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Analysis of expression quantitative trait loci (eQTLs) is an emerging technique in which individuals
are genotyped across a panel of genetic markers and, simultaneously, phenotyped using DNA
microarrays. Because of the spacing of markers and linkage disequilibrium, each marker may be
near many genes making it difficult to finely map which of these genes are the causal factors
responsible for the observed changes in the downstream expression. To address this challenge, we
present an efficient method for prioritizing candidate genes at a locus. This approach, called ‘eQTL
electrical diagrams’ (eQED), integrates eQTLs with protein interaction networks by modeling the
two data sets as a wiring diagram of current sources and resistors. eQED achieved a 79% accuracy in
recovering a reference set of regulator–target pairs in yeast, which is significantly higher than the
performance of three competing methods. eQED also annotates 368 protein–protein interactions
with their directionality of information flow with an accuracy of approximately 75%.
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Introduction

The technique of expression quantitative trait loci (eQTLs)
is becoming increasingly widespread for revealing the
genetic loci in control of specific changes in gene expression
(Brem and Kruglyak, 2005; Schadt et al, 2005). eQTLs are a
variant of the more basic concept of quantitative trait loci,
which measures the association between a quantitative
phenotype (such as height and weight) and a panel of
polymorphic genetic markers distributed across the genome
(Griffiths, 2002). For the special case of eQTL analysis, the
phenotype of interest is a gene expression level measured
with DNA microarrays (Brem and Kruglyak, 2005). Since a
microarray monitors expression levels of all genes, separate
statistical tests are performed to compute scores of association
of each genetic marker with each gene expression level.

Two of the core challenges (Rockman and Kruglyak, 2006;
Schadt and Lum, 2006) in understanding and explaining eQTL
associations are

(1) Fine mapping: Due to the spacing of genetic markers and/
or linkage disequilibrium, several genes can reside near
each marker. Typically, no more than one of these genes is
responsible for the observed expression phenotype.
Identifying the true causative gene requires additional
data, since all genes at a locus are indistinguishable based
on the eQTL measurements alone.

(2) Lack of mechanistic explanation: A gene–phenotype
association typically lends little insight into the underlying
molecular mechanism for the association.

Several bioinformatic approaches have been proposed re-
cently to address these two issues (Schadt et al, 2005; Kulp and
Jagalur, 2006; Lee et al, 2006; Tu et al, 2006; Perez-Enciso et al,
2007). For the problem of ‘fine mapping’, the main bioinfor-
matic focus has been on predicting which genes within a given
locus are the true regulators of expression of the target
phenotype. For instance, Kulp and Jagalur (2006) sought to
infer the true causal genes using a Bayesian network model
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constructed from expression correlations detected within
the eQTL profiles. Another powerful approach has been to
complement eQTLs with data on physical molecular interac-
tions. Tu et al (2006) modeled each eQTL association as a
sequence of transcriptional and protein–protein interactions
(PPIs) that transmits signals from the locus to the affected
target. This method is promising since it prioritizes candidate
genes by their network proximity to the affected target gene
and also provides a model of the underlying regulatory
pathways. In addition, assembly of protein interaction net-
works is a burgeoning area in genomics and the amount and
quality of protein interaction data are rapidly improving.
Integrating eQTL data with additional independent informa-
tion may significantly reduce the noise and improve the
statistical power of the analysis (Beyer et al, 2007).

Here, we describe a new integrative approach (named ‘eQTL
electrical diagrams’ or eQED), which also combines eQTL data
with protein interaction networks but predicts the true causal
gene at each locus with substantially higher accuracy than the
previous method. eQED models the flow of information from a
locus to target genes as electric currents through the protein
network. Currents can be simulated simultaneously for all loci
influencing a target, allowing multiple loci to reinforce each
other when they fall along a common regulatory pathway.

Results and discussion

Definition of terms

In what follows, the genes near a polymorphic genetic marker
are called candidate genes, and the genes with an associated
change in expression are called targets. The particular
candidate gene that is truly responsible for the downstream
change in expression of a target is called the true causal gene.
Collectively, the set of candidate genes near a marker defines a
locus. Finally, the proteins and their interactions in the protein
network are referred to as nodes and edges, respectively.

Open problems motivated by the previous method

For a given locus and associated target, the Tu et al method
works by executing a random walk through the protein
network starting at the target. At every step of the walk, the
next edge to be followed depends on its predefined weight (see
Materials and methods). The walk ends when it reaches one of
the candidate genes in the locus. The random walk is repeated
10 000 times, and the candidate gene that is visited most often
is predicted to be the true causal gene. Figure 1A shows a
sample network, while Figure 1B shows a sample random
walk on this network according to the Tu et al approach.
Gene L3 is visited most often and, hence, is reported as the
causal gene.

Given that the protein network is large, many random walks
must be executed for the predictions to be accurate. Moreover,
a single random walk from the target to any candidate gene
may require many steps. These two issues can lead to random
walk simulations that last a prohibitively long time. In Tu et al,
the authors make a key approximation that allows them to
achieve feasible simulation times: they constrain the path
taken by each random walk to be acyclic (i.e. no genes can be

revisited). As a consequence, many walks result in ‘dead ends’
unable to reach any candidate gene, but all walks are at least
relatively short. This ‘greedy’ approximation may lead to
different predictions from typical random walk models (Doyle
and Snell, 1984), which may affect their accuracy. In addition,
since biological networks are scale free (Albert-László
Barabási, 1999), they contain a large number of dead ends
(i.e. nodes with a single edge). The many dead ends greatly
reduce the absolute number of visits to the candidate genes,
thereby reducing the overall confidence in the final causal gene
prediction for a given number (e.g. 10 000) of walks.

The eQED model

The eQED approach seeks to address the above open problems
by replacing the random walk model with a framework based
on electric circuits. There is considerable prior work establish-
ing the equivalence between electric networks and random
walks (see Materials and methods). The eQTL associations
and the corresponding protein network are abstracted as an
analog electric circuit model grounded at a given target gene.
The weights on the edges of the molecular network are
modeled as conductances (1/resistance) in the electric circuit.
The P-values of association between each genetic locus and
expression of the target are modeled as independent sources of
current. An electric circuit abstraction is constructed for every
locus–target association (which we call the single-locus model,
Figure 1C). Further details of the model are provided in the
Materials and methods section.

After solving the circuit for currents, the causal gene is
predicted as the one with the highest current running through
it. Analyzing the network as an electric circuit provides a
deterministic ‘steady-state’ solution, in contrast to a stochastic
random walk. Moreover, the number of dead-end nodes in the
network does not affect the final result as the total current
through them is always zero (Figure 1C).

Application to eQTL associations in yeast

As a proof of principle, we applied the eQED approach to
analyze the results of a genome-wide eQTL study in yeast by
Brem and Kruglyak (2005). This study reported associations
between 2956 genetic markers and 5727 gene expression levels
measured across 112 yeast strains (Materials and methods). All
locus–target pairs with a gene association P-valuep0.05 were
considered; within this set, we selected only those loci
containing more than one candidate gene (i.e. for which the
true causal gene was ambiguous). At the same time, we
assembled a pooled interaction network consisting of 17171
transcriptional and PPIs reported in previous large-scale
studies (Materials and methods). Given this network, the set
of locus–target pairs was further filtered to include only those
loci for which at least two of their candidate genes had at least
one transcriptional or PPI, yielding a total of 131 863 locus–
target pairs. The single-locus model of eQED was applied to
each locus–target pair, and a causal gene prediction was made
in each case. This step-by-step procedure is diagrammed in
Figure 2.

To estimate the accuracy of the predictions, we compiled a
set of ‘gold standard’ cause–effect pairs from two large gene
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knockout expression profiling studies in yeast, Hughes et al
(2000) and Hu et al (2007), as well as from a gene
overexpression study by Chua et al (2006). In these studies,
strains harboring a single gene knockout or overexpression
construct (the ‘true causal gene’) had been analyzed using
whole-genome microarrays to identify a resulting set of
differentially expressed genes (the ‘targets’). We filtered these
three data sets to include only those causal gene–target pairs
that were present in the molecular network used by eQED and
for which the causal gene was associated with the target gene
at Pp0.05 in Brem and Kruglyak (see Materials and methods).
The resulting gold-standard set contained 548 causal gene–
target pairs.

Table I reports the number of correct predictions of the
causal gene for each method. The single-locus model of
eQED correctly predicted 392 of the 548 gold standards
(72% accuracy). In comparison, the approach by Tu et al
(2006) achieved 50% accuracy. Both methods performed

substantially better than random selection of a gene at a locus,
which achieved 22% accuracy.

Combining multiple loci

In our model, given a target gene and a corresponding
significant marker, there exists only one causal gene. However,
in eQTL studies, the expression level of a target gene typically
has significant associations with more than one marker (and
thus more than one causal gene). If these causal genes fall
along common regulatory pathways, considering multiple loci
together in the same eQED model might increase our
confidence in the causal gene predictions. Motivated by these
considerations, we explored a second circuit model, called
multiple-loci eQED, in which currents were included for
all significant loci associated with a target (see Materials
and methods). For example (Figure 1E), assume the target T
associates significantly with two loci. In the single-locus
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Figure 1 Examples of the electrical circuit approach and the eQED model. (A) Sample network. (B) The ‘greedy’ random walk approach by Tu et al (2006). (C) The
single-locus model of eQED. Gene T in the blue octagon is the target gene. The locus marked by the red box, containing candidate genes L1, L2 and L3, associates
significantly with the target T. The numbers next to the locus genes correspond to the number of times they were visited in the random walk approaches or the amount of
current through them in the electric circuit approach. (D) The random walk derived from (C). (E) The sample network with two significant loci. (F) The multiple-loci model
of eQED.
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model, we would investigate the two associations separately,
but in the multiple-loci model their information is processed as
a single circuit. Figure 1F shows a schematic of the multiple-
loci model from Figure 1E. For each locus considered, the
causal gene is predicted as the one having the highest current
flowing through it.

The accuracy of the multiple-loci eQED model was
estimated using the same gold-standard data set used for the
single-locus model. As shown in Table I and Supplementary
Table 1, the multiple-loci model boosted prediction accuracy
substantially over the single-locus case (80 versus 72%).
Combining information from all significant loci for a given
target also reduces computation time, as all loci are processed
in a single eQED simulation instead of multiple runs.

Predicting the direction of signaling along protein
interactions

A direct consequence of the electric circuit model is that the
currents on the wires of the network suggest a direction of
information flow in the biological system. In the case of
transcriptional interactions, the current is restricted to
flow from the transcription factor (TF) to the regulated
gene, and not vice versa (Materials and methods). In contrast,
the direction of information flow along PPIs is not predeter-
mined, since the underlying biochemical measurements
typically report only whether an interaction exists, not its
functional consequences. Therefore, for PPIs in particular,
eQED provides a means of predicting the direction of signal
transmission.

eQED induces a current on each PPI in the network.
Repeated application over all targets yields a distribution of
current values for each interaction. This distribution can be
analyzed to determine whether the current is predominantly
positive or negative (prior to the analysis, positive and
negative directions of flow are defined arbitrarily for each
interaction). We evaluated three simple methods for summar-
izing this distribution of currents, by using either (1) the most
extreme current; (2) the sum of currents or (3) the skewness of
the current distribution. Each of these three methods yielded a
single value per interaction whose sign was interpreted as the
predicted direction and whose magnitude could be used to
rank the predictions in order of confidence.

Generate source to target gene
associations by assigning genes to
their nearest marker.
Genes assigned to one marker 
define a locus.

Marker to target gene eQTL
associations from Brem et al. (2005)

Create physical interaction network with
protein−protein interactions from STRING 
database and TF−DNA interactions from
Beyer et al. (2006)

Filter to include only high confidence 
interactions.

Repeat for 
every target 
gene

(1) Generate electric circuit abstraction of the network.
(2) The input currents into each locus are proportional to the P-value
of association with the target gene.
(3) Solve the electric circuit using Kirchhoff’s and Ohms’ Laws.

(1) Identify the causal gene at each locus as the gene with the 
maximum current flowing through it.
(2) Identify the corresponding causal pathways.

(1) Filter the network to be specific for the target gene of interest.
(2) Assign the edge weights based on expression correlation with 
the target gene.
(3) Identify the set of loci that associate significantly (P≤0.05) 
with the target gene.

Figure 2 Flowchart of the eQED method.

Table I Causal gene prediction accuracya

Methods Number of correct predictions

Random 118
Tu et al 262
Shortest pathb 351
eQED (single locus) 392
eQED (multiple loci) 438

aAll predictions were tested against a gold-standard data set of 548 causal
gene–target pairs compiled from yeast gene expression knockout studies by
Hughes et al (2000) and Hu et al (2007) and a gene overexpression study by
Chua et al (2006).
bA naı̈ve method in which the causal gene is selected to be the gene at the locus
that is connected by the shortest path to the target.
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To assess the performance of directionality prediction,
we once again compiled a set of gold standards, consisting of
PPIs for which the signaling directions are known. A total
of 408 gold-standard interactions were obtained, including
103 signaling interactions recorded in the Kyoto Encyclopedia
of Genes and Genomes (Kanehisa, 2002) or the Munich
Information center for Protein Sequences (Mewes et al, 2006),
as well as the 596 (top 10%) highest confidence kinase–
substrate interactions reported in a systematic analysis of
phosphorylation by Ptacek et al (2005). Figure 3A shows the
accuracy of the three methods at recapitulating the known
directions of signaling. Although the ‘sum of currents’ method
yielded very high accuracy (480%) for the 40 highest ranking
predictions, the ‘most extreme current’ method retained
moderate accuracy (generally 475%) out through the best
80 predictions (corresponding to the largest area under the
curve). In contrast to these first two methods, the third method
based on ‘skewness’ was not an accurate predictor of
directionality.

On the basis of this analysis, we used the ‘most extreme
current’ method to predict directionality of information flow
for all PPIs in the eQED network. A total of 368 predictions
(with absolute most extreme current X623, corresponding to

the 75% accuracy mark above) are provided in Supplementary
Table 2.

Prediction of regulatory pathways

The currents computed by eQED provide an estimate of the
influence of each protein interaction on the regulation of the
target gene. To reveal how individual high-current interactions
might assemble into regulatory pathways, we sought to
connect each causal gene to its target by finding an optimal
path through the network, defined as the shortest route with
the highest total sum of currents across its interactions. The
union of all optimal paths leading from each predicted causal
gene into a given target reveals its regulatory network. We also
filtered the regulatory network to include only those PPIs that
have a predicted direction of influence (see previous section).
Figure 3B–D shows the regulatory network obtained for three
example target genes: HMG2, AAD15 and ARG5/6. Although
the causal genes are often at the head of each path comprising
the regulatory network, in some cases a path contains a chain
of causal genes in series. For instance, both ARO80 and RLR1
associate significantly with the target ARG5/6 and share the
same regulatory pathway. This is a direct consequence of
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integrating the information about all significant loci when
running eQED (multiple-loci model). As a result, the casual
genes not only reinforce each other but also increase the
overall confidence of the underlying regulatory network.

Application to gene association studies in humans

During the past few years, a substantial body of eQTL data has
been generated in higher eukaryotes, including a number of
studies in mouse and Arabidopsis thaliana (see www.gene-
network.org). Large eQTL studies are now also available for
humans (Dixon et al, 2007; Goring et al, 2007; Stranger et al,
2007). All of these datasets associate genetic loci with gene
expression levels without explicitly identifying the causal
genes at each locus, raising the important question of whether
they could be identified using an integrative network-based
approach such as eQED.

Clearly, a network-based analysis of human eQTLs will
require a substantial database of protein–protein and tran-
scriptional interactions. In terms of PPIs, several large
networks have recently been mapped for humans (Rual et al,
2005; Stelzl et al, 2005; Mathivanan et al, 2006). The
remaining hurdle is therefore the availability of large-scale
measurements of transcriptional interactions. Although no
systematic study has yet been published, several such efforts
are underway using systematic chromatin immunoprecipita-
tion experiments in human cell lines and in vitro technologies
such as the protein binding microarray (Berger et al, 2006). As
these networks become available, the success of eQED in yeast
suggests that it may also provide a powerful means for
identifying human disease genes and their associated tran-
scriptional regulatory pathways in higher eukaryotes.

Materials and methods

Electric circuit and random walks

There is considerable literature establishing the analogy between
random walks and electric networks (Doyle and Snell, 1984; Faloutsos
and Tomkins, 2004; Newman, 2005). In particular, Doyle and Snell
(1984) showed that there always exists a random walk equivalent of
linear electrical circuits. Random walks on a network can be abstracted
as a Markov chain and consequently, be represented using a transition
state matrix. Consider an electric network E where the conductance on
an edge (x, y) is represented by Cxy. A random walk can then be defined
on E, which has the transition state probabilities: Pxy¼Cxy/Cx where
Cx ¼

P
i2NðxÞ Cxi and N(x) is the set of neighbors of x in the network.

Since an electric network is a connected graph, it is possible to travel
between any two states. A Markov chain with such a property is
known as an ergodic chain. For an ergodic chain represented by the
transition matrix P, there exists a fixed vector w¼(w1, w2,y, wn)T,
such that wP¼w, where the component wj represents the steady-state
proportion of times the walker remains in state j. In the case of random
walks derived from electric networks, it can be shown that

wj ¼
Cj

C
; where C ¼

X

x

Cx

An ergodic chain is called time reversible if wxPxy¼wyPyx. Thus, in the
case of the random walk derived from an electric circuit,

wxPxy ¼
CxP

x
Cx

Cxy

Cx
¼ CxyP

x
Cx

¼ CyxP
y

Cy
¼ CyP

y
Cy

Cyx

Cy
¼ wyPyx

As a result, the random walk P is also time reversible. Finally, using the
above properties we can show that when a unit current flows into an

electric network at node ‘a’ and leaves at node ‘b’, then the amount of
current through any intermediary node or edge is proportional to the
expected number of times a random walker will pass through that node
or edge (see Doyle and Snell (1984) for details).

We demonstrate this equivalence using the sample network of
Figure 1A. Figure 1C is the electric network model of the sample
network. Here, we add a new node L, which is connected to all the
candidate genes at the locus. The edges connecting L to L1, L2 and L3
have infinite conductance and for all purposes, L is no different from
any of L1, L2 or L3. The conductance on the remaining edges is equal
to their weight in the sample network. The target gene T is treated as
‘ground’ for the electric network. There is an independent source of
current sending 10 000 A of current into the network at L. We solve the
network using Kirchhoff’s and Ohm’s Laws (Irwin and Wu, 1999) to
get the currents through each edge and node. Figure 1D shows the
sample network represented as a random walk derived from the
electric network of Figure 1C. The random walk is repeated 10 000
times. The number of times each edge and node was visited in the
random walk converges to the amount of current through those edges
and nodes in the electric network (Figure 1C and D, and Supplemen-
tary Information).

eQTL associations

Yeast eQTLs were obtained from Brem and Kruglyak (2005), consisting
of whole genome expression data for 112 yeast strains, which were
genotyped across 2956 genetic markers. Genetic similarity between
strains, referred to as population substructure, can lead to false-
positive relationships where the observed phenotype correlates well
with the phylogenetic relationships between the strains and the
markers do not predict phenotype beyond the phylogeny. We corrected
for the population substructure problem using the method of Zhao et al
(2007). The resulting marker–gene associations were converted to
gene–gene associations by assigning genes to their nearest marker
(within 10 kb) on the genome. Finally, all genes assigned to the same
marker were defined to belong to the same locus.

High-confidence physical interaction network

Protein–protein interactions were obtained from a modified form of
the STRING database (Search Tool for the Retrieval of Interacting
Proteins, version 6.3) (von Mering et al, 2005), extended to
incorporate additional information on potential interactions. STRING
reports a confidence score for each protein interaction based on
numerous experimental and computational evidences. We implemen-
ted a naı̈ve Bayes classifier that takes the STRING score as one line of
evidence. As a second line of evidence, we incorporated quantitative
genetic interactions from Collins et al (2006) who analyzed double
mutants to detect both aggravating and alleviating genetic interac-
tions. Genetic interactions may also be used as indirect predictors of
physical protein interactions (Kelley and Ideker, 2005; Ye et al, 2005).
As a third and final line of evidence, we used recently published
protein interaction data (Gavin et al, 2002; Krogan et al, 2006) that
were not included in the 6.3 version of STRING. For fitting the
parameters of the model, a positive training set of 11 814 distinct
interactions was created from pairs of proteins falling within known
pathways recorded in the Kyoto Encyclopedia of Genes and Genomes
(Kanehisa, 2002) as well as from small-scale binary physical
interactions and protein complexes from the Munich Information
center for Protein Sequences (Mewes et al, 2006). The negative
training set of 35 676 interactions was obtained by randomly pairing
proteins. We filtered the top 22 428 interactions with log-likelihood
scores 43.0.

Pooling with transcriptional interactions

A pooled molecular interaction network was constructed by merging
the above PPIs with TF–DNA interactions obtained from Beyer et al
(2006). This study combined several lines of evidence in a Bayesian
framework to assign log-likelihood scores to each TF–DNA link. The
11 513 TF–DNA interactions with log-likelihood scores 43.0 were
included in the final set.
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To ensure that all interactions in the network (PPI and TF–DNA)
represented physical binding events (as opposed to functional
linkages), we required that each included interaction has been
reported in at least one experiment, indicating direct physical
interaction between the proteins. In addition, to enrich for interactions
within regulatory pathways, the network was restricted to regulatory
proteins. We included proteins that were assigned to the following
MIPS categories: (1) regulation of glycolysis and gluconeogenesis,
(2) regulation of electron transport and membrane-associated energy
conservation, (3) regulation of respiration, (4) regulation of energy
conversion/regeneration, (5) regulation of DNA processing, (6) mitotic
cell cycle and cell cycle control, (7) transcriptional control, (8) regulation
of splicing, (9) translational control, (10) protein fate (folding,
modification, destination), (11) regulation of metabolism and protein
function, (12) cellular communication and signal transduction mechan-
ism, (13) cell rescue, defense and virulence, (14) cellular sensing and
response to external stimulus, (15) cell fate, (16) development (systemic)
and (17) cell-type differentiation. Altogether, the final pooled network
consisted of 4466 proteins and 17171 non-redundant interactions.

Network filtering based on target gene

We make the assumption that the expression of the target gene is
modulated by the causal gene through a TF of the target gene. Hence
for every target gene, we filter the high-confidence network such that
the target gene is connected to the rest of the network through TF–DNA
interactions only. As some of the target genes in the Brem and Kruglyak
study have no known TF–DNA edges, we cannot use our approach to
analyze them. This reduced the number of target genes that were
analyzed in this study to 3711.

Tu et al (2006) weighted each node in the network using the mRNA
expression correlation between the node and the target gene. We use
the same idea; however, in our framework weights are most naturally
placed on edges as opposed to nodes. The weight on each edge (u, v) is
defined to be the average mRNA correlation of u and v with the target
gene. Thus, our approach is meant to model as closely as possible the
scheme of Tu et al and differs only in that weights are placed on edges
versus nodes.

eQED model

The eQED model used in this study utilizes the relationship between
electric circuits and random walks (see previous sections). The exact
equivalence between electric circuits and random walks follows only
when the network under consideration is completely undirected.
However, in our study we also use directed edges (TF–DNA
interactions) and consequently, we employ a heuristic motivated by
the undirected case. Specifically, let S(N, E) represent the molecular
interaction network, N being the set of genes in the network and E
being the set of interactions. Let C(e) denote the conductance on edge
e, while I represents the independent input current at locus L. Let de be
a new variable associated with the directed edge e and let DDE be the
set of all known directed edges in the network.

Objective : Min
X

ðu;vÞ2D

ðdðu; vÞ � ðVðuÞ � VðvÞÞ

8u; v =2D : Iðu; vÞ ¼ Cðu; vÞðVðuÞ � VðvÞÞ ð1Þ

8u; v 2 D : Iðu; vÞ ¼ Cðu; vÞdðu; vÞ ð2Þ

8v 6¼ t :
X

u

Iðu; vÞ ¼ 0 ð3Þ

8ðu; vÞ 2 D : dðu; vÞðVðuÞ � VðvÞÞ ð4Þ

8ðu; vÞ 2 D : dðu; vÞ0 ð5Þ

where u and v are any nodes in the network, and t is the target gene,
and V is the voltage on the nodes of the electric circuit. Here, equations
(1) and (2) are derived from Ohm’s Law which states that the current
flowing through any two points is directly proportional to the voltage
difference and the conductance between them. Further, equation (3)
corresponds to Kirchoff’s current law in electric circuit theory which
states that the total sum of current through any point in the circuit is
zero (Irwin and Wu, 1999). The wires of a simple resistive circuit (as
shown in Figure 1C) do not have explicit directionality, such that
current can flow in either direction. However, the molecular network
used in this study includes TF–DNA interactions that, by definition,
transmit signal from the TF to the DNA and not vice versa. Electrical
circuits account for directed links by using diodes, which constrain
current to flow in one direction only. Equations (4) and (5) are
constraints to ensure that the current only flows in the correct direction
on known directed edges. For instance, let (u, v) be a directed edge
with the signal going from u to v. If V(u)4V(v), then to minimize the
objective function, d(u, v) will take the value (V(u)�V(v)). As a result,
the equation becomes the same as (1). However, if V(u)oV(v), then
due to (5), d(u, v) will be equal to 0, implying that there is no current
on that edge. We implemented the above linear programming
approach in Matlab (http://www.mathworks.com/) using the MOSEK
package Version 5 (http://www.mosek.com/).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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