascicular nucleus; DpMe, deep mesencephalic nucleus; PAG, periaqueductal gray; SuM,
supramammillary nucleus; MM, medial mammillary nucleus; DpG, deep gray layer of the superior colliculus; DpWh, deep white layer of the superior colliculus; InG,
intermediate gray layer of the superior Colliculus; InWh, intermediate white layer of the superior colliculus; MnR, median raphe nucleus; PnO, pontine reticular
nucleus, oral part; DRD, dorsal raphe nucleus, dorsal part; DRV, dorsal raphe, ventral part; DRVL, dorsal raphe nucleus, ventrolateral part; RC, raphe cap; DTg,
dorsal tegmental nucleus; DRC, dorsal raphe, caudal part; LDT, laterodorsal tegmental nucleus; LC, locus coeruleus; PnC, pontine reticular nucleus, caudal part;
LPB, lateral parabrachial nucleus; Pr, prepositus nucleus; GiV, gigantocellular reticular nucleus, ventral part. Scale bar, 200 µm.

neurons. It clearly showed that the numerous afferent neurons
that accounted for over 6% of the total whole brain were located
in the ipsilateral LH (Figure 7).

DISCUSSION

To understand how RMTg GABAergic neurons integrate
information processing, it is essential to investigate the afferent

connections that influence neuronal activity. Because of the non-
specificity and inefficiency of conventional retrograde tracers,
previous tracing studies did not represent comprehensive
monosynaptic inputs to RMTg GABAergic neurons (Jhou et al.,
2009b; Petzel et al., 2017). In the present study, we used
a rabies-based system to label presynaptic afferents at the
whole-brain level and quantified the number of input neurons.
A total of 71 nuclei were identified that send presynaptic
inputs to RMTg GABAergic neurons in the whole brain, such
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FIGURE 5 | Immunostaining of typical nuclei innervating rostromedial tegmental area γ-aminobutyric acid-releasing (GABAergic) neurons with several markers of
sleep-wake regulation. (A–G) Images showing that dsRed-labeled neurons colocalized with hypocretin (Hcrt) and melanin-concentrating hormone (MCH) in the
lateral hypothalamus (LH) (A,B), choline acetyltransferase (ChAT) in the basal forebrain (BF) and laterodorsal tegmental nucleus (LDT) (C,D), parvalbumin (PV) in the
substantia nigra, reticular part (SNr), (E) serotonin (Sero) in the dorsal raphe nucleus (DR) (F), and neuronal nitric oxide synthase (nNOS) in the zona incerta, dorsal
part (ZID) (G). The merged neurons are pointed by arrows. Rightmost column, quantification of dsRed-labeled cells that co-expressed with specific cell type
biomarkers. n = 3, each data point represents one experimental mouse. Abbreviation: DAPI, 4’, 6-diamidino-2-phenylindole.

as the LH, LHb, Acb, VP, PAG, and DR. These enormous
inputs arrived from the regions implicated in sleep/wake,
motor, and mood regulation. Immunohistochemical staining
showed that the input neurons colocalized with DR serotonergic
neurons and LDT cholinergic neurons but not with BF
cholinergic neurons. Several presynaptic inputs from the SNr

are PV+ neurons. Notably, RMTg GABAergic neurons receive
strong inputs from nNOS-expressing neurons in the ZID.
Furthermore, the afferent pattern to RMTg GABAergic neurons
was preferentially ipsilateral; however, there were some strong
inputs from the contralateral side, such as the LHb, LH,
SC, Pn, and MnR.
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FIGURE 6 | Statistical analysis of the whole-brain distribution of monosynaptic inputs to rostromedial tegmental area (RMTg) γ-aminobutyric acid-releasing
(GABAergic) neurons in vesicular GABA transporter (VGAT)-Cre mice. The average proportion of dsRed-labeled neurons in each of the ipsilateral and contralateral
brain regions with more than 0.1% of the total inputs to RMTg GABAergic neurons (n = 4). Brain areas are grouped into 11 structures. Left, contralateral inputs.
Right, ipsilateral inputs. Abbreviations: M2, secondary motor cortex; Cg, cingulate cortex; M1, primary motor cortex; PrL, prelimbic cortex; AI, agranular insular
cortex; S1, primary somatosensory cortex; PtA, parietal association cortex; OC, orbital cortex; RSA, retrosplenial agranular cortex; RSG, retrosplenial granular
cortex; IL, infralimbic cortex; Pir, piriform cortex; Acb, accumbens nucleus; CPu, caudate putamen; LS, lateral septal nucleus; VP, ventral pallidum; SI, substantia
innominate; LGP, lateral globus pallidus; BNST, bed nucleus of the striatum; VDB, nucleus of the vertical limb of the diagonal band; MCPO/HDB, magnocellular
preoptic nucleus/nucleus of the horizontal limb of the diagonal band; MS, medial septal nucleus; LPO, lateral preoptic area; MPA, medial preoptic area; MPO,
median preoptic nucleus; ADP, anterodorsal preoptic nucleus; CeA, central amygdaloid nucleus; BMA, basomedial amygdaloid nucleus; LHb, lateral habenular; Eth,
ethmoid thalamic nucleus; PF, parafascicular thalamic nucleus; LH, lateral hypothalamus; ZI, zona incerta; MM, medial mammillary nucleus; SuM, supramammillary
nucleus; PH, posterior hypothalamic area; F, nucleus of the fields of Forel; REth, retroethmoid nucleus; PAG, periaqueductal gray; DR, dorsal raphe nucleus; SC,
superior colliculus; DpMe, deep mesencephalic nucleus; IPN, interpeduncular nucleus; SNr, substantia nigra, reticular part; VTA, ventral tegmental area; APT, anterior
pretectal nucleus; PPT, pedunculopontine tegmental nucleus; CnF, cuneiform nucleus; SNc, substantia nigra, compact part; InCo, intercollicular nucleus;
MCPC/PCom, magnocellular nucleus of the posterior commissure/nucleus of the posterior commissure; RPF, retroparafascicular nucleus; ECIC, external cortex of
the inferior colliculus; PrC, precommissural nucleus; RC, raphe cap; Pn, pontine nuclei; LDT, laterodorsal tegmental nucleus; MnR, median raphe nucleus; PB,
parabrachial nucleus; DMTg, dorsomedial tegmental area; Su5, supratrigeminal nucleus; LC, locus coeruleus; RtTg, reticulotegmental nucleus of the pons; Gi,
gigantocellular reticular nucleus; Pr, prepositus nucleus; RMg, raphe magnus nucleus; PGi, paragigantocellular nucleus; GiV, gigantocellular reticular nucleus; Lat,
lateral (dentate) cerebellar nucleus; CGPn, central gray of the pons; ROb, raphe obscurus nucleus. Data represent the mean ± standard error of the mean.
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FIGURE 7 | Schematic diagrams showing the distribution of the ipsilateral and contralateral monosynaptic inputs innervating rostromedial tegmental area (RMTg)
γ-aminobutyric acid-releasing (GABAergic) neurons. (A) Sagittal sections for a schematic illustration of whole-brain inputs to RMTg GABAergic neurons in vesicular
GABA transporter-Cre mice. (B) The proportion of ipsilateral and contralateral inputs to RMTg GABAergic neurons. Abbreviations: M2, secondary motor cortex; Acb,
accumbens nucleus; LHb, lateral habenular; LH, lateral hypothalamus; ZI, zona incerta; PAG, periaqueductal gray; DR, dorsal raphe nucleus; SC, superior colliculus;
DpMe, deep mesencephalic nucleus; IPN, interpeduncular nucleus; SNr, substantia nigra, reticular part; VTA, ventral tegmental area; PPT, pedunculopontine
tegmental nucleus; Pn, pontine nuclei; LDT, laterodorsal tegmental nucleus; MnR, median raphe nucleus; Gi, gigantocellular reticular nucleus. Data represent the
mean ± standard error of the mean.

Location of the Rostromedial Tegmental
Area
The RMTg has been identified based on the Fos
immunoreactivity following the administration of
psychostimulants and the position of retrograde-labeled
neurons stained by injection of tracers into the VTA (Geisler
et al., 2008; Jhou et al., 2009a). In addition, by observing the
presence and distribution of LHb input fibers within the RMTg
through injection of transported viral vector encoding eGFP
into the LHb, it was found that a part of the anterior tegmental
nucleus and paramedian raphe were also included in the RMTg
region (Quina et al., 2015). Recent reports on molecular markers
further distinguished the RMTg from its surroundings. The
transcription factor Foxp1 is highly expressed in the RMTg in
adult rats (Lahti et al., 2016). When the retrograde tracer CTb
was injected into the VTA of rats, about 83% of CTb-positive
neurons expressed Foxp1 within the RMTg region, but only 4.5%
of CTb-labeled cells expressed Foxp1 outside the RMTg. Those
ratios in mice were 78% and 2%, respectively. Furthermore,
the Foxp1-expressing neurons in the RMTg are GABAergic,
as Foxp1 labeling colocalized strongly with VGAT expression
within the RMTg (Smith et al., 2019). Therefore, Foxp1 could be
recognized as a molecular marker to distinguish the RMTg from
the adjacent area (Zhao et al., 2020; Jhou, 2021).

Here, we confirmed the location of the starter neurons in
the RMTg through anatomical landmarks such as the IPN and

superior cerebellar peduncle, as well as Foxp1 staining. The site
of the starter neurons corresponded to prior mouse studies of the
RMTg (Quina et al., 2015; Polter et al., 2018; Taylor et al., 2019;
Sun et al., 2020).

Comparison With Previous Retrograde
Tracing Studies
Previous studies using classical non-specific retrograde tracers
have shown that the strongest inputs to the RMTg originate
from the LHb (Jhou et al., 2009b). Here, we used an RV-
mediated retrograde tracing system in VGAT-Cre mice, which
allowed specific labeling of presynaptic inputs innervating RMTg
GABAergic neurons (Xu X. et al., 2020) and found that it is the
LH, rather than the LHb, which provides the strongest dense
presynaptic connections with RMTg GABAergic neurons. The
proportion of inputs arising from the ipsilateral LH and LHb
were 8.49 ± 0.51% and 3.13 ± 0.24%, respectively. In addition,
the proportion of monosynaptic inputs in the ipsilateral ZI, PAG,
DR, SC, Pn, and LDT was also higher than those in the LHb.
Similarly, previous work showed that the VTA/SNc sent robust
projections to the RMTg (Jhou et al., 2009b). However, our
results illustrated that the VTA/SNc comprised fewer proportions
of presynaptic inputs, which accounted for 1.26 ± 0.32% and
0.35 ± 0.11%, respectively. Unlike the medium inputs in the
Pn revealed previously (Jhou et al., 2009b), the present study
found large presynaptic input neurons in both the ipsilateral Pn
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(3.41 ± 0.30%) and contralateral Pn (5.99 ± 0.35%). Moreover,
we found that 0.37 ± 0.14% and 0.75 ± 0.23% of the whole
brain inputs to RMTg GABAergic neurons originated from
the ipsilateral prelimbic cortex and PB, respectively, which is
consistent with the findings in previous studies (Jhou et al.,
2009b; Li et al., 2019a; Cruz et al., 2021).

In addition, we also identified several novel afferent nuclei to
RMTg GABAergic neurons in mice, including the motor cortex,
piriform cortex, median preoptic area, raphe areas, dorsomedial
tegmental area, locus coeruleus, gigantocellular reticular nucleus,
prepositus nucleus, lateral cerebellar nucleus, and central gray of
the pons. These new findings will provide an anatomical basis for
further functional studies of the RMTg.

Furthermore, we identified for the first time, that many
direct monosynaptic afferents to RMTg GABAergic neurons
also originate from the contralateral brain, such as the LHb,
LH, SC, Pn, and MnR. The contralateral Pn and MnR had
stronger projections than their ipsilateral counterparts. The
function of this bilateral or preferential contralateral innervation
pattern to the RMTg GABAergic neurons needs to be studied
further. A recent study showed that unilateral optogenetic
activation of indirect striatal projection neurons in the basal
ganglia suppresses contraversive licking and promotes ipsiversive
licking. This work illustrated that indirect striatal projection
neurons implemented action selection via bilateral modulation
of the activity of its downstream target SC (Lee and Sabatini,
2021). Cheng et al. (2021) found that the hepatosensitive region
CA3 in the hippocampus receives direct projections from the
bilateral LH area. In our study, the findings that the RMTg
GABAergic neurons are bilaterally innervated by a large number
of input neurons suggest that the RMTg may integrate diverse
information from bilateral afferent regions such as the SC, LH,
Pn, and LHb to regulate important functions.

Functional Implications for Rostromedial
Tegmental Area GABAergic Neurons in
Sleep-Wake Regulation
We have found that RMTg GABAergic neurons receive strong
inputs from many brain regions related to sleep-wake regulation.
The LH is a functionally and anatomically diverse brain region
that is known to mediate many physiological processes, including
feeding, arousal, and energy balance. The LH MCH neurons
regulate REM sleep while the orexinergic, glutamatergic, and
GABAergic neurons in the LH promote arousal (Arrigoni
et al., 2019). A large number of afferent neurons in the
LH to RMTg GABAergic neurons are probably excitatory or
inhibitory subtypes, which may promote non-REM (NREM)
sleep by activation or disinhibition of RMTg GABAergic neurons,
respectively (Yang S. R. et al., 2018). The ZI, which is adjacent
to the LH, integrates sensory-motor information and projects
heavily to major arousal centers of the thalamus and brainstem,
suggesting that the ZI may influence sleep/wake states. It has been
found that the transcription factor LHx6-expressing GABAergic
neurons, which represent 45% of all GABAergic neurons in the
ZI ventral part, promoted NREM and REM sleep (Liu et al.,
2017). In the present study, the ZI was found to send the second

largest number of inputs to RMTg GABAergic neurons and
was colocalized with nNOS-expressing neurons. These nNOS-
expressing neurons were co-expressed with glutamate and GABA
in previous studies (Roger and Cadusseau, 1985; Ma et al.,
1997; Power and Mitrofanis, 2001; Mitrofanis, 2005). Hence, it
is worth investigating whether the prominent sleep promotion
induced by the RMTg is controlled by the ZID. In the Acb, which
had relatively dense projections to RMTg GABAergic neurons,
the D1 receptor-expressing medium spiny neurons (D1-MSN)
and D2-MSN have been shown to mediate wakefulness and
NREM sleep, respectively (Oishi et al., 2017; Luo et al., 2018).
The dopaminergic and glutamatergic neurons in the VTA have
been revealed for wake-promotion and VTA GABAergic neurons
for sleep promotion (Eban-Rothschild et al., 2016; Yu et al.,
2019). The other relatively strong afferent inputs, such as the
PAG, consist of REM-off GABAergic neurons, while the DR,
LDT, and DpMe contain REM-on serotonergic, cholinergic, and
GABAergic neurons, respectively (Weber et al., 2015; Liu and
Dan, 2019). In addition, previous studies have suggested that
other afferent inputs of the supramammillary nucleus (SuM), Pn,
and Gi to RMTg GABAergic neurons are involved in REM sleep
regulation (Verret et al., 2005; Luppi et al., 2006; Fuller et al., 2007;
Renouard et al., 2015). These connections provide evidence that
RMTg GABAergic neurons play important roles in the regulation
of sleep/wake behavior.

Functional Implications for Rostromedial
Tegmental Area GABAergic Neurons in
Motor Control
Previous studies have shown that SNr GABAergic neurons
play a powerful role in suppressing movement (Hikosaka
and Wurtz, 1985; Kravitz et al., 2010; Gerfen and Surmeier,
2011). There are heterogeneous subtypes within the SNr,
with PV neurons being most active during locomotor states
and glutamic acid decarboxylase 2 (GAD2) neurons being
active during sleep and suppressed during periods of motor
activities. The activation of SNr PV and GAD2 neurons
terminates movement through transitions to quiet wakefulness
and sleep, respectively (Liu et al., 2020). In our study, the
findings of direct synaptic connections of RMTg GABAergic
neurons with SNr PV neurons or with the motor cortex
provide functional implications for RMTg GABAergic neurons
in motor control (Levy et al., 2020). Although the midbrain
dopaminergic system has long been found to play an important
role in reward and prediction errors (Baik, 2013; Schultz,
2016), massive data have revealed that dopaminergic neurons
are related to motor control. Dopaminergic neurons signal
the onset of spontaneous movement in which movement-
related signals are lost in a mouse model of Parkinson’s
disease (Barter et al., 2015; Dodson et al., 2016; da Silva
et al., 2018). Studies have shown that PAG neurons are crucial
for gating and commanding the initiation of escape, such as
running or jumping in situations of imminent threats (Lefler
et al., 2020). In addition, the PAG controls all motor systems
that generate vocalization, coughing, sneezing, vomiting, and
respiration (Holstege, 2014). The DR constitutes a primary
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serotonergic input and modulates diverse functions, including
those that are motor in nature (Ren et al., 2018). The SC
is a sensorimotor structure that integrates visual and other
sensory information to drive diverse behaviors, such as eye,
head, or limb movements, through its vast outputs (Basso et al.,
2021). Our data revealed ascending projections from the SNr,
VTA/SNc, PAG, DR, and SC, suggesting that RMTg GABAergic
neurons are implicated in the regulation of movement. This
function was supported by the findings that rats showed vigorous
locomotion induced by inhibition of the RMTg (Jhou et al.,
2009a; Lavezzi et al., 2015).

Implications for Rostromedial Tegmental
Area GABAergic Neurons in Mood
Control
The RMTg was first discovered by the observation that it was
specifically activated by aversive stimuli such as foot shock and
fasting (Jhou et al., 2009a). Similarly, in our study, we found that
RMTg GABAergic neurons received monosynaptic inputs from
the prelimbic cortex, PB, and LHb, which has been shown to drive
triply dissociable RMTg responses to aversive cues, outcomes,
and prediction errors, respectively (Li et al., 2019b). Moreover,
the cingulate cortex was reported to be involved in pain-related
aversion, while the PB is recognized as a sensory hub for pain and
aversive behaviors (Hayes and Northoff, 2011; Chiang et al., 2019;
Meda et al., 2019).

Depression is a common mental health disorder. Loss of
motivation is one of the main characteristics of depression, which
is manifested by impairments in reward-seeking behavior and
escape from punishment (Salamone and Correa, 2012; Jean-
Richard-Dit-Bressel et al., 2018). The generation of motivation
is closely associated with the brain’s reward centers, including the
VTA and DR (Ren et al., 2018). Moreover, Fernandez et al. (2018)
found that chronic social defeat stress, a preclinical paradigm
of depression, causes marked hyperactivity of LDT cholinergic
neurons. Chemogenetic inhibition of these neurons prevents
depression-like behaviors. Accumulating evidence has shown
that overactivity in the LHb is crucial for driving depression-like
behaviors (Yang et al., 2008; Yang Y. et al., 2018). Optogenetic
activation of the projection from the LHb resulted in an increase
in immobility in forced swimming tests and loss of motivation
to eat (Proulx et al., 2018). Similar studies have shown that the
RMTg plays an important role in the expression of anhedonia
and depression-like behaviors induced by stress and withdrawal
from chronic alcohol consumption in rats (Elmer et al., 2019; Fu
et al., 2019). In a recent study, Markovic et al. (2021) found that
pain increased RMTg inhibitory tone onto VTA dopaminergic
neurons, making them less excitable and finally leading to
anhedonia-like behavior.

Regarding the presynaptic inputs to RMTg GABAergic
neurons, the Acb and VP have been known as key brain regions
for regulating drug addiction (Xu L. et al., 2020; Kupchik and
Prasad, 2021). The results of the existing research suggest that
the activities of RMTg neurons are profoundly influenced by
addictive drugs, including opioids (Barrot, 2015) and alcohol (Fu
et al., 2019; Glover et al., 2019).

In this study, we found that RMTg GABAergic neurons
received monosynaptic innervation of multiple important
emotional regulatory neural circuits, such as the VTA, DR, LDT,
LHB, Acb, and VP, suggesting that the RMTg may be involved in
mood regulation.

In summary, for the first time, we mapped and quantified
the afferents of RMTg GABAergic neurons and found that
they receive extensive ascending projections. Most of them
preferentially arise from the ipsilateral rather than the
contralateral counterpart. Moreover, we found several novel
afferent nuclei and identified several neuronal types innervating
RMTg GABAergic neurons. Our data suggest that RMTg
GABAergic neurons have diverse physiological and pathological
functions, particularly those involved in sleep/wake, motor, and
mood regulation. Our results provide anatomical evidence for
the elucidation of the roles of RMTg GABAergic neurons in
modulating multiple behaviors.

It is worth noting that in VGAT-Cre mice, in vitro
electrophysiological recording showed that the amplitude of
inhibitory postsynaptic currents of VTA dopaminergic neurons
evoked by photostimulation of RMTg afferents was slightly
reduced by glycine receptor antagonist strychnine, whereas
they were completely blocked by GABAA receptor antagonist
bicuculline, indicating the inhibitory inputs from RMTg to VTA
dopaminergic neurons are dominantly by GABA release (Polter
et al., 2018). These results suggest that the targeted neurons
using VGAT-Cre mice mainly release GABA and possibly co-
release glycine.
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