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Summary 
Two groups of U937 promonocytic cells were obtained by limiting dilution cloning which differed 
strikingly in their ability to support human immunodeficiency virus 1 (HIV-1) replication. "Plus" 
clones replicated the virus efficiently, whereas "minus" clones did not. We examined these clones 
for differences in nuclear factor (NF)-xB activity which might account for the observed 
phenomenon. Stimulation ofphs clones liberated the classical p50-p65 complex from cytoplasmic 
pools, whereas minus clones produced an apparently novel, faster-migrating complex, as judged 
by dectrophoretic mobility shift assays. It is surprising that the faster-migrating complex was 
composed also of p50 and p65. However, the p65 subunit was COOH-terminally truncated, 
as shown by immunoprecipitation. The truncation resulted from limited proteolysis of p65 during 
cellular extraction which released particular lysosomal serine proteases, such as dastase, cathepsin 
G, and proteinase 3. These specific proteases are coordinately expressed and were present exclusively 
in the minus U937 clones, but not in the plus clones, as demonstrated in the case of cathepsin 
G. In addition, these proteases were detected in certain subclones of THP-1 and HL-60 cells 
and in primary monocytes, in each case correlating with the truncated form of p65. We demonstrate 
in vitro cleavage of p65 by purified elastase and cathepsin G. It is possible that particular serine 
proteases may have inhibiting effects on the replication of HIV-1 in myelo-monocytic cells. The 
data also demonstrate that special precautions must be taken when making extracts from myelo- 
monocytic cells. 

1 ~]'~he nuclear factor (NF) -xB/Rel family of transcription 
.IL factors is involved in the regulated expression of a large 

number of genes, particularly those participating in immune 
functions and acute phase reactions. Furthermore, several 
viruses, including HIV-1, are regulated by NF-~cB/Rel. NF- 
xB is retained in the cytoplasm of unstimulated cells by the 
inhibitory IxB-ol protein and can translocate into the nucleus 
in response to a number of stimuli (for reviews see references 
1, 2). Activation of NF-xB involves phosphorylation and pro- 
teolytic digestion of hoB-co (3, 4). The NF-KB/Rel proteins, 
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1 Abbreviations used in this pat~,~: DFP, diisopropyl fluorophosphate; EMSA, 
electrophoretic mobility shift assay; NF, nuclear factor; PR-3, proteinase 
3; TPA, Tetradeconoylphorbol 13-acetate. 

which include pS0 (NF-KB1), p52 (NF-xB2), p65 (RdA), 
RelB, and c-Re1, can form many distinct homo- and hetero- 
dimeric complexes; those containing c-Rel, p65, or RelB can 
be potent transactivators, whereas homodimers of the p50 
and p52 subunits generally are not (1, 2, 5-8). 

NF-xB is a strong activator of HIV-1 transcription, par- 
ticularly in mononuclear phagocytic cells (9-11). This is 
demonstrated by the inability of mutant, rB-deleted human 
and simian immunodeficiency viruses to replicate in these cells 
(G. Poll, and A. S. Fauci, unpublished observations; 12). 
Monocytes and macrophages seem to differ in their ability 
to support HIV replication (13-15). Whereas certain popu- 
lations of tissue macrophages can produce high amounts of 
virions (16-21), only a small percentage of circulating mono- 
cytes harbor and release HIV, in vivo (22-25), Furthermore, 
primary monocytes are variably infectable in vitro, depending 
in part on whether they were maintained with GM-CSF or 
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IFN-~/(26-31), supporting the notion that HIV replication 
is enhanced in more differentiated host cells (14, 29, 30, 32). 
Variability in HIV replication was observed also within 
different subdones of monocytic cell lines, such as U937 (33) 
and THP-1 (34, 35). In the latter case, it was speculated that 
the NF-xB complex was somehow specifically inhibited in 
those THP-1 cells that supported HIV replication poorly (34). 

We report here the analysis of a number of U937 promono- 
cytic cell subclones that differ in their ability to support HIV-1 
replication. Whereas some clones ("plus") allow an efficient 
growth of HIV, "minus" clones provide an unfavorable envi- 
ronment for the virus. We demonstrate that "minus" clones, 
but not "plus" clones, contain a faster-migrating NF-gB com- 
plex, detectable also in certain other myelo-monocytic cells. 
This unusual complex is characterized by the presence of a 
COOH-terminal truncation of the p65 subunit, which is 
generated in vitro during extraction, due to the release of 
cell- and stage-specific lysosomal proteases such as cathepsin 
G (36), elastase (37, 38), and proteinase 3 (PR-3) (39). The 
faster-migrating NF-KB complex correlates with the presence 
of these proteases and correlates also with the inability of 
HIV to grow well in minus clone cells. Our data suggest 
the intriguing possibility that such serine proteases may nega- 
tively affect the life cycle of HIV-1. We show that treatment 
of these cells with macrophage differentiating agents, which 
converts them into productive hosts for HIV replication (26, 
27, 29-31), also dramatically downregulates the proteases. 

Materiah and Methods 
Cell Culture, Stimulations, and HIV Infection~ The HL-60, THP-1, 

and U937 cell lines were obtained from the American Type Cul- 
ture Collection (Rockville, MD). SB and AK represent two sepa- 
rate U937 cell cultures that were maintained in the laboratory. The 
NTera-2 cells (5, 6, 8) and the isohtion of the U937 clones from 
the parental cell line SB (40) have been previously described. Ceils 
were cultured in RPMI-1640 supplemented with antibiotics and 
10% FCS (GIBCO-BRL, Gaithersburg, MD) for the U937 clones 
and THP-1 cells, or 20% FCS in the case of HL-60 ceils. NTera-2 
cells were maintained in DMEM (10% FCS). Monocytes were iso- 
lated from healthy donors and purified by elutriation, according 
to standard procedures (41). Cells were subsequently either har- 
vested immediately, or put in culture in DMEM (10% FCS). 

For the acute HW infections, cells were plated in duplicate in 
48-well plates at a concentration of 1-2.5 x 105 ml. The MN 
virus was added at a final concentration of 1X (1,000-fold dilution 
of a stock preparation containing '~101~ virus particles per ml). 
Culture supernatants were harvested twice a week and stored at 
-70~ until used. HIV infection was assessed by detection of 
Mg 2+-dependent reverse transcriptase (ILT) activity in the culture 
supernatants, as described previously (42). 

For the experiments shown in Figs. 2 and 5, U937 and Hb60 
cells (0.5 x 106/ml) were stimulated with 200 U/ml of TNF-ce 
(C-enzyme Corp., Cambridge, MA) for the indicated period of time. 
In the other cases, cells were treated for 3-5 d as follows: (a) Hb60 
cells (0.3 x 10~/ml): 10 .6 M retinoic acid (all-trans; Sigma Chem- 
ical Co., St. Louis, MO); 1.25% DMSO (Mallinckrodt Specialty 
Chemicals, Chesterfield, MO); 100 U/m1 TNF-c~; 16 ng/ml 12- 
O-Tetradecanoylphorbol 13-acetate (TPA, Sigma Chemical Co.); 
(b) U937 clone 12 (0.3 x 106/mI): 16 ng/ml TPA; (c) monocytes 

(0.5 x 106/ml): 10 ng/ml IFN-3' (Genzyme Corp.); 20 ng/ml 
GM-CSF (Genzyme Corp.); 200 ng/ml LPS (Sigma Chemical Co.); 
and 5 ng/ml TPA. 

Expression Vectors, Cell Extracts, and Electrophoretic Mobility Shift 
Assay (EMSA). Whole cell extracts were prepared in buffer C sup- 
plemented with protease inhibitors, as previously described (5, 6). 
The protease inhibitors included: PMSF, 0.5 mM; antipain- 
dihy&ochloride, 50/~g/ml; 4-amidinophenyl-methanesulfonylfluo- 
ride (APMSF), 40/~g/ml; aprotinin, 10 pg/ml; bestatin, 40/~g/ml; 
chymostatin, 20/~g/ml; E-64, 0.4 rag/m1; leupeptin, 0.5/~g/ml; 
pepstatin, 0.7/~g/ml; and phosphoramidon, 100/~g/ml. To obtain 
nuclear extracts, U937 cells were lysed with 0.2% NP-40 and 
NTera-2 cells with a Dounce homogenizer, as reported elsewhere 
(3, 5, 6, 8), and the resulting nuclei were salt extracted in buffer 
C, For the experiments shown in Fig. 5, whole cell extracts were 
made by resuspending the cells in a modified lysis buffer (50 mM 
Tris, pH 7.4, 100 mM NaCI, 50 mM NaF, 1 mM NaVO4, 30 mM 
pyrophosphate, 0.5% NP-40, and 0.5 mM PMSF) containing the 
protease inhibitor diisopropyl fhorophosphate (DFP; Sigma Chem- 
ical Co., 30 mM), and subsequent ultracentrifugation. The PMT2T- 
p50 and PMT2T-p65 expression plasmids and the PMT2T vector, 
the transfection protocol, the EMSA and antibody-supershift proce- 
dures, the palindromic-KB probe (PD-KB), and the Ig K light chain- 
gB probe (Ig-g-LC-IcB), have all been reported (3, 5-8). 

NF-gB heterodimers used in Figs. 4 and 7 were obtained from 
nuclear extracts of NTera-2 ceils transferred with p50 and 1065 ex- 
pression vectors (4/~g each). For the experiment shown in Fig. 
4 A, 1/~1 of the NTera-2 nuclear extract was premixed with 1/~I 
of whole eel extract prepared from NTera-2 cells transfected with 
the inserthss PMT2T vector (8/~g) or comparable amounts (as 
determined by measuring the protein concentration) of unstimu- 
lated done 10 and clone 12 cells. The probe was added after 10 
rain of preincubation at room temperature. 

For the experiment shown in Fig. 4 B, protease inhibitors were 
premixed (15 rain at room temperature) with clone 12 cell extract 
before being added to the NTera-2 extract, as described above (see 
Fig. 4 A). The following final concentrations were used: bestatin, 
2 raM; calpain inhibitor I, 3 raM; calpain inhibitor II (all from 
Boehringer, Indianapolis, IN), 3 raM; N-tosyl-phenylalanyl- 
chloromethyl ketone (TPCK, Sigma Chemical Co.), 0.5 mM; 
APMSF, 2 ~tg//~l; aprotinin (both from Beohringer), 0.6/~g/~l; 
N-tosyl-lysyl-chloromethylketone (TLCK, Sigma Chemical Co.), 
3 raM; antipain-dihydrochloride, 2 mM; pepstatin, 0.8 /~g//~l; 
leupeptin, 2 raM; phosphoramidon, 5 #g//~l; 4-(2-aminoethyl)- 
benzenesulfonyl fluoride (AEBSF; all from Boehringer), 2 raM; 
N-CBZ-t-phenylalanine-chloromethyl ketone (ZPCK), 1 raM; io- 
doacetamide (IAA), 3 raM; N-ethylmaleimide (NTM; all from 
Sigma Chemical Co.), 1 mM; BSA fraction V (Pentex, Kankakee, 
IL), 5/~g/~tl; rabbit preimmune serum, 10%; DFP, 3 raM; 3,4- 
dichloroisocoumarin (DIC; both from Sigma Chemical Co,), 0.5 
raM; c~l-antitrypsin (Calbiochem-Novabiochem Corp., La Jolla, 
CA), 3 ~g//~l; and chymostatin (Boehringer), 6 raM. 

Purified elastase and cathepsin G enzymes were purchased as 
powder (all from Calbiochem Novabiochem Corp.) and resuspended 
in PBS (with 15% glycerol) at a 1 mg/ml stock concentration. 

Iramunoprecipitation and Western Blot. Immunoprecipitations were 
performed with rabbit anti-p65 antibodies on whole cell extracts 
(107 calls/reaction), as described (6, 8). The antigen-antibody 
complexes were precipitated with protein A-Sepharose, separated 
on a polyacrylamide gel, and then subjected to Western blot anal- 
ysis: the primary antibody was an anti-p65 mouse polyclonal anti- 
body directed against amino acids 276 to 502, and the secondary 
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antibody was a sheep anti-mouse 12SI-labeled antibody (Amersham 
Corp., Arlington Heights, IL). 

The same standard conditions were used for the direct Western 
blot analysis, except that less extract was used (corresponding to 
3 x 106 ceUs/lanr and the antigen-antibody reaction was devel- 
oped with 12SI-labeled protein A (Amersham Corp.). 

Antibodies. The antibodies used were: (a) a rabbit p65 NHz- 
terminal peptide antibody (Fig. 2, B and C, Fig. 3, and Fig. 5 B; 
[5]); (b) a rabbit antibody directed to a COOH-terminal peptide 
of p65 (Figs. 3 and 5 B); (c) a mouse and a rabbit p65 polyclonal 
antibody directed against amino acids 276 to 502 (Figs. 3 and 6 
A); (d) a pS0 NHz-terminal peptide antibody (Fig. 2, B and C; 
[5]); (e) an antibody recognizing an NHz-terminal peptide of p52 
(Fig. 2, B and C; [8l); (]) a c-Rel COOH-terminal antipeptide 
antibody (Fig. 2, B and C; [43]); and (g) a commercially available 
anticathepsin G antibody (Fig. 6 B; obtained from Calbiochem- 
Novabiochem Corp). 

Results 

$ubclones of U937 Cells Differ in Their Ability to Support 
HIV-1 Replication. 45 cell clones were obtained by limiting 
dilution from the parental promonocytic cell line U937 SB 
(40). Two distinct groups of clones could be discerned based 
on their ability to support HIV-1 replication (Fig. 1). One 
group of clones (plus) exhibited kinetics of infection com- 
parable with that of the parental U937 cell line (Fig. 1 A), 
whereas another group (minus clones) consistently exhibited 
markedly delayed kinetics (Fig. 1 B). The impaired ability 
of HIV to efficiently replicate in minus clones was not ex- 
plained by the lack or reduced expression of membrane CD4 
molecules in these cells (data not shown), in agreement with 
another study (33). 

Extracts From U937 Minus Subclones Contain a Modified NF- 
KB Complex. We sought differences in U937 subdones that 
might account for the HW growth data. Individual subdones 
and the U937 clone AK were treated with TNF-oe or left 
untreated. Extracts from all cells gave rise to a single, consti- 
tutive band in EMSAs which was due to homodimers of the 
p50 subunit of NF-rB ({>, Fig. 2 A), as reported previously 
for another U937 done (5; see also below). Stimulation with 
TNF-oe induced an additional NF-rB binding activity, but 
individual clones differed in the appearance of this induced 
band shift: plus clones (Nos. 30, 10, 3I, and the parental 
line SB, Fig. 2 A) yielded the traditional p50-p65 NF-rB 
species (1~, left, Fig. 2 A) which migrated more slowly than 
p50 homodimers, whereas minus clones (Nos. 34, I2, and 
the AK line, Fig. 2 A) yielded an induced and apparently 
novel, more diffuse complex which largely comigrated with 
the pS0 homodimers ( 'q ,  right, Fig. 2 A). Of  interest, an 
HL-60 subline stimulated with TNF-oe also exhibited this 
faster-migrating complex (data not shown; see below also). 
Despite the difference in the mobilities of the TNF-oe-induced 
complexes generated from the two types of clones, both com- 
plexes contained p50 and p65 polypeptides and not some other 
Rel-related proteins, as demonstrated with supershifting anti- 
bodies specific to these NF-KB subunits (5, 8, 43) (Fig. 2, 
B and C). The inducible, faster-migrating complex from 
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Figare 1. U937-derived cell clones differentially support HIV replica- 
tion. Infections of plus (-4) and minus (13) U937 cell clones in vitro, with 
the MN strain of HIV-1 (Advanced Biotechnoiogy Inc., Columbia, MD). 
Experiments were repeated four times. The result of a representative infec- 
tion is shown. Similar results were obtained also with the IIIB strain (data 
not shown). The parental U937 cell line SB and the U937-derived clones 
were negative for mycoplasma contamination as determined by two se- 
quential screenings. 

HL-60 cells was also predominantly composed of p50 and 
p65 (data not shown). The modified NF-rB complex was 
seen in ceils of the myelo-monocytic lineage, but was not 
observed in many other cells including T, B, and nonhema- 
topoietic cells (data not shown). 

The Modified NF-r,B Complex Contains a Truncated p65 
Subunit. To characterize the novel NF-rB complex, extracts 
from various U937 dories were immunopredpitated with three 
different antibodies directed against p65 and subsequently ana- 
lyzed by Western blot with a polydonal p65 antibody (Fig. 
3). All three antibodies precipitated a protein with an ap- 
parent molecular mass of '~69 kD when extracts obtained 
from the parental line SB and clone 30 were used. This pro- 
tein comigrated with p65 from other cell types (data not 
shown) and its immunoprecipitation was blocked by specific 
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Figure 2. Extracts from different U937 subdones con- 
tain distinct TNF-c~ inducible NF-~B complexes, yet both 
are composed of p50 and 1065. (A) EMSAs of whole cell 
extracts from unstimulated (odd-numbered lanes) or TNF- 
el-activated (euen.nurabered lanes) U937 clones. (~) Specific 
constitutive and (~', .41 ) TNF-ot-induced complexes. (B 
and C) Supershift analysis on nuclear extracts of the rep- 
resentative clones 10 (B) and 12 (C) were performed with 
previously described antibodies, directed against the NHr 
terminal peptides of pS0 (13 and C, hnes 2 and 7) (5), 
p50B (lanes 3 and 8) (8), p65 (lanes 4 and 9) (5) or a 
COOH-termiml peptide of the human c-Rd protein (lanes 
5 and 10), as indicated. Cells were either untreated (lanes 
1-5) or treated with TNF-ot (lanes 6-10). (~, ,ql) p50- 
p65 heterodime~rs and (A) pS0 homodimers. The two dots 
on the right side show the supershifts. The amount of 
extract used in each lane was normalized for protein con- 
centration. The probe was the Ig-gLC-gB probe (6). 

p65 peptide competition (Fig. 3). In contrast, when cell ex- 
tracts from clone 12 and 34 were tested, the polyclonal anti- 
body and the NH2-terminal peptide antibody predominantly 
recognized a shorter form of p65 (about 50 kD), whereas 
the COOH-terminal peptide antibody failed to detect any 
band. This suggested that the NF-KB complex observed in 
these cell lines contained a form of p65 that was truncated 
at the COOH-terminus. Given the size of the resulting pro- 
tein, it is likely that the truncation occurred just after the 
Rel-homology domain (RHD), preserving the ability of this 
protein to dimerize and bind DNA (as shown above), but 

eliminating the transactivating domain (44, 45). This con- 
dusion was supported by gel shift analysis since anti-p65 an- 
tibodies directed against the COOH-terminal peptide did not 
supershift the novel complex induced in clone 12 cells or in 
our HL-60 cell line (data not shown). 

The Truncated p65 Subunit Is Generated Via Proteolytic Pro- 
cessing. To directly test for the presence of proteases capable 
of truncating p65, we mixed unstimulated U937 clones 10 
and 12 whole cell extracts (which did not contain appreciable 
amounts of DNA binding heterodimers; see Fig. 2 A) with 
nuclear extracts obtained from NTera-2 cells transfected with 
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Figure 3. Demonstration of a 
truncated form of the p65 subunit 
in certain U937 clone extracts. Im- 
munoprecipitation with a panel of 
p65-specific antibodies on whole cell 
extracts of representative U937 
clones followed by Western blot 
with a mouse polyclonal p65 anti- 
body. (~', "q ) Specific bands; (1>) 
points to the background due to the 
presence of the heavy chain of the 
antibodies used for the immunopre- 
cipitation. Immunoprecipitations 
performed with pcptide antibodies 
were blocked with 1 #g of the p65 
peptide used to generate the anti- 
body (N-te~. peptide: lanes 2, 7, 12, 
and 17; C-te~.peptide: hnes 5, 10, 15, 
and 20). Extracts from the various 
U937 clones and the antibodies were 
used as indicated. 

pS0 and p65 expression vectors (5, 6, 8). The transfected 
NTera-2 cells alone gave rise to both p50 homodimers and 
p50-p65 heterodimers, as previously reported (5, 6) (Fig. 4 
A). Preincubation with extracts from unstimulated ceils of 
done 12 (minus), but not of done 10 (plus), generated a faster- 
moving complex comigrating with the novel complex seen 
with stimulated minus clones (Fig. 4 A, lanes 3 and 2, respec- 
tively). Thus, active proteases were present in lysates of clone 
12, which converted a normal p50-p65 complex into a faster- 
migrating one, whereas no such proteases were present in 
extracts of clone 10, a clone that gave rise to normal NF-gB 
complexes when stimulated. 

In an attempt to identify this protease(s), we assayed a 
number of protease inhibitors (including many not normally 
present in the extraction cocktail; see Materials and Methods) 
for their ability to prevent done 12 lysates from converting 
the normal NF-KB complex into the faster-migrating form 
(Fig. 4 B). Of  note, the protease inhibitors bestatin, APMSF, 
aprotinin, antipain-dihydrochloricle, pepstatin, leupeptin, phos- 
phoramidon, AEBSF, and chymostatin are normally included 
in the cocktail used during extraction. Among these, only 
chymostatin has some activity towards these proteases, but 
its concentration in normal extraction procedures is far lower 
than that required for efficient inhibition. DIC, DFP, and 
oel-antitrypsin efficiently blocked the truncation of p65 (Fig. 
4 B, lanes 19, 20, and 21, respectively). Rabbit preimmune 
serum, but not BSA (Fig. 4 B, lanes I8 and 17, respectively), 
could also weakly inhibit p65 proteolysis, probably because 
of naturally present protease inhibitors in serum such as otl- 
antitrypsin and a2-macroglobulin (46). All of these inhibi- 
tors target serine proteases, although with different fine 
specificities. 

The Truncation of p65 Occurs In Vitro During the Extraction 
Procedure. Cell extracts of clone 12 and HL60 ceils in the 
presence of the protease inhibitor DFP allowed the detection 
of wild-type p50-p65 heterodimers (Fig. 5 A), as well as of 

full-length p65. This was demonstrated directly by the use 
of supershifting antibodies recognizing the COOH-terminal 
peptide of p65 (Fig. 5 B) and by immunoprecipitation ex- 
periments (data not shown). Therefore, truncation of p65 
occurs during extraction rather than in living cells. In addi- 
tion, the strong induction of IrB-ot synthesis, observed after 
TNF-ot stimulation of done 10 and clone 12 cells, provides 
further indirect evidence for the presence of wild-type p65 
in all these ceils (data not shown). Truncated p65 lacks trans- 
activation domains and thus would not be expected to acti- 
vate transcription of 1KB-ol, a gene whose promoter has been 
shown to depend on functional NF-rB (3, 4, 47, 48). 

A Family ofSerine Proteases Are Likely Responsible for the 
In Vitro Degradation of p65. To investigate the expression 
pattern of the presumed serine proteases responsible for the 
in vitro truncation of p65, we tested other cells, using the 
proteolysis of p65 as an indicator of protease activity. Trun- 
cated form(s) of p65 were not restricted to certain U937 clones, 
but could also be observed in extracts of several other cells, 
including a HL-60 cell line (as discussed above), peripheral 
blood monocytes, and, to a lesser extent, THP-1 cells. On 
the other hand, PBLs contained primarily a full-length p65 
protein (data not shown; 5). It is surprising that full-length 
p65 could be induced in all U937 minus clones, HL-60 cell 
lineg and in primary monocytes when these cells were differen- 
tiated for several days with agents such as phorbol ester, 
TNF-ol, IFN-% GM-CSF, or LPS (Fig. 6 A). Moreover, 
extracts obtained from done 12 cells differentiated with TPA 
for several days were no longer able to process p65 or change 
the mobility of the p50-p65 heterodimers derived from NTera-2 
ceils (data not shown), confirming that TPA downregulated 
the activity of the implicated proteases. In contrast, treat- 
ment of the HL-60 ceils with retinoic acid or DMSO, which 
promote differentiation into granulocytes as opposed to mac- 
rophages (49), did not downregulate the proteases. It has been 
reported that a family of serine proteases including elastase 
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Figure 4. Extracts from certain U937 
clones contain a protease activity which 
specifically affects the dectrophoretic mo- 
bility of exogenously added pS0-p65 het- 
erodimers. (.4) EMSA performed with a nu- 
clear extract obtained from transfected 
NTera-2 cells (5, 6; for details see Materials 
and Methods). NTera-2 (~>) p50-pS0 and 
(P') p50-p65 complexes are indicated on 
the left; ('q) modified heterodimers are on 
the right. (13) In vitro cleavage of the pS0- 
p65 complex is selectively blocked by serine 
protease inhibitors. NTera-2 and clone 12 
extracts were premixed as described in A, 
except that clone 12 extract was pretreated 
with the indicated protease inhibitor (for 
concentrations see Materials and Methods). 
( ~ )  Unmodified and ( 4 )  cleaved NTera-2 
heterodimers. The probe was the PD-KB 
probe. 

(37, 38), cathepsin G (36), and PR-3 (39), are highly and 
coordinately expressed in myelo-monocytic cells only (50-52) 
and that their expression is strongly downregulated during 
terminal differentiation into macrophages or after TPA treat- 
ment of HL-60, U937, and primary monocytes (50-52). We 
detected by Western analysis high levels of cathepsin G in 
our HL-60 and done 12 cells (minus) and to a lesser extent 
in our THP-1 cells, whereas no such protein was detected 
in clone 10 cells (plus) (Fig. 6 B). Furthermore, cathepsin 

G protein was not seen in HL-60 cells and clone 12 cells after 
a 5-d treatment with the differentiating agent TPA. Thus, 
the expression of cathepsin G, and presumably of the other 
coordinately expressed proteases (52), correhted with the pres- 
ence in these extracts of truncated p65 forms (Fig. 6 A). To 
more directly demonstrate a potential role of these proteases 
in the cleavage of p65, we also tested the ability of purified 
elastase and cathepsin G enzymes to cleave p65 in vitro (Fig. 
7). Incubation of p50-p65 heterodimers derived from trans- 
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fected NTera-2 cells with these enzymes generated a com- 
plex still able to bind DNA but with a mobility essentially 
indistinguishable from that observed in minus U937 cell dories 
and in our HL-60 cell line, indicating that these proteases 
are likely candidates for the digestion of p65 in vitro. 

Discussion 
This study demonstrates that a group of U937 subclones, 

so-called minus doneg do not support rapid growth of HW-1. 
In contrast to plus clones, which allow efficient HIV replica- 
tion, minus clones contain members of a specific family of 
lysosomal serine proteases, including cathepsin G (36; Fig. 
6 B), elastase (37, 38), and PR-3 (39). These particular pro- 
teases, also termed serprocidins (53), are released during call 
extraction generating an apparently novel, faster-migrating 
NF-gB complex that is characterized by a specific truncation 
of the COOH-terminal part of the p65 subunit. We demon- 
strate directly that these proteases can generate the modified, 
truncated NF-KB complex in vitro. Expression of serprocidins 
is restricted to the neutrophil and monocytic lineages (50, 
52, 54) and to certain sublines of the pro-monocytic leukemia 
cells U937 (minus clones), the pro-myelocytic cells HL-60 
(50, 51, 55, 56) and, to some extent, THP-1 cells (Fig. 6 B). 
Whereas standard cell extraction procedures do not interfere 
with the activity of the released proteases, inclusion of specific 
protease inhibitors does, thus allowing the detection of normal 
NF-KB even in the minus clones and in the other myelo- 
monocytic cells. It is curious that the specific truncation of 
p65 removes all transactivation fianctions but none of the DNA 
binding functions (Fig. 2; 44, 45). Whereas the existence 
of a nontransactivating NF-KB complex might have offered 
an explanation for why the NF-KB-dependent HIV-1 virus 
did not grow well in these cells, our data indicate otherwise, 
since the truncation appeared to occur during extraction only. 
Rather, the proteases themselves may contribute to the ob- 
served growth phenotype of HIV-1 in these cells. 

Many studies have investigated NF-KB activity in stimu- 
lated myelo-monocytic cells, including U937, THP-1, HL- 
60, and primary monocytes. Revisiting these studies in light 

Figure 5. Inclusion of DFP in the extraction buffer allows the recovery 
of the full-length p65 subunit. (A) EMSA performed with extracts of U937 
clone 10 (lanes I-6) and done 12 (lanes 7-12) cells collected at the indi- 
cated time points after TNF-a stimulation. For this experiment, calls were 
extracted in a modified lysis buffer containing the protease inhibitor DFP 
(30 raM; for details see Materials and Methods). (~) p50 and (1~, -4) 
p50-p65 heterodimers. An equivalent amount of extract was loaded in each 
lane. (B) Supershift analysis performed on extracts made (as described above) 
from clone 12 and HL-60 cells (lanes I-3 and 4-6, respectively) treated 
for 1 h with TNF-o~, by using antibodies directed to an NH2-terminal 
(lanes 2 and 5) as well as to a COOH-terminal p65 peptide sequence (lanes 
3 and 6). (i>) pSO-pS0 and (1~) pS0-p65 band shift; and (@) supershifts. 
The residual binding activity seen with both anti-p65 antibodies was due 
either to p50 homodimers or to c-Rel-p50 heterodimers (*), as assessed 
by use of specific antibodies (data not shown). The probe was the PD-gB 
probe. 
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Figure 6. Expression ofcathep- 
sin G, and presumably of related 
serine proteases, correlates with the 
appearance of truncated forms of 
p65. (A) Truncated p65 forms can 
be detected in extracts made from 
a variety of myelo-monocytic ceils 
and the full-length p65 subunit is 
restored after treatment with 
differentiating agents. Whole cell 
extracts, obtained (in absence of 
DFP) from HL-60 (lanes I-5), U937 
done 12 and 10 (lanes 6-7 and 8, 
respectively), THP-1 (lane 9) cells 
and primary monocytes (lanes 
10-14), were subjected to immuno- 
precipitation followed by Western 
blot performed with a p65 mouse 
antibody, as in Fig. 2. Cells were 
either untreated (lanes I, 6, 8-10), 
treated with TPA (HL-60, lane 5; 
Clone 12, lane 7; primary mono- 
cytes, lane 14) or othec diffecen- 
tiating agents, as indicated {for de- 
tails see Materials and Methods). 
(Ip) Full-length and ( [ ) truncated 
p65 species. (B) The presence of 
cathepsin G correlates with the ap- 
pearance of the truncated p65 spe- 
des. Western blot performed on the 
same extracts used in Fig. 5 A, with 
an anti-cathepsin G polyclonal an- 
tibody (Calbiochem-N ovabiochem 
Corp.). Extracts were used as indi- 
cated and normalized for protein 
concentration. The detection of 
multiple cathepsin G specific bands 
( t ) i~ probabty d~e to gly~o~yt~- 
fion of the protein. 

of our data suggests that in at least several cases the abnormal, 
faster-migrating NF-KB complexes may have been present, 
rather than the normal one (9, 10, 34, 57-63). This includes 
the case of the chronically HIV-infected U1 cells, a deriva- 
tive ofU937 cells (64, 65). In addition, one report (34) noted 
the absence of normal NF-~B in those THP-1 cells that were 

restricted in supporting the growth of HIV. The authors con- 
cluded that NF-xB activity was somehow inhibited in these 
cells. Finally, another laboratory has noted an unusual, faster- 
migrating NF-KB complex upon induction of primary mono- 
cytic cells (Mondal, K., and S. Haskill, personal communi- 
cation). An unusual, faster-migrating NF-KB complex has 
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Figure 7. Cathepsin G and 
neutrophil dastase convert a nor- 
mally migrating p50-p65 hetero- 
dimer into a faster-migrating one, 
in vitro. EMSA performed with 
extracts obtained from NTera-2 
cells transfected with pS0 and p65 
vectors (see Materials and 
Methods) and preincubated with 
30 ng of puritied elastase (lane 2) 
or cathepsin G (lane 3) before 
adding the PD-r.B probe. (/>) p50 
homodimer and (~) pSO-p65 het- 
erodimer bands; ('~) migration of 
the digested heterodimeric 
con'lpl~. 

also been detected in regenerating liver cells (66). Since liver 
contains cells of myelo-monocytic origin as well as high levels 
of various serine proteases (67-69) and since liver can be rap- 
idly infiltrated with circulating neutrophils (70, 71) this com- 
plex may also have been generated by proteolytic digestion 
in vitro. However, this has not been experimentally tested 
by us. Nevertheless, the extraction procedures employed in 
each of the instances listed above would not be expected to 
inhibit the specific proteases that process p65. We conclude 
that special precautions must be taken when preparing ex- 
tracts from any cells of the myelo-monocytic lineage, because 
of the presence of this class of proteases in certain cell sub- 
lines or primary cell mixtures. 

In monocytes and neutrophils, serprocidins are contained 
within specialized lysosomes, termed azurophil granules (72) 
and perform important antimicrobial functions, such as the 
killing of phagocytosed microorganisms (53, 73). In addi- 
tion, to this described role, our data suggest the intriguing 
possibility that serprocidins (present only in the nonpermis- 
five minus clones) may negatively affect the life cycle of HIV-1 
in U937, as well as in other monocytic cells such as THP-1 
(34). The presence of such proteases in circulating mono- 

cytes could also explain the low viral burden associated with 
these cells in HIV-infected individuals (13, 14, 24, 25, 28, 
32). Treatment of monocytes in vitro with differentiating 
agents, such as GM-CSF and IFN-3', however, greatly en- 
hance the ability of these cells to support HIV replication 
in vitro (26-31). This is of interest since expression ofelastase, 
cathepsin G, and PR-3 genes is coordinately downmodulated 
by TPA (50, 52, 55, 56), GM-CSF, IFN-% or other agents 
that promote differentiation of monocytic and HL-60 cells 
into macrophages (See Fig. 6). In contrast, their expression 
increases in HL-60 after treatment with DMSO, an agent 
that differentiates these cells into granulocytes (49, 50, 74). 
In the case of our U937 plus clones, the lack of expression 
of serprocidins seems not to be strictly correlated with ter- 
minal differentiation, as demonstrated by the absence of a 
differentiated phenotype or a decrease in the proliferation rate 
(data not shown). Another possible explanation of the poor 
growth of HIV in minus clones is that whereas serprocidins 
may not themselves be directly retarding HIV-1 replication, 
they are induced coincidently with some other protein which 
is the effector. Alternatively, the process which positively regu- 
lates the expression of serprocidins may also negatively regu- 
late HIV-1 expression. However, this latter possibility seems 
unlikely. As shown, both minus and plus clones contain 
normal p50-p65 heterodimers that are essential to the tran- 
scription of the HIV-LTR. These complexes are functional 
in both minus and plus cell types, as shown by the strong 
induction of 1KB-ot synthesis after TNF-cr stimulation (data 
not shown; see Results). Finally, a transcriptional defect 
affecting the HIV-LTR in minus clones is inconsistent with 
previous data on the chronically infected U937 cell line U1 
(28). Although the U1 cells have a minus phenotype and their 
extracts contain the truncated NF-xB complex (64, 65; G. 
Poli and A. S. Fauci, unpublished observations), stimulation 
of these cells causes rapid production of HIV-RNA and virions 
(75-77). Therefore, impaired HIV-1 replication in the U937 
minus clones is likely to be due to events preceding or coinci- 
dent with HIV integration. Whether early events during HIV 
replication are affected directly or indirectly by the specific 
serine proteases discussed here is under investigation. 
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