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Glaucoma is a disease characterized by loss of retinal 
ganglion cells and the retinal nerve fiber layer, which even-
tually leads to deterioration of visual function [1]. Func-
tional deterioration is currently measured by standard au-
tomated perimetry. An accurate and reliable method is 
needed to measure deterioration of the visual field (VF) to 
monitor the progression of glaucoma and evaluate the effi-
cacy of therapies. Predicting future VF changes is current-
ly one of the most challenging areas in managing glauco-

ma. To predict VF accurately, identifying the temporal and 
spatial characteristics of VF changes is essential. In struc-
tural aspects, VF data can be interpreted as multi-dimen-
sional data, containing multiple VF locations for each test 
performed in every single patient. Past research on VF has 
focused on contemporary cross-sectional analysis [1-4] on 
regression methods applied separately in different loca-
tions (pointwise approach) [5-9], or on regression analysis 
based on global indices [10-12]. 

 Cross-sectional approaches cannot capture any temporal 
variability, (i.e., progression of VF defects) because the 
data is a collection of single tests on each subject. VF loca-
tions reflect specific locations in individual human retinas, 
and each location should be correlated with the others 
(possible correlations are 52 × 52 = 2,074 correlations) be-
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Purpose: To explore spatial and temporal characteristics of glaucomatous visual field (VF) progression through 

multi-way decomposition of data.

Methods: Six serial VF exams with intervals of 6.0 ± 1.0 months in 121 pre-perimetric glaucoma eyes and 80 

perimetric glaucoma eyes were arranged into a three-dimensional cube. The data were decomposed using 

parallel factor analysis.

Results: Three tri-linear components (i.e., spatial scores, temporal loadings, and subject-specific loadings) were 

identified. Component 1 clearly showed differences between superior and inferior hemispheres, linear trends 

over time, and wide variability in perimetric glaucoma. Findings were compatible with well-known characteris-

tics of glaucomatous VF defects. Component 2 showed nasal and central areas in contrast with superior, infe-

rior, and temporal peripheral locations, whereas component 3 showed a contrast between nasal and temporal 

hemispheres. Both components 2 and 3 failed to show clear temporal trends.

Conclusions: Identification of spatio-temporal patterns shows new possibilities for a multi-way decomposition 

methodology for earlier diagnosis and prediction of glaucomatous VF progression.
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cause of the anatomical patterns of retinal nerve fibers and 
ganglion cells [13-15]. Because models based on point-wise 
approaches separately analyze discrete VF locations, these 
models have inherent difficulty incorporating such correla-
tions among the locations. Some recently developed re-
gression models capture spatial characteristics by analyz-
ing clusters rather than individual points, either following 
point-wise regression [13] or prior to regression [16,17]. 
Also notable is the application of a Monte-Carlo simulation 
in analysis of spatial correlations in retinal sensitivity 
changes [18]. Using pattern deviation plot values from a 
baseline to two follow-up tests, probabilities were calculat-
ed for negative changes in one of 52 VF locations (in a 
24-2 pattern, excluding two blind-spot locations). The re-
sults were compared with Monte-Carlo simulation results, 
providing solid evidence of spatial correlations in VF de-
fect patterns in a glaucoma population. Location-wise ag-
gregate results cannot reflect any subject-specific charac-
teristics, however, and the large number of parameters 
(2,704 probabilities for each given level of defect) makes it 
difficult to integrate this methodology into a practical di-
agnostic framework.

Hence, this study introduces a multi-dimensional ap-
proach implementing a multi-modal decomposition meth-
od known as parallel factor analysis/canonical polyadic 
decomposition (PARAFAC/CANDECOMP) to incorporate 
intra-subject, inter-subject, and temporal variability into a 
single framework for simultaneous characterization of 
temporal and spatial features of glaucomatous VF. Using 
this approach, we analyze the characteristics of longitudi-
nal VF data in our cohort of glaucoma patients.

Materials and Methods

Subjects

Medical records of glaucoma patients who were followed 
with a Humphrey VF analyzer (Carl Zeiss Meditec, Dub-
lin, CA, USA) at the glaucoma clinic in the department of 
ophthalmology at Asan Medical Center between January 
2007 and August 2013 were retrospectively reviewed. Eyes 
with more than six serial regular reliable VF exams 
(false-positive errors <15%, false-negative errors <15%, 
and fixation loss <20%) at intervals of 6.0 ± 1.0 months 
(150 to 210 days) were enrolled. Initial exams were elimi-

nated from analysis to minimize learning effects. All par-
ticipants had best-corrected visual acuity of 20 / 40 or bet-
ter, with a spherical refractive error between -6.0 and +4.0 
diopters (D) and a cylinder correction within +3 D. All 
participants had a normal anterior chamber and an 
open-angle on slit-lamp and gonioscopic examinations. A 
glaucomatous VF defect was defined as a cluster of three 
points with a probability <5% on the pattern deviation map 
in at least one hemifield, including at least one point with a 
probability of <1%, a cluster of two points with a probabil-
ity of <1% and a glaucoma hemifield test result outside 
normal limits, or a pattern standard deviation outside 95% 
of normal limits at baseline. Participants who had both 
glaucomatous optic disc changes (cup to disc ratio ≥0.7, 
diffuse or focal neural rim thinning, disc hemorrhage, or 
retinal nerve fiber layer defects) and a glaucomatous VF 
defect were defined as the perimetric glaucoma group 
(PG). Patients who had glaucomatous optic disc changes 
but a normal VF at baseline were assigned to the pre-peri-
metric glaucoma group (PPG). Exclusion criteria included 
the presence of any neuro-ophthalmic disorders, retinal 
diseases, a history of intraocular surgery other than un-
complicated cataract and glaucoma surgery at baseline, 
and/or a history of any intraocular surgery during the fol-
low-up period. All included patients had a baseline VF 
mean deviation no worse than -9.0 decibels to control het-
erogeneity among subjects.

This study adhered to the Declaration of Helsinki princi-
ples and the study protocol was approved by the institu-
tional review board of the Asan Medical Center, University 
of Ulsan, Seoul, Korea (2017-1311). Informed consent was 
waived due to the retrospective nature of the study.

Statistical analysis

The PARAFAC/CANDECOMP method was introduced 
in 1970 [19,20] in psychometrics and has been widely adopt-
ed in chemometrics as well [21]. Recently, the method has 
gained some interest in space-time signal brain analysis, 
electroencephalography analysis [22,23] and functional neu-
roimaging [24,25]. The PARAFAC/CANDECOMP can be 
seen as a three-mode extension of principal component anal-
ysis and aims to reduce three-mode data table X by extract-
ing the same number of components (F) for every mode [26]. 
Data table X is represented as the sum of each tri-linear 
component and residual E, usually presented as follows: 
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(1) 

where , ,  are elements of the loading matrices A, 
B, and C, respectively. Term  represents elements of re-
sidual matrix E.

The equation can be additionally presented in matrix 
form after dropping residuals ( ) as:

(2)

where , ,  are the  columns of the loading matri-
ces A, B, and C, respectively.

An important advantage of PARAFAC/CANDECOMP 
in comparison to other techniques such as bilinear princi-
pal component analysis or independent component analy-
sis is that the solution is unique without additional orthog-
onality or independence constraints as long as the right 
number of components is used and the signal-to-noise ratio 
is appropriate [21,23,27]. In previous research, PARAFAC/
CANDECOMP analysis was calculated with R ver. 3.0.2, 
function CP of R statistical package ThreeWay ver. 1.1.1 
(http://cran.r-project.org/web/packages/ThreeWay/) [28]. 
Other statistics were analyzed with SPSS ver. 15.0 (SPSS 
Inc., Chicago, IL, USA). 

Results

One hundred and twenty-one PPG and 80 PG eyes were 
included in the final analysis. The 121 PPG eyes were com-
prised of 63 male and 58 female eyes. In PG eyes, 43 and 
37 were male and female eyes, respectively. Clinical char-
acteristics of the participants assessed at baseline and at fi-
nal follow-up examinations are described in Table 1. In PG 
subjects, measures of VF mean deviation were worse at 
both baseline and final visits, as expected (-0.32 ± 1.30 vs. 
-4.80 ± 3.24, p < 0.001). Visual acuity, intraocular pressure, 
and number of glaucoma medications showed no signifi-
cant differences between the two groups.

Fitting the model

A graphical representation of our model is shown in Fig. 
1. The first mode represents specific locations on the VF 
map (spatial mode), and is labeled as “VF locations.” The 
second mode represents subjects (subject mode), and the 
third mode represents time (time mode). After centering 
raw data across the first and second modes, we ran PARA-
FAC/CANDECOMP analysis with one to six components 
(components 1 to 6) to determine the optimal number of 
components. The model’s goodness-of-fit improved as the 
number of components increased, but a rapid decline in 

Table 1. Patient characteristics

Characteristics PPG (n = 121) PG (n = 80) p-value
Age (yr) 51.53 ± 11.75 52.96 ± 12.33 0.407
Sex (male : female)* 63 : 58 43 : 37 0.815
Baseline

Visual acuity (logMAR) 0.07 ± 0.09 0.10 ± 0.11 0.070
IOP (mmHg) 16.0 ± 3.13 15.9 ± 3.05 0.085
No. of topical glaucoma medications* 0.18 ± 0.48 0.33 ± 0.69 0.130
Mean deviation (dB) -0.32 ± 1.30 -4.80 ± 3.24 <0.001

Final follow-up
Visual acuity (logMAR) 0.09 ± 0.11 0.11 ± 0.11 0.195
IOP (mmHg) 14.3 ± 3.06 13.6 ± 2.35 0.077
No. of topical glaucoma medications* 0.73 ± 0.52 1.34 ± 0.62 <0.001
Mean deviation (dB) -0.64 ± 1.46 -5.20 ± 4.31 <0.001

PPG = pre-perimetric glaucoma; PG = perimetric glaucoma; logMAR = logarithm of minimum angle of resolution; IOP = intraocular 
pressure.                                                                                       
*Mann-Whitney U test.

http://cran.r-project.org/web/packages/ThreeWay/
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core consistency was shown with each additional compo-
nents, especially after the fourth component (two compo-
nents 100%, three components 90.16%, and four compo-
nents 33.87%) [28]. Thus, a three-component-model with a 
fit of 51.76% (Fig. 2) was chosen for further analysis.

Spatial mode

The VF map with corresponding spatial scores of each 
component is presented in Fig. 3A-3D. Because raw data 
were centered prior to analysis, scores can be interpreted 
as the deviation from the mean. For every VF test, the 
signs and scales of spatial scores of each component were 
analyzed after modifying the corresponding subject and 
time mode loadings. Hence, the signs of scores in the com-

ponent can be inversed, and comparison of magnitude of 
each scale should be done only within the component.

Component 1 clearly shows a contrast between superior 
and inferior hemispheres, suggesting that vertical hemi-
spheric differences are the most prominent feature of glau-
comatous VF defects in the study population. Scores are 
generally smaller in temporal areas, and larger along infe-
rior and superior arcuate locations (superonasal SN01-04, 
SN10-13, superotemporal ST10-11; inferonasal IN10-13, 
IN20-22, and inferotemporal IT10-11, IT20). The spatial 
patterns of components 2 and 3 are less clear. In compo-
nent 2, positive scores are mostly located in superior (supe-
rior rows 2, 3) and temporal (temporal columns 2, 3) pe-
ripheral areas, whereas nasal negative scores are mostly 
located in nasal (SN01-04, IN01-04, and IN11-13) and cen-
tral areas (SN00 and ST00). Component 3 is slightly 
C-shaped, with a mainly horizontal contrast, having scores 
that are mostly nasally located except for two central 
(SM00 and IN00) negative signs, and the strongest positive 
scores in superior central locations (SN00 and ST00-01). 
Components 2 and 3 might represent other aspects of glau-
comatous VF defects or might indicate normal variability.

Temporal mode

The temporal loadings of component 1 increased with 
the passage of time, showing a clear linear pattern. Com-
ponents 2 and 3 did not show the same trend (Fig. 4A-4C).

Subject mode

The mean loadings differed signif icantly between 
groups in all three components, with differences being 
most prominent in component 1 (Table 2). Distribution in 
PPG subjects was more concentrated near zero, whereas 

Fig. 1. Diagram representing the parallel factor analysis model. VF = visual field.

Fig. 2. Goodness of fit (%) with varying number of components 
(the number under each point denotes the number of components 
included in the analysis).
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PG subjects had wider and subnormal distributions in all 
three components, with outstanding variance in compo-
nent 1 (Fig. 5A-5C). To further assess structural differenc-
es in component loadings between the groups, we calculat-
ed the correlation between components within subjects. 
Within PPG subjects, component 2 had highly significant 

correlations with component 1 (0.296, p < 0.01) and com-
ponent 3 (-0.516, p < 0.01). In contrast, components 1 and 3 
had no significant correlation. No pair of components with 
a high correlation was detected in PG subjects (Table 3).

Table 2. Distribution of subject loadings in PPG and PG
PPG (n = 121) PG (n = 80) p-value*

Component 1 9.89 ± 6.47 (-4.43 to 29.10) -14.96 ± 67.08 (-161.26 to 178.82) 0.001† 
Component 2 -1.48 ± 2.96 (-14.19 to 4.50) 2.24 ± 14.36 (-31.19 to 43.40) 0.025† 
Component 3 1.52 ± 2.28 (-3.69 to 12.99) -2.29 ± 10.41 (-30.75 to 20.98) 0.002† 

Values are presented as mean ± standard deviation (range). 
PPG = pre-perimetric glaucoma; PG = perimetric glaucoma. 
*t-test with equal variances not assumed; †p < 0.05 considered as statistically significant.

Fig. 4. Temporal loadings of three components. (A) Component 1 showed clear linear pattern. (B) Component 2 and (C) component 3 did 
not show the same trend (time 1 = initial follow-up, time 6 = last follow-up).
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Discussion

Various methodologies have been developed for analyz-
ing multi-dimensional data in neuroscience and are being 
extended to fields of clinical diagnosis [29-33]. Applica-
tions in glaucoma have not been found in existing litera-
ture to date. Our PARAFAC/CANDECOMP analysis is a 
data-driven approach, drawing conclusions from the data 
itself rather than from pre-defined strict assumptions and 
models. Thus, this new approach enables simultaneous 
analysis of spatial, temporal and subject-specific character-
istics, providing a more comprehensive and unbiased un-
derstanding of glaucomatous VF. 

Turning to the data herein, component 1 had outstand-
ingly high variability among three components, suggesting 
the importance of component 1 in explaining glaucoma-
tous VF defects in the study population. On the spatial 
map, component 1 showed a clear vertical contrast, (i.e., 
differences between superior and inferior areas), which is 
a well-known feature of glaucomatous VF defects. In ad-
dition, component 1 showed a clear linear trend over time, 
suggesting increasing contrast between superior and infe-
rior hemispheres in the study population over time. Such a 

clear temporal trend confers the possibility of developing a 
predictive scheme based on multi-mode data analysis, pre-
dicting not only the general rate of decline but also the 
patterns of progression.

The sharp contrast in distributions in component 1 load-
ings between PPG and PG shows the potential of multi-di-
mensional decomposition methodology for discerning 
glaucomatous VF defects from other types of VF defects. 
Patients with PPG in our study included those without ap-
parent glaucomatous VF defects, but with clinical features 
of glaucomatous optic discs. Thus, it is not clear whether 
PPG results represent normal or early glaucomatous 
changes in retinal ganglion cells with non-significant VF 
defects [15]. Further prospective research including pre-
sumed normal controls and PPG patients might reveal nov-
el characteristics of very early glaucomatous VF damage, 
thereby facilitating earlier diagnosis.

In PPG patients herein, component 2 is correlated with 
components 1 and 3. This relationship may be explained 
insofar as components 2 and 3 compensated for component 
1 in patients with a pre-perimetric status. In PG patients, 
however, where the variability of loadings was much high-
er, the relationship becomes vague. There is a possibility 

Table 3. Pearson correlation analysis of components in PPG and PG

PPG (n = 121) PG (n = 80)

Correlation p-value Correlation  p-value
C1 to C2 0.296 0.001 0.060 0.599 
C1 to C3 0.156 0.088 -0.940 0.408 
C2 to C3 -0.516 0.000 -0.420 0.711 

PPG = pre-perimetric glaucoma; PG = perimetric glaucoma; C1 = component 1; C2 = component 2; C3 = component 3. 

Fig. 5. Histogram of subject loadings by group. PG subjects had wider and subnormal distributions compared to PPG subjects in (A) 
component 1, (B) component 2, and (C)  component 3. (A) Component 1 showed clear variability. PPG = pre-perimetric glaucoma; PG = 
perimetric glaucoma.
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that a different complementary set of components existed 
in the two groups. Further research with longer follow-up 
time and more components is necessary. 

More detailed identification of glaucomatous VF pat-
terns was not possible due to insufficient data and the lim-
ited number of components. With more data and sophisti-
cated methodologies with more patterns, sub-patterns of 
glaucomatous VF defects might be identified along with 
pattern-specific progression rates.

Collecting large amounts of reliable VF data is difficult 
due to 1) the long timescale of VF progression, 2) limited 
follow-up time because of various clinical and personal 
factors, 3) variability in interval periods between subse-
quent tests, and 4) treatments and interventions affecting 
progression rates and patterns [34]. 

With the recent development of precise diagnostic mo-
dalities, intense research has emerged in assessing clinical 
implications of sophisticated measurements in the field of 
glaucoma—specifically in optical coherence tomography 
[35,36]. In this context, we expect that multi-dimensional 
approaches will find wider use. Current methodologies in-
clude only VF retinal sensitivity data, but multi-way de-
compositions can be extended to include more dimensions, 
namely demographic data (age, sex, and other characteris-
tics), physical examination data (intraocular pressure, cata-
ract and angle grading, and other physical features), and 
other diagnostic modalities, such as optical coherence to-
mography, by combining spatial and structural informa-
tion.

We expect that the future development of more suitable 
models and collection of longer-term follow-up data will 
overcome many of the existing difficulties described.
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