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Human mitochondrial leucyl tRNA synthetase
can suppress non cognate pathogenic
mt-tRNA mutations
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Abstract

Disorders of the mitochondrial genome cause a wide spectrum of dis-
ease, these present mainly as neurological and/or muscle related
pathologies. Due to the intractability of the human mitochondrial
genome there are currently no effective treatments for these disor-
ders. The majority of the pathogenic mutations lie in the genes
encoding mitochondrial tRNAs. Consequently, the biochemical defi-
ciency is due to mitochondrial protein synthesis defects, which mani-
fest as aberrant cellular respiration and ATP synthesis. It has
previously been reported that overexpression of mitochondrial ami-
noacyl tRNA synthetases has been effective, in cell lines, at partially
suppressing the defects resulting from mutations in their cognate
mt-tRNAs. We now show that leucyl tRNA synthetase is able to par-
tially rescue defects caused by mutations in non-cognate mt-tRNAs.
Further, a C terminal peptide alone can enter mitochondria and inter-
act with the same spectrum of mt-tRNAs as the entire synthetase, in
intact cells. These data support the possibility that a small peptide
could correct at least the biochemical defect associated with many
mt-tRNA mutations, inferring a novel therapy for these disorders.
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Introduction

Mitochondria are found ubiquitously in nucleated eukaryotic cells.

One of their key functions is to generate ATP via oxidative

phosphorylation, in order to provide the cell with a readily usable

form of energy. The machinery responsible for this process

comprises five complexes, members of which are encoded by either

the nuclear or the mitochondrial genome (mtDNA). Energy transduc-

tion in the cell is, thus, dependent on the precise and accurate in-

tramitochondrial translation of the 13 mtDNA encoded polypeptides.

Defects in mitochondrial metabolism are being increasingly recog-

nized as a cause for disease. Indeed, mitochondrial disease is no

longer described as a rare disorder, in part as a result of better

awareness and therefore more accurate diagnosis. Studies in the

north east of England indicate a clinical incidence of 9.2 in 100 000,

with a further 16.5 in 100 000 at risk of developing mtDNA disease

before retirement (Schaefer et al, 2008). Pathogenesis can arise from

defects either in nuclear encoded proteins that function in the mito-

chondria (Smits et al, 2010; Chrzanowska-Lightowlers et al, 2011;

Rotig, 2011; Keogh & Chinnery, 2013) or from mutations in the

mtDNA itself (Chinnery & Turnbull, 2000; Greaves et al, 2012). The

ease of sequencing the comparatively small mitochondrial genome

(Anderson et al, 1981) has allowed a comprehensive characteriza-

tion of pathogenic mtDNA mutations, establishing that the majority

of these mutations reside in the mitochondrial tRNA genes. These

would be predicted to impair mitochondrial protein synthesis and

since it is currently not possible to manipulate human mtDNA,

researchers have explored other ways to overcome defects of mt-

tRNAs. Such approaches have often started with yeast as a model

system, in which it has been possible to isolate nuclear suppressor

factors that are able to rescue the defective phenotype of mt-tRNA

mutants (Rinaldi et al, 1997; Feuermann et al, 2003; De Luca et al,

2006). In addition, in a previous study with human cells lines har-

bouring a pathogenic mt-tRNAval mutation (m.1624C>T) we showed

that overexpression of the cognate aminoacyl tRNA synthetase,

VARS2, could partially suppress the consequent molecular defect

(Rorbach et al, 2008). This work demonstrated that the mutation

caused destabilisation of the uncharged mt-tRNAval, such that the

transmitochondrial cybrid line carrying the mutation had severely

1 The Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, UK
2 Department of Biology and Biotechnologies “C. Darwin”, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
3 The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK

*Corresponding author: Tel: +44 191 222 8028; Fax: +44 191 222 5685; E-mail: Robert.Lightowlers@ncl.ac.uk
**Corresponding author: Tel: +44 191 222 8028; Fax: +44 191 222 5685; E-mail: Zofia.Chrzanowska-Lightowlers@ncl.ac.uk
†Present address: Institut f€ur Vegetative Physiologie, der Universit€at zu K€oln, K€oln, Germany
‡Present address: Biochemistry Unit, Specialised Diagnostic Centre, Kuala Lumpur, Malaysia

ª 2014 The Authors. This is an open access article under the terms of the Creative Commons Attribution License,
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

EMBO Molecular Medicine Vol 6 | No 2 | 2014 183

http://dx.doi.org/10.1002/emmm.201303586
http://dx.doi.org/10.1002/emmm.201303586
http://dx.doi.org/10.1002/emmm.201303183


depleted steady state levels of mt-tRNAval. Following induction, the

higher levels of VARS2 increased the proportion of charged

mt-tRNAval, thereby increasing the steady state levels (Rorbach et al,

2008). Other examples of suppression via overexpression of a cog-

nate tRNA synthetase in human cell lines now exist. One of these is

the leucyl tRNA synthetase (Herbert et al, 1988), overexpression of

which has been reported to suppress the effect of an m.3243A>G

mutation in human cells (Li & Guan, 2010). In contrast to the

m.1624C>T mutation that is associated with Leigh disease (McFar-

land et al, 2002), this mutation causes a different mtDNA disease,

MELAS (Shaag et al, 1997).

Genetically correcting an mtDNA defect is not currently a thera-

peutic option. Moreover human mtDNA encodes 22 different tRNAs,

therefore, it would be ideal if a single approach could be developed

that would be equally effective with any pathogenic mt-tRNA muta-

tion. With relevance to this, we were aware of an earlier published

observation that the yeast mt-leucyl tRNA synthetase (NAM2)

possessed generic RNA binding capability (Labouesse et al, 1987;

Herbert et al, 1988) and subsequently that it could suppress non-

cognate mt-tRNA mutations in yeast (Montanari et al, 2010). We

predicted that the human orthologue, LARS2, might also have the

potential to counteract generic mt-tRNA defects in human cells.

Here we illustrate that in human cells, overexpression of the non-

cognate mitochondrial leucyl tRNA synthetase can indeed have a

similar suppressive effect, ameliorating the biochemical dysfunc-

tion. This observation has an important clinical relevance as more

than 200 pathogenic mt-tRNA mutations have been reported, at

least 116 since 2003 (Yarham et al, 2011) and due to the intractabil-

ity of the human mitochondrial genome there is currently no genetic

therapy available. The data and approach presented here may

provide a way forward towards a single therapy that could amelio-

rate the clinical condition arising from all mt-tRNA mutations.

Results

As described above, we previously showed that overexpression of

VARS2 could partially restore the steady state levels of mt-tRNAval

resulting from the m.1624C>T mutation (Rorbach et al, 2008).

However, this original cybrid population, generated from a fusion of

143B.206 q0 cells with patient cytoplasts homoplasmic for the

m.1624C>T Leigh disease mutation, did not recapitulate the pro-

found biochemical phenotype found in the patient’s skeletal muscle

(Rorbach et al, 2008). We therefore aimed to exploit the aneuploid

nature of the 143B.206 q0 parental cell line and identify whether

isolating clones from the population would expose a stronger meta-

bolic defect in a subset of cells. Clones were derived by serial dilu-

tion in glucose. Following expansion, the clones were then

independently assessed for growth in galactose, a carbon source that

forces cells to use oxidative phosphorylation. Of the 67 clones that

were tested only six demonstrated impaired respiratory capacity

when challenged to grow on this carbon source. Although a number

of these clones were selected for transfection with constructs that

would allow inducible expression of aminoacyl tRNA synthetases

(aaRS), the data presented here are the characterization of a repre-

sentative clone (T1) (Fig 1A lanes 2, 6 and 10). Inducibility of

aaRS expression was a key factor in the experimental design, as due

to the aneuploid nature of 143B.206 cells, it was critical that the

behaviour of exactly the same clone could be examined with and

without aaRS overexpression. In order to confirm that the respiratory

deficiency was attributable to the mt-tRNAval mutation, we transfect-

ed the respiratory deficient T1 line with VARS2 (designating it T1V1)

and monitored growth on galactose. On induction of VARS2 expres-

sion, we observed suppression of the m.1624C>T defect as deter-

mined by increased growth on galactose (Fig 1A lanes 7 and 11).

Overexpression of LARS2 can partially rescue the growth
phenotype and molecular defects associated with a non-cognate
mitochondrial tRNA

The equivalent m.1624C>T MT-TV mutation, as well as the MELAS

m.3243A>G MT-TL1 mutation, had previously been introduced into

yeast mtDNA and the mitochondrial leucyl or valyl tRNA synthetase

were each independently overexpressed. Interestingly, suppression

was achieved for the MT-TV mutation using the non-cognate leucyl

tRNA synthetase (Montanari et al, 2010). More recently it has been

shown, again in yeast (Francisci et al, 2011), that not only do

non-cognate aaRS have the ability to suppress the defects caused by

mt-tRNA mutations, but that isolated domains of the aaRS alone

could also have a similar effect (Montanari et al, 2010; Francisci

et al, 2011). Since these investigations had been performed in yeast,

we decided to use the T1 line harbouring the mt-tRNAval mutation to

see if similar suppression by a non-cognate aaRS could be achieved

in human cells. In a parallel fashion to the yeast work, we transfect-

ed T1 with a FLAG tagged version of the human LARS2, (T1L1). This

line together with the T1V1, T1 and 143B.206 q+ parental cells were

routinely propagated on glucose and displayed similar doubling

times (Fig 1A lanes 1–4). When transferred to galactose the parental

143B.206 q+ line continued to grow but with an extended doubling

time. In contrast the T1 and aaRS-transfected derivatives were all

either unable to grow or showed negligible growth unless cells were

induced to express aaRS (Fig 1A cf lanes 7 and 11; 8 and 12). In each

cell line the induction of the relevant aaRS was confirmed by

western blot analysis (Fig 1B cf lanes 1 and 2; 3 and 4).

Next we measured the steady state levels of respiratory complex

proteins to determine whether the partial growth defect suppression

truly reflected an improvement in respiratory competence. Follow-

ing aaRS induction, the levels of mitochondrially encoded COX2

increased. An increase was also observed in the levels of NDUFB8,

a sensitive marker of Complex I (CI) assembly. Nuclear encoded

COX4 also appeared to have a modest increase in steady state levels

(Fig 1C cf lanes 2 and 3; 4 and 5). Complex II is encoded entirely by

the nuclear genome and showed no change when probed for SDHA

(Fig 1C). Since the steady state levels are not always a true indicator

of complex assembly, Blue Native PAGE was performed with either

subsequent western analysis or in gel activity assays. Here again CII

appeared unchanged in T1V1 or T1L1 induced cells, however an

increase in assembled CI and CIV could be seen, with a more

modest increase in CIII (Fig 1D cf lanes 1 and 2; 3 and 4). These

increases in complex formation were reflected in the in gel activities

for the cell lines expressing either VARS2 or LARS2 (Fig 1E cf lanes

1 and 2; 3 and 4). To directly measure the oxygen consumption we

used microscale oxygraphy. Overexpression of either VARS2 or

LARS2 resulted in partial recovery of basal and maximal respiration

rates, while respiration rates after oligomycin and antimycin

inhibition were not altered (Fig 2A). To more accurately assess the
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recovery in respiratory chain complex activities, mitochondria were

isolated from uninduced and aaRS overexpressing cells, on which

spectrophotometric assays were performed for complexes I, II and

IV. There was no change in CII activity, whilst induction of aaRS sig-

nificantly increased CI and CIV activity, where in most cases there

was at least a doubling of activity (Fig 2B).

The analyses thus far were directed at recovery of function

rather than any direct consequence on the mutant tRNAval. Steady

state levels of mt-tRNAs were therefore assessed by high resolution

northern. The level of mt-tRNAval was determined and compared

to those of mt-tRNAphe and mtRNAleu(UUR). Over-expression of

either VARS2 or LARS2 had no effect on either of the two wild

type tRNAs but did increase the level of the mutated tRNAval tran-

script (Fig 2C cf lanes 2 and 3; 4 and 5). Densitometric analysis

indicated that in each case, overexpression of aaRS increased the

mt-tRNAval to approximately 150% of the levels in uninduced cells

(Fig 2C lower panel).

The impact of aaRS overexpression on de novo synthesis of

mitochondrial protein was also assessed. Metabolic labeling was

performed on induced and uninduced T1V1 and T1L1 alongside

143B.206 q+ parental cells. Following induction of either aaRS,

there was an overall increase in labeled protein of approximately

1.5 fold, which corresponded to the increase seen in steady state

levels of the mutated mt-tRNAval under the same conditions. Den-

sitometric analysis of individual products indicated 1.6–1.9 fold

increases after VARS2 induction (Fig 2D cf lanes 2 and 3) and

1.3–2 fold increases after LARS2 overexpression (Fig 2D cf lanes

4 and 5).

LARS2 C-term 67 residues can bind to mt-tRNA in intact cells

As mentioned previously, there is evidence that a C terminal frag-

ment alone, of the mitochondrial leucyl tRNA-synthetases from

either yeast or human, is sufficient to suppress the respiratory

A B

C

D

E

Figure 1. Overexpression of VARS2 or LARS2 relieves defects in growth, steady state levels of OXPHOS proteins and complexes. In each case aaRS overexpression
was induced by 3 days tetracycline (Tet) treatment, indicated by + or � symbols. All data and images represent a minimum of 3 independent experiments.

A Cell growth under glycolytic or respiratory conditions with or without overexpression of aaRS. Equal numbers of 143B.206 Rho+, T1, T1V1 and T1L1 cells were seeded
in medium containing either glucose or galactose as the sole sugar source. The extent of growth and viability of each cell line with or without aaRS overexpression
was determined at 72 h using the neutral red assay. Statistically significant comparisons for uninduced and induced cells are indicated with * (P = 0.016), **
(P = 0.0086) n = 3.

B Overexpression of aaRS. Mitochondrial proteins were isolated from uninduced and aaRS overexpressors. Mitochondrial lysates from T1V1 (100 lg) and T1L1 (50 lg)
were subjected to western blot analysis using antibodies against VARS2L or FLAG to confirm overexpression. Mitochondrial ribosomal protein DAP3 was used to
confirm equal loading.

C Analysis of steady state levels of OXPHOS proteins following aaRS induction. Cell lysates (15 lg) from 143B.206 Rho+ and T1V1 and T1L1 cells with or without
induction were subjected to western blot analysis. Membranes were probed with antibodies directed against OXPHOS proteins and porin as a loading control.

D Blue Native-PAGE analysis of respiratory chain complex levels. Mitochondria (25 lg) from uninduced and induced T1V1 and T1L1 cells were solubilised for BN-PAGE.
Subsequent western blot analysis used antibodies against complex I (NDUFA9), complex IV (COX4), complex III (CORE2) and as a non-mitochondrially encoded
control, complex II (SDHA).

E In gel enzyme activity assay of respiratory chain complexes. BN-PAGE was performed on solubilised mitochondria (50 lg) from uninduced and induced T1V1 and
T1L1 cells. Enzyme activities for complexes I, IV and II were examined.
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defects caused by mutations in yeast mt-tRNAs Leu, Val or Ile (Fran-

cisci et al, 2011). Structural studies indicate that this C terminal

region of the tRNA synthetase folds into a compact domain that is

flexibly linked to the rest of the structure. It also exhibits tRNA bind-

ing activity, recognising the mt-tRNA elbow shape rather than

sequence (Tukalo et al, 2005). We therefore determined whether

A

C

B

D

Figure 2. Overexpression of VARS2 or LARS2 suppresses biochemical defects. In each case aaRS overexpression was induced by 3 days tetracycline (Tet) treatment
(indicated by + or �), except for XF24 analysis. All data and images represent a minimum of 3 independent experiments. Statistically significant P values are as indicated.

A Oxygen consumption by XF24 analyzer. Representative traces of oxygen consumption rates performed under basal conditions, following the addition of oligomycin
(1 lg/ml), uncoupler FCCP (1.5 lM then 3 lM) and antimycin A (2.5 lM) are presented for 143B.206 Rho+, T1, T1V1 and T1L1 cell lines with or without 2 days aaRS
overexpression.

B Respiratory chain activity improves on cognate aaRS or LARS2 overexpression. Mitochondria were isolated from 143B.206 Rho+ cells and T1V1 and T1L1 transfectants
with and without aaRS induction. Enzyme activities of complexes I, IV and II were measured spectrophotometrically and are presented as ratios against citrate
synthase.

C Steady state levels of mt-tRNAval increase following VARS2 or LARS2 overexpression. Equal amounts of RNA (4 lg) isolated from 143B.206 Rho+ cells and T1V1 and
T1L1 transfectants with and without aaRS induction were analysed by high resolution northern blotting. Probes were specific for mitochondrial tRNAleu(UUR),
tRNAval, and tRNAphe or 5S RNA as a loading control. Densitometric measurements of mt-tRNAleu(UUR), tRNAval, and tRNAphe in uninduced and induced T1V1 and
T1L1 transfectants were normalised to the 5S RNA. Data are expressed as percentages of mt-tRNA in induced cells over mean uninduced cell values and presented
below *P < 0.02.

D Synthesis of mitochondrially encoded proteins increases upon aaRS overexpression. Mitochondrially encoded proteins in 143B.206 Rho+, T1V1 and T1L1 cells with
and without aaRS overexpression, were pulse labeled with 35S-methionine and separated by 15% SDS–PAGE. Below the autoradiogram is a western blot of the same
membrane probed for b-actin as loading control. Increases in protein synthesis post induction are indicated (right panel) by densitometric quantification of
individual RC subunits (designated by *), relative to -Tet and normalized to b-actin.
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this fragment alone was able to bind mt-tRNAs other than mt-tRNA-

leu(UUR) in human cells. To be sure that we were detecting physio-

logical binding we used the CLIP method. Intact cells are exposed

to UV to preserve RNA/protein interactions prior to mitochondrial

isolation and immunoprecipitation of the protein of interest. Cells

were therefore transfected with various LARS2 constructs that were

FLAG tagged to facilitate immunoprecipitation. Although the con-

struct encoding the C-terminal 67 amino acids of LARS2 was FLAG

tagged it had no additional N-terminal sequence to promote mito-

chondrial targeting. However, analysis of the amino acid sequence of

the C-terminal peptide using predictive algorithms (including http://

www.tcdb.org/progs/helical_wheel.php) does indicate a helix with a

clear hydrophobic face but this is only weakly amphipathic. Western

blotting of this small fragment confirmed weak but consistent locali-

zation to mitochondria after induction. This was performed initially

on eluates of FLAG mediated immunoprecipitation from isolated

organelles (supplementary Fig S1). We then repeated these studies to

identify the exact submitochondrial compartment the C term frag-

ment was able to access. With this aim, mitochondria from cells

expressing the C-terminal fragment (Fig 3A lane 1) and mitoplasts

were prepared (Fig 3A lane 2) as described in Materials and Meth-

ods. These were proteinase K shaved to confirm loss of outer mem-

brane (TOM20), and intermembrane space (AIF) proteins, with

retention of the inner membrane (NDUFA9) and matrix (HSP60)

proteins (Fig 3A lane 3; 3B lanes 1 and 4). These shaved mitoplasts

(Fig 3B lanes 1 and 4) and the postmitochondrial supernatant (PMS;

Fig 3B. lanes 3 and 5) were western blotted to confirm that the

C-terminal fragment does enter mitochondria. This intramitochondri-

al matrix localization was further confirmed by the CrossLinking-

ImmunoPrecipitation data. CLIP analysis of mtDNA-encoded cDNA

sequences rescued following crosslinking to physiological RNA

substrates and subsequent immunoprecipitation indicated that

although the C-terminus showed a significant preference for the two

mt-tRNAleu species, it was also able to bind a number of other

mt-tRNA species (Fig 3C). Further analysis showed that these bind-

ing events were virtually superimposable on the binding pattern of

the full length LARS2 (Fig 3D), consistent with suppressive effect

seen here and previously in yeast (Francisci et al, 2011). FLAG

tagged luciferase was used as a control and showed negligible

binding to any mt-RNA (Fig 3E).

Not all mitochondrial tRNA synthetases can rescue the
m.1624C>T mutation

Finally, to determine whether suppression of the MT-TV mutation

could be elicited by overexpression of other mitochondrial aaRS, we

transfected T1 with constructs allowing inducible expression of two

mitochondrial class II synthetases, either alanyl (AARS2; T1A2) or

phenylalanyl (FARS2; T1F2) tRNA synthetase. Overexpression of

AARS2 or FARS2 protein had no effect on galactose growth

(Fig 4A). Analysis of the steady state level of the mtDNA encoded

COXII was performed and confirmed that there was no change

following overexpression of either of these aaRS proteins (Fig 4B).

This lack of suppression was further confirmed by microscale oxyg-

raphy measurements, where overexpression of non-cognate aaRS,

other than LARS2, could not rescue the biochemical deficiency of

the T1 mt-tRNAval mutation (Fig 4C).

Discussion

The data presented here indicate that human mt-leucyl tRNA syn-

thetase (LARS2) has the ability to suppress the biochemical defects

seen in mitochondrial metabolism that can result from an mt-tRNA-

val mutation. It has been previously documented that in cell lines

harbouring mitochondrial tRNA mutations, partial or full suppres-

sion can be achieved by overexpression of the cognate aminoacyl

tRNA synthetase (Park et al, 2008; Rorbach et al, 2008; Li & Guan,

2010). Moreover, there is a naturally occurring example of suppres-

sion of a homoplasmic m.4277T>C MT-TI mutation by overexpres-

sion of the cognate tRNA synthetase. Here, a family carrying this

homoplasmic mutation showed varied levels of penetrance of the

clinical and biochemical defect. Tissue specific investigations of the

index case and the clinically unaffected mother demonstrated that

the mother had naturally elevated levels of isoleucyl-tRNA synthe-

tase (IARS2) that suppressed the phenotype resulting from the

otherwise pathogenic mutation (Perli et al, 2012). Why then should

LARS2 have the ability to suppress mutations in non-cognate

tRNAs? It appears that LARS2 may have developed a bifunctional

role in the cell. Aminoacyl tRNA synthetases are evolutionarily criti-

cal proteins that were probably involved in the transition from the

RNA world, and appear to have recruited new cell functions (Rho

et al, 2002; Sarkar et al, 2012; Yao et al, 2013). Indeed, the yeast

LARS2 equivalent, LeuRS was not originally identified by its ability

to aminoacylate its cognate tRNA, consistent with it having devel-

oped multiple functions. It was identified through a screen originally

devised to isolate proteins that when mutated, could compensate for

mitochondrial splicing defects in yeast (Dujardin et al, 1980). This

screen revealed a number of proteins that showed ‘nuclear accom-

modation of mitochondria’ and their genes were accordingly classi-

fied as NAM1, NAM2 and so forth (Dujardin et al, 1980). It was

only following subsequent characterisation that NAM2 was

confirmed as encoding the mitochondrial leucyl-tRNA synthetase

(LeuRS) (Herbert et al, 1988). Further inspection of the protein

domains was strongly suggestive of an RNA binding activity (Labou-

esse et al, 1985, 1987) that would be consistent with a role in splicing.

The importance of this observation to the work presented here is

that splicing factors often act by stabilizing the structure of the cata-

lytically active core of self-splicing RNA transcripts. Importantly, the

group I intronic sequences that LeuRS recognizes and is directly

involved in splicing in yeast, are highly structured (Michel et al,

1982; Labouesse, 1990) and are distinct from the structures of group

II introns (Bonen & Vogel, 2001). It is therefore possible that LeuRS

may recognize common structures in mt-tRNAs that are similar to

those conserved in group I introns (Michel et al, 1982; Labouesse,

1990). Such an hypothesis has been previously proposed by Myers

et al (Myers et al, 2002) to explain the recognition of group I introns

by another type 1 mitochondrial aminoacyl tRNA synthetase, tyro-

syl-tRNA synthetase (Akins & Lambowitz, 1987; Majumder et al,

1989; Kittle et al, 1991). Clearly, additional sequence or structural

specificity will be required for splicing, but at least for LeuRS the

result may be a generic ability to bind to non-cognate mt-tRNAs.

The splicing function and thus part of the RNA binding activity

was initially identified in the yeast LeuRS by deletion analysis,

showing that this activity resided in the C terminal region of the

protein, and that these changes essentially had no impact on the
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aminoacylation activity (Li et al, 1996). This C-terminal domain is

highly conserved, in amino acid sequence and in structure, from Ar-

chaea to human mitochondria, but has been lost in the mammalian

cytosolic forms (Cusack et al, 2000; Tukalo et al, 2005; Hsu et al,

2006). Further, although there is no requirement for intron splicing

in human mtDNA expression, the human LARS2 is still able to

restore splicing in a yeast NAM2 delete strain (Houman et al, 2000).

More recent work has highlighted how this C-terminal is work-

ing. Although the ~60 amino acids in this C-terminal extension form

a unique domain that appears to have evolved to optimize its multi-

ple roles in aminoacylation and splicing (Hsu et al, 2006), the

C-terminal domain of LeuRS does not interact with the anticodon of

its cognate tRNA (Larkin et al, 2002). This region interacts directly

with the elbow of the L-shaped tRNA and is based more on struc-

tural recognition of the tRNA shape rather than through specific

base-base interactions (Tukalo et al, 2005; Hsu et al, 2006).

Why should an aaRS, which should have tRNA sequence speci-

ficity, develop recognition of shape over sequence? The answer may

be that despite their predicted stable ‘cloverleaf’ structure, organel-

lar tRNAs appear to have greater structural relaxation than bacterial

tRNAs (Fender et al, 2012) so there is arguably a greater need for

interacting proteins to stabilize their shape. In support of this is the

observation that a number of in vitro aminoacylation assays show

greater activity if a polyamine is preincubated together with the

substrate tRNA (Bullard et al, 1999). In particular, the addition of

spermine is believed to stabilize the cloverleaf structure of certain

tRNAs (Pegg, 1988). Curiously this enhancement of aminoacylation

was not observed in assays with the human mt-leucyl tRNA synthe-

tase (Bullard et al, 2000). This would support our hypothesis that

LARS2 itself has a stabilising effect on the tRNA substrate, which in

turn will promote more efficient aminoacylation, particularly in the

case of destabilizing mutations.

Finally, is this non-cognate mt-tRNA stabilizing function unique

to the C-terminal of LARS2 ? The data in this paper only minimally

address this issue. We find that representatives of the class II mito-

chondrial aaRS are unable to even partially rescue growth of the

MT-TV mutation. However, the accompanying paper shows that at

least one other type I tRNA synthetase, VARS2 is capable of cross

rescuing non-cognate mt-tRNA defects in human cell lines. This

may also be the case for other mitochondrial aaRS, but we are

unable to comment directly on this. However, it is interesting to

consider that leucyl tRNA synthetase belongs to a subfamily of large

monomeric synthetases that includes valyl-, and isoleucyl- tRNA

synthetases. Further, the yeast mitochondrial orthologues of each of

A

C D E

B

Figure 3. LARS2 C-terminus binds mitochondrial tRNA species in vivo. In each case overexpression of the LARS2 FLAG tagged C-terminus was induced by 3 days
tetracycline (Tet) treatment. Samples presented in panels A and B were separated on a single 16% Tricine PAG. Post transfer the membrane was cut to allow probing with
different antibodies, positions of the molecular weight markers (MWM) are indicated. Samples in C, D and E represent RNA binding determined by crosslinking/
immunoprecipitation (CLIP). Derived data is presented as IonTorrent reads aligned against the mtRNA genes, which are depicted as in circular mtDNA. Concentric circles
indicate a log scale of number of reads / site.
A Proteinase K (PK) shaving of mitoplasts confirms loss of OMMand IMS but retention of IMM andmatrix fractions. Mitochondria (50lg, lane 1), mitoplast (75lg, lane 2) and

shaved mitoplast (50lg, lane 3) fractions were analysed by western with the antibodies indicated.
B LARS2 C-terminal peptide is localized to the inner mitochondrial compartment. The shavedmitoplasts (~1mg of preparation presented in panel A; lanes 1 and 4) and TCA

precipitated postmitochondrial supernatant (PMS; lanes 3 and 5) were probed for the presence of the LARS2 C-terminus. COXI was used as a marker to confirm presence
of inner mitochondrial proteins that were absent from the PMS fraction. The poor resolution is due to the large amount of protein loaded in this well. Left Panel directly
visualized by BioRad Chemidoc MP, right panel visualized by autoradiography.

C–E CLIP derived mt-RNA binding capacity. (C) Physiological RNA binding by the LARS2 C-terminal peptide; (D) Physiological RNA binding by the full length LARS2; (E) As a
control, RNA binding by the mitochondrially targeted FLAG tagged luciferase was also determined.
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these proteins has been shown to suppress non-cognate mt-tRNA

mutations (Francisci et al, 2011). Perhaps this subfamily of amino-

acyl tRNA synthetases has retained an RNA binding feature that can

be exploited therapeutically. Preliminary analysis of hydropathy

profiles or primary amino acids sequences showed no obvious

motifs but more detailed investigation of whether there are any

characteristics shared by members of this family will form part of

our ongoing studies.

In summary, we have shown that overexpression of the human

mitochondrial leucyl tRNA synthetase can be used to suppress the

defects caused by a destabilizing mutation in mt-tRNAval, a non-

cognate mt-tRNA. Further, CLIP data of RNA binding derived for the

C-terminus of LARS2 demonstrated an almost identical binding

spectrum to mitochondrial tRNAs as the full length LARS2. We

believe that this provides good evidence for the potential therapeutic

use of the C-terminus of LARS2 for most pathogenic human

mt-tRNA mutations.

Materials and Methods

Cell culture

Human 143B.206 Rho+, cybrid derivatives and Flp-InT-Rex-293

cells (HEK293T; Invitrogen Life Technologies Ltd, Paisley, UK)

cells were cultured (37°C, humidified 5% CO2) in DMEM

(Sigma-Aldrich Company Ltd., Dorset, UK) supplemented with

10% (v/v) foetal calf serum (FCS), 1× non-essential amino acids

(NEAA) and 2 mM L-glutamine and where appropriate with the

addition of 10 lg/ml BlasticidinS and HygromycinB (100 lg/ml)

post transfection to select for successful integration. For growth

on respiratory substrates, the medium contained glucose-free

DMEM (Gibco Life Technologies Ltd, Paisley, UK), 0.9 mg/ml

galactose, 1 mM sodium pyruvate, 10% (v/v) FCS, NEAA and

2 mM L-glutamine and 50 lg/ml uridine. In each case induction

of aaRS in each cell line was achieved by addition of 1 lg/ml

tetracycline for 3 days.

Neutral red cell counting assay

The number of living cells was evaluated by automated counting

and neutral red assay as described in Repetto et al (2008).

Cell lysate, westerns and antibodies

SDS–PAGE analysis was performed on cell lysate extracted from

cultured cells as described previously (Soleimanpour-Lichaei et al,

2007). After electrophoresis, gels were transferred to a PVDF

membrane (GE Healthcare, Amersham, UK) and processed for

immunoblotting. The following commercially available antibodies

were used: NDUFB8, NDUFA9, Core2, COXI, COXII, COXIV, SDHA,

Complex Va subunit, porin (MitoSciences, Eugene, OR, USA); cyto-

chrome c (BD Biosciences, Oxford, UK); b actin, FLAG (Sigma Life

Science); DAP3 (Abcam, Cambridge, UK); TOM20 (Santa Cruz,

Heidelberg, Germany); AIF (NEB, Hitchin, UK); HSP60 (BD Bio-

sciences); VARS2 custom synthesized; all secondaries were HRP

conjugated (Dako, Stockport, UK).

Spectrophotometric activity assays

The activities of complex I, II and CIV and citrate synthase, as a

mitochondrial matrix marker, were determined in isolated mito-

chondria as previously described (Kirby et al, 2007).

A

B

C

Figure 4. Other non-cognate aaRSs cannot compensate for the tRNA
defect. In each case aaRS overexpression was induced by tetracycline (Tet)
treatment, indicated by + or � symbols. All data and images represent a
minimum of 3 independent experiments. Statistically significant P values are as
indicated.

A Growth rates for cell lines with or without aaRS overexpression. 143B.206
Rho+, T1 cells and T1 transfectants for VARS2 (T1V1), LARS2 (T1L1), AARS2
(T1A2) and FARS2 (T1F2) were seeded at 2 × 104 (indicated by dashed line)
in medium containing galactose. Cells were counted at 72 h with (+) or
without (�) aaRS overexpression. Data are represented as mean � s.d.

B Overexpression of neither alanyl- nor phenylalanyl tRNA synthetase
changes steady state levels of respiratory protein. Western blots of cell
lysates (25 lg) from T1A2 and T1F2 cells with or without 3 days aaRS
overexpression were probed with antibodies directed against FLAG tag,
OXPHOS proteins and b-actin as a loading control. Lengthy exposures
were required to ensure detection of COX2 signals.

C Overexpression of neither alanyl- nor phenylalanyl tRNA synthetase
rescues respiratory defect. Basal respiration rates (mean � s.d.) were
determined for 143B.206 Rho+, T1 cells and T1V1, T1L1 and T1F2
transfectants with or without aaRS 2 days overexpression.
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Oxygen consumption measurements

Measurement of intact cellular respiration was performed using the

XF24 analyzer (Seahorse Bioscience, Saint Marcell, France). Cells

were plated at a density of 10 000 cells/well on XF24 tissue culture

plate. After 4 h cells were induced by adding tetracycline (1 lg/ml),

which was retained in the culture media for 2 days. Prior to the

respiration assay, cells were rinsed and cultured in assay medium

supplemented with 5 mM glucose 10 mM sodium pyruvate (Sigma)

according to manufacturer’s protocol. Cells were incubated at 37°C

in a CO2 free incubator for 1 h prior to measurement. Oxygen con-

sumption was measured under basal conditions, and in the presence

of oligomycin, a complex V inhibitor (1 lg/ml), the complex III

inhibitor antimycin (2.5 lM), and mitochondrial uncoupler FCCP

(first addition at 1.5 lM, second addition at 3 lM, Sigma) to assess

maximal oxidative capacity. To normalize respiration rates to cell

number, cells were fixed with 4% paraformaldehyde and counted

after nuclear staining with Hoechst 33258 (1 lg/ml, Invitrogen).

Mitochondrial preparation

Mitochondria were isolated using superparamagnetic microbeads as

described previously (Hornig-Do et al, 2009). For the confirmation of

intramitochondrial localization of the C-terminal fragment of LARS2,

preparations were as follows. HEK-293T cells were homogenized

(glass:Teflon dounce homogeniser, 20 passes) on ice in isolation

buffer (10 mM Tris–HCl, pH 7.4, 0.6 Mmannitol, 1 mM EGTA and 0.1%

BSA). Aggregates were removed by centrifugation at 400 g for 10 min

at 4°C. Mitochondria were pelleted at 11 000 g for 10 min at 4°C. The

post-mitochondrial supernatant was TCA precipitated before resus-

pension in dissociation buffer. Pelleted mitochondria were washed

(in isolation buffer) and mitoplasts generated by hypotonic shock in

ice cold 5 mM Tris–HCl pH 7.4, 1 mM EDTA. Mitoplasts were

Proteinase K treated (5 lg/mg of mitochondria) in isolation buffer

lacking BSA, for 30 min at 4°C. Reactions were then stopped by the

addition by 1 mM PMSF and washed in isolation buffer lacking BSA.

Metabolic labelling of mitochondrial translation products

Essentially as described in Chomyn (1996). Cells were labeled with
35S-methionine (0.05 mCi/25 cm2 flask) for 1.5 h in methionine-

and cysteine-free DMEM supplemented with 100 lg/ml emetine and

5% dialyzed FBS (Chomyn, 1996). Proteins (40 lg) were electro-

phoresed through a 15% denaturing gel. Proteins were transferred

to PVDF membranes before autoradiography where band intensities

corresponding to mitochondrial translation products were quantified

densitometrically (ImageQuant/Molecular Dynamics, GE Health-

care, Amersham, UK), then probed with b actin to ensure equal

loading of cell lysates.

BN-PAGE and enzymatic in-gel-activity

BN-PAGE analysis was performed as previously described (Hornig-

Do et al, 2012). Briefly, mitochondria were solubilised by dodecylm-

altoside (DDM, Sigma) at 2 g/g protein and incubated for 20 min on

ice. The supernatant was collected after 20 min centrifugation at

25 000 g. To resolve individual complexes and smaller supercom-

plexes, 25 lg of DDM treated mitochondrial membrane proteins

were separated on 4.5–16% gels (Wittig et al, 2006). Post electro-

phoresis, complexes were transferred to PVDF membranes and

sequentially probed with indicated antibodies. In-gel complex activ-

ity assays were carried out to estimate the activity of CI, CII and CIV

as described (Calvaruso et al, 2008).

High resolution northern

Total RNA was extracted using TRIzoLTM (Invitrogen). RNA (4 lg)
was electrophoresed through 15% denaturing polyacrylamide gel,

electroblotted onto GeneScreen Plus membrane (Perkin Elmer,

Cambridge, UK) and fixed by UV crosslinking prior to hybridization

with radiolabelled probes. Probe fragments were generated by PCR

using the following primer pairs. Human mt-tRNAleu[UUR] forward

5′-TATACCCACACCCACCCAAG-3′, and reverse 5′-GCGATTA-

GAATGGGTACAAT-3′; human mt-tRNAphe forward 5′-CCAAACCC-

CAAAGACACCC-3′ and reverse 5′-GAACGGGGATGCTTGCATG-3′;

human mt-tRNAval forward 5′-CTGGAAAGTGCACTTGGACG-3′ and

reverse 5′-GGGTAAATGGTTTGGCTAAGG-3′; human 5S forward

5′-GTCTACGGCCATACCACCCTG-3′ and reverse 5′-AAAGCCTACAG

CACCCGGTAT-3′. Purified amplicons were radiolabelled with [a-32P]
dCTP (3000 Ci/mmol, GE Healthcare) using random primers. Unin-

corporated nucleotides were removed by Sephadex G-50 column (GE

Healthcare). Hybridisation was carried out as previously described

(Rorbach et al, 2008).

Statistics

Results are given as means � standard deviation and were

compared using unpaired T-tests assuming unequal distribution. A

significance level of P < 0.05 was considered to be statistically

significant *; P < 0.01 = **; P < 0.001 = ***.

AARS expression constructs and cybrid transfection

To generate inducible expression variants of the T1 line carrying the

mt-tRNAval mutation, each transfection was a combination of

pcDNA6/TR and pcDNA5/FRT/TO (both Invitrogen) containing the

gene for VARS2 (Q5ST30-1 OMIM:612802, Kazusa clone KIAA1885),

LARS2 (NP_056155.1 OMIM:604544), FARS2 (NP_006558.1 OMIM:

611592, IMAGE clone 5088776/MGC 31883) or AARS2

(NP_065796.1 OMIM: 612035, Kasuza clone KIAA1270). VARS2

construct was as defined in (Rorbach et al, 2008). All other aaRS had

inframe C terminal FLAG tag encoded and were generated by PCR

with primers containing restriction sites (underlined) to allow liga-

tion into pcDNA5/FRT/TO (Invitrogen). In each case the complete

open reading frame was amplified. The entire LARS2 ORF was ampli-

fied from IMAGE clone 4822546 using For 5′-CACACAGGATCCCCTT

CTCACCTTCTGAAG-3′ / Rev 5′-ACTCGACTCGAGCTACTTATCGTC

GTCATCCTTGTAATCATCTTGCACCAGGAAGTTG-3′; FARS2, IMAGE

clone 5088776/MGC 31883 using For 5′-CACACAGGATCCGCAG

AGTGTGCCACCCAAAG-3′ / Rev 5′-CACACAGGATCCAGCCTGAGT

GAAGTGGTGAC 3′; AARS2, Kasuza clone KIAA1270 using For

5′-CACACAGATATCGATGGCAGCGTCAGTG-3′ / Rev 5′-CACACAGC

GGCCGCCTACTTATCGTCGTCATCCTTGTAATCGAGCTGGCTGAGG

GCATAGG. The C-terminal domain (encoding the final 67 amino

acids) of LARS2 gene was amplified from the full length LARS2 of

pcDNA5/FRT/TO LARS2 plasmid using the forward primer For
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5′- CGGGATCCCGATGGAGGTTGTCCAGATGGCAGTTC -3′, which

contained the additional ATG codon (in bold) and a BamH1 (under-

lined) restriction site. The reverse primer Rev 5′- CGGGATCCCGT

CAGATATCTTGCACCAGGAAGTTG -3′, also contained BamH1 and

EcoRV restriction sites (underlined/bold). The PCR product was

BamHI restricted and cloned into BamHI restriction site of the

pcDNA5/FRT/TO plasmid generating an intermediate step vector

‘pcDNA5-CTerm’. Independently we designed two complementary

oligomers (For 5′- GATATCGATTACAAGGATGACGACGATAAGTAG

GATATC -3′/Rev 5′- GATATCCTACTTATCGTCGTCATCCTTGTAAT

CGATATC -3′) that encoded the FLAG tag and a STOP codon (in

bold) and were flanked by EcoRV restriction sites (underlined). These

were annealed, the product EcoRV digested and inserted into

‘pcDNA5-CTerm’ that had also been EcoRV digested. This generated

the final pcDNA5-CTermFLAG, which contained the initiator Met

codon, the final 67 terminal amino acids (from amino acids 837 to

903) of the human mitochondrial LARS2 followed by the 8 amino

acids of the FLAG tag. All constructs were confirmed by restriction

digest mapping and sequence analysis. Products were linearised to

allow integration and stable transfection. Co-transfections were per-

formed using Superfect (Qiagen, Manchester, UK) following manufac-

turer’s recommendations. In all cases both vectors were linearized

and combined in a 1:9 ratio (pcDNA6/TR:pcDNA5/FRT/TO/.

Identification of oligoribonucleotides bound in vivo

To identify physiological interactions between proteins and mitochon-

drial RNAs cross linking immunoprecipitation (CLIP) was carried out

essentially as previously described (Dennerlein et al, 2010). To gener-

ate a more comprehensive data set, the final PCR products were pre-

pared for Ion Torrent sequencing, following manufacturer’s

instructions, rather than subcloning into pCR4-TOPO. Sequence data

for 100 000–190 000 reads was collected, aligned to mtDNA as a refer-

ence sequence using the Torrent Suite software on the Ion Torrent ser-

ver. The alignments were then viewed using IGV (integrative

genomics viewer) and presented against a circular depiction of human

mtDNA, using a log scale to indicate the number of reads per RNA site.

Supplementary information for this article is available online:

http://embomm.embopress.org/
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