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Non‑contact monitoring 
of the depth temperature profile 
for medical laser scanning 
technologies
Jure Kosir*, Daniele Vella & Matija Jezersek

Medical treatments such as high‑intensity focused ultrasound, hyperthermic laser lipolysis or 
radiofrequency are employed as a minimally invasive alternatives for targeted tissue therapies. The 
increased temperature of the tissue triggers various thermal effects and leads to an unavoidable 
damage. As targeted tissues are generally located below the surface, various approaches are utilized 
to prevent skin layers from overheating and irreparable thermal damages. These procedures are 
often accompanied by cooling systems and protective layers accounting for a non‑trivial detection 
of the subsurface temperature peak. Here, we show a temperature peak estimation method based 
on infrared thermography recording of the surface temperature evolution coupled with a thermal‑
diffusion‑based model and a time‑dependent data matching algorithm. The performance of the newly 
developed method was further showcased by employing hyperthermic laser lipolysis on an ex‑vivo 
porcine fat tissue. Deviations of the estimated peak temperature remained below 1 °C, as validated by 
simultaneous measurement of depth temperature field within the tissue. Reconstruction of the depth 
profile shows a good reproducibility of the real temperature distribution with a small deviation of the 
peak temperature position. A thermal camera in combination with the time‑dependent matching 
bears the scope for non‑contact monitoring of the depth temperature profile as fast as 30 s. The 
latest demand for miniaturization of thermal cameras provides the possibility to embed the model in 
portable thermal scanners or medical laser technologies for improving safety and efficiency.

Medical laser-based technologies move the trend toward the use of less invasive techniques in clinical pro-
tocols. Most performed aesthetic medical treatments are often accompanied by adverse effects, such as scar-
ing, post-procedural pain, prolonged recovery time, and significant  complications1–3. A lot of effort has been 
made searching for new minimally invasive techniques, including high-intensity focused ultrasound (HIFU), 
low-level laser therapy (LLLT), cryolipolysis, radio frequency (RF), and hyperthermic laser lipolysis (HLL)3–5. 
Some of those alternative tissue therapies, along with laser-induced thermotherapy (LITT)6, HLL and RF are 
hyperthermia-based. During HLL therapy, laser energy is transmitted and absorbed by adipocyte cells, leading 
to increased temperature of subcutaneous adipose tissue. Therefore, various thermal effects can be triggered, 
including hyperthermia (45 °C), coagulation (60 °C), and decomposition (thermal ablation) (100 °C)7. Tissue 
damages linearly depend on the heating time and exponentially on the temperature  increase8, hence the effective-
ness of the treatment heavily rely on the ability to closely monitor and field of the  tissue9. Accurate monitoring 
of the established temperature field was described as ‘a crucial ingredient of any hyperthermia procedure’ by 
 Christensen10, and an essential to widespread such  procedures11,12.

Active control of surface temperature with a closed-loop control system was already demonstrated by utilizing 
a low spatial resolution infrared sensor for a laser system  modulation7,13. The system is applicable to laser tissue 
welding, where peak temperature is located at the tissue surface.

However, targeted tissues are often located below the tissue surface (subcutaneous layer) and various tech-
niques require protective layers or cooling systems to prevent upper layers of tissue from  overheating4,5,14. 
Therefore, temperature peak shifts into the subcutaneous layer, and its active monitoring becomes inacces-
sible to medical practitioners. In this scenario, numerous approaches were proposed to monitor temperature 
field within the tissue, including insertion of thermocouples or fiber-optic  sensors15, optoacoustic temperature 
 monitoring16,17, magnetic resonance imaging (MRI)18, different optical  methods19,20, impedance  tomography21, 
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and  ultrasound22,23. Nevertheless, some of these methods are complex or either invasive, with low penetration 
or inadequate spatial resolution, and expensive.

Low penetration is a limiting factor for infrared thermography as well. This problem has been addressed by 
analyzing the temporal surface field characteristics of temperature, as demonstrated in several studies of thermoe-
lasticity, hyperthermia therapy, and laser  lipolysis1,4,24,25. Some of these studies aimed at specific therapy processes 
(e.g., laser-tissue interaction coupled with cooling) and required a tailoring physical model that somehow limits 
broader applicability and implementation.

Here, we present the application of infrared thermography to estimate the depth temperature profile (DTP) 
within the tissue. DTP estimation method was used in feasibility studies where a hyperthermic laser lipolysis 
(HLL) was performed on an ex-vivo porcine fat tissue. An initial arbitrary DTP generation function and ther-
mal-diffusion-based model were coupled to generate the time-dependent database. The algorithm was further 
employed to correlate measured surface temperature evolution with the calculated solutions. As a result the 
DTP was reliably estimated with a small deviation from the real temperature field. Moreover, ex-vivo approach 
allowed proving the validity of the protocol by direct measurement of the reference DTP when the sample was 
split in two halves. In addition, we introduced an extension of the protocol to a more realistic in-vivo scenario.

Methods
Algorithm process flow. The DTP estimation method relies on a time-dependent surface temperature 
field (Tsurf(t)), that is measured during the clinical procedure when the laser and cooling system are turned off. 
During the active period, the temperature peak (Tmax) undergoes a shift below the tissue surface (zmax), due to 
the joint effects of water evaporation from the  surface26 and external air  cooling4,27. The measuring time interval 
Tsurf changes with a rate that mainly depends on the starting temperature distribution (internal gradient), envi-
ronmental conditions and thermal properties of the tissue.

The algorithm, presented in Fig. 1, was custom developed in C++ IDE (Code::Blocks, 16.01). It first calculates 
a group of possible temperature field distributions (Te(z)) and time evolutions that are clustered in a database. 
The thermal diffusion model calculates the time-dependent surface temperature (Tsurf_e(t)) for all Te(z) gener-
ated (see section “Consideration of the estimation method”). The thermal camera measures the evolution of the 
surface temperature (Tsurf_m(t)), which is correlated with an ensemble of calculated Tsurf_e(t) via the data matching 

Figure 1.  Block diagram of the depth temperature field estimation. Various generated  Te(z) were used as an 
initial condition in the model for calculations of corresponding surface temperature evolutions  Tsurf_e(t) to build 
the database. Measured  Tsurf_m(t) was correlated with the database via time-dependent data matching process. 
Final  Te(z) was obtained upon the closest fitting of  Tsurf_m(t) and  Tsurf_e(t).
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process. The closest fit of Tsurf_e(t) enables selection of the correspondent Te(z). The Te(z) represents the final 
estimation of the measured temperature field within the tissue, denoted by Tm(z).

Sample preparation. We used a porcine fat tissue as it sufficiently exemplifies optical and thermal proper-
ties of a human  tissue28–30. A homogeneous fatty tissue was collected approximately 48 h before experiments 
and was held at 4 °C. Prior to measurements, sample was thermalized at room temperature for two hours. The 
sample was shaped in an 80 × 100 mm2 and 34 mm thick plate. Right before measurements it was halved with a 
thin blade, resulting in two symmetrical halves, each measuring 80 × 50 mm2.

Experimental setup and measurement protocol. Experimental setup was designed and assembled in 
a way that it best replicated the realistic HLL procedure. The setup included a 1064 nm Nd:YAG laser source (SP 
Dynamis, Fotona, Slovenia) with a high-speed laser scanner (S-11, L-runner mode, Fotona, Slovenia), forced-
air cooling system (Cryo 6, Zimmer, Germany), and a thermal camera (ThermaCAM P60, FLIR, 7.5–13 µm) as 
shown in Fig. 2. System effectively elevates the temperature of targeted tissue, while forced-air cooling main-
tains Tsurf below the thermal damage threshold level. The HLL procedure can be divided into two periods—the 
active period (laser irradiation and cooling system turned on), and the inactive period, when both systems are 
turned off (thermal relaxation of tissue). The effect of induced temperature gradient (indicated in Fig. 3) can be 
observed as a Tsurf(t) rise during the inactive period, as schematically shown on the left side in Fig. 2.

Both sample halves were inserted in a small metal container (approx. 3.5 l). The remaining space was filled 
with polystyrene foam, limiting undesired tissue-air interactions and providing additional tightness to the overall 
cross-sectional area. A small metal container was only partially submerged in a water tank to prevent any water 
leakages. With good thermal conductivity of the small metal container and a large volume of the water tank 
(approx. 20 l), the temperatures at the bottom of the tissue sample Tb were stable during the measurements. The 
temperature of the water in the large volume tank was at a room temperature (25 °C). We intentionally main-
tained water at this temperature in order to achieve smaller cooling rate at the cross-sectional area when halves 
were separated. This allowed to minimize the error while obtaining the reference measurement.

Real-time monitoring of the Tb was realized with a thermocouple sensor (d = 1.2 mm) inserted into the bot-
tom side of the tissue sample beforehand. For temperature field recording, the thermal camera was mounted on 
a fixed holder at an angle of 45°, relatively to the sample surface. Such placement allowed simultaneous recording 
of the spatial temperature field Tm(z) within the tissue (see cross-section in Fig. 3), and Tsurf_m(t).

Prior to each measurement a paper tissue was used to dry the surface of the sample. Laser irradiance and 
forced-air cooling were simultaneously applied to the upper surface of the tissue sample, starting the active 
period. After the active period (120 s), both systems were turned off, flagging the inactive, thermal relaxation 
period. This was done by stopping the laser irradiation and immediate turning the scanner head, including 
cooling nozzle, away from the sample. Immediately after, one halve of sample was pulled away from the other 
halve which was fixed to the edge of large tank. Thermal camera was already recording the sample and in post-
processing phase we selected the first image, where the entire cross-section of the sample was visible. This image 
was used as a reference DTP. The average time delay of this procedure was 0.64 s, which we measured with 
thermal camera. Corresponding maximal temperature drop of DTP was approximately 0.13 °C. Simultane-
ously, sample halves were separated, and cross-sectional temperature distribution was recorded with a thermal 
camera. Additionally, the Tsurf_m(t) and environmental temperature were recorded. This process represented one 
full measurement, resulting in Tm(z) and its belonging Tsurf_m(t) evolution. For all measurements, the image, 

Figure 2.  Schematics of the experimental setup. The sample surface was irradiated with a Nd:YAG laser system 
(1064 nm), and simultaneously forced-air cooled. The sample was in contact with a small metal container and 
partially submerged in a water tank to ensure a constant temperature at the bottom side  Tb, measured with a 
thermocouple. Thermal camera readout shows the evolution of the  Tsurf(t) during both active (AP) and inactive 
(IP) periods.
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recorded right at the halves separation, was identified and analyzed in ThermaCam Researcher Pro 2.10 software 
(see Fig. 3) to determine the measured Tm(z).

Laser irradiation was performed with an average intensity of I = 1.2 W/cm2. Homogeneous heating of tissue 
surface (see Fig. 3) was achieved with consecutive scans. The laser scanner generated a laser spot of 11 mm in 
diameter at the sample surface with a top-hat beam profile. One scan lasted 1.04 s and required 27 pulses to cover 
a surface area of 54 × 57 mm2. Repetition rate was 25 Hz and laser pulse duration was 600 µs.

The sample surface was cooled with a forced-air cooling system, which maintains air temperature at − 30 °C. 
During the active period, the outlet cooling nozzle was at a constant distance of 20 cm, as it was integrated with 
the laser scanner head. Because we only seek the initial Tm(z), immediately after the active period, forced-air 
cooling was excluded from the mathematical model, and cooling characteristics were not extensively measured 
in this study. However, reported by Milanic et al., the cooling air temperature was measured substantially higher 
at the sample surface (approximately 10 °C)4.

Measurements were designed to test the flexibility of the estimation method in a way that different distri-
butions of Tm(z) within the tissue were achieved, by systematically changing procedure parameters. Although 
laser irradiation and cooling both highly participate in Tm(z) distribution, only the cooling was modified in our 
experiment. Average intensity of the laser beam at the sample surface remained constant for all measurements.

By modifying the cooling system fan speed, air velocity at the exit nozzle changed, resulting in a variety of 
depth temperature profiles. In our experiment we used fan speeds of 1, 2, 3, 5 and 7 to modify cooling settings 
(CS). The correspondent ht was estimated prior, ranging from 60 to 125 W/m2 K. Starting with the lowest CS1 
(ht ~ 60 W/m2 K), the cooling setting was successively increased to get a set of five different Tm(z) and Tsurf_m(t), 
representing one full cycle of measurements. Between each measurement, the tissue sample was thermalized by 
natural convection for 30 min. A complete cycle of Tsurf_m(t) is shown in Fig. 4a, and the corresponding Tm(z) in 
Fig. 4b. The same cycle was repeated three times.

Results and discussion
Estimation of the subsurface temperature peak. A wide set of temperature fields Tsurf_m(t) and Tm(z) 
were recorded to test the flexibility of the estimation method (see measured Tm(z) in Supplementary Fig. S1a–c). 
For all of the measurements Tsurf_m(t) were used as an input to the matching algorithm. As a result, the cor-
responding temperature fields on the surface and within the tissue were picked from the ensemble’s database. 
Figure 5a,b show respectively the best fit to the measured Tsurf_m(t) and the estimated Te(z) that best reproduced 
measured temperature field Tm(z).

Accuracy of the estimation method was evaluated (MATLAB 2020a, Mathworks Inc., Natick, MA) comparing 
Te(z) and Tm(z) in terms of differential peak position Δzmax and peak temperatures ΔTmax. Average �zmax , and 
average �Tmax over three consecutive measurement cycles, show a small deviation from the peak temperature 
and its position. Using the entire recorded Tsurf_m(t) evolution (120 s), �zmax , and �Tmax were 0.012 ± 0.3 mm, 
and 0.01 ± 0.25 °C respectively.

Three cycles of measurement were performed, utilizing sweeping CS (from CS1 to CS7) for each cycle. In all 
the cycles zmax shifts deeper into the fat tissue with increasing CS (see Supplementary Fig. S1a–c).

For each cooling rate, the average of zmax shows two different trends. A substantial shift, approximately 
12–15% at lowest CS (ht in range of 60–80 W/m2 K), and a less remarkable change at higher CS (ht > 100 W/
m2 K), ~ 2% (see Fig. S1a–c). This discrepancy may be due to the decrease of the relative difference between two 

Figure 3.  Thermal image of one symmetrical halve recorded immediately after its separation.  Tm(z) distribution 
(right panel) extracted from the cross-sectional area (light blue rectangle) by averaging temperature data point 
in the x-direction. A portion of the outlined process area (light blue rectangle) was used to record the surface 
temperature  Tsurf_m(t) evolution.
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successive ht. However, during the first cycle the peak temperature Tmax increased along with CS (see Supple-
mentary Fig. S1a). This indicates that the sample was not sufficiently thermalized at room temperature (RT) after 
being at 4 °C prior to measurements. Instead, second cycle reveals almost constant peak temperature (~ 35 °C) 
despite increasing CS, as sample was longer thermalized at RT (see Supplementary Fig. S1b). In the third cycle 
the innermost temperature was expected to be more homogenous and closer to RT. In fact, Tmax decreases with 
higher CS (see Supplementary Fig. S1c) as theoretically  predicted4. Likewise zmax, the Tmax undergoes a clear 
drop that becomes negligible at higher CS. As previously observed in a theoretical work by Milanic et al., our 
finding shows comparable trend for zmax dependency on ht (see Supplementary Fig. S1d). Measurements which 
best represented theoretical prediction are showed in Fig. 4b, where both Tmax and zmax get respectively lower 
and shift deeper with increasing CS (third cycle).

We now consider the measuring time parameter tm, that is a temporal window segment of the entire recorded 
Tsurf_m(t). Choosing the right duration of tm is crucial because it can compromise the results of the matching algo-
rithm or extend the measuring period on the other hand. An estimation accuracy improvement with progressing 
tm in the data matching process is shown in Fig. 6. Best prediction of the dynamics is obtained for measuring 
period tm ≥ 90 s, indicating a convergence of the estimation accuracy.

By changing tm in the data matching process, we evaluated accuracy improvement with �zmax and �Tmax 
parameters for all three cycles of measurements. Both parameters, as a function of duration of tm are shown in 
Fig. 7a,b. Results show a convergence of estimation errors to zero as tm duration increases. Likewise, the average 
standard deviation decreases ~ 50% by doubling the duration of tm, thus increasing overall estimation confidence 
of Tm(z).

Moreover, tm dependency becomes more evident when different cooling settings affect the amplitude of the 
Tm(z). As mentioned before, we recorded a wide set of distributed Tm(z) with different amplitudes, ranging from 
3.5 to 17.5 °C. We separated Tm(z) into two data sets that we called set A and B, as depicted in Fig. 8a. Set A 
included Tm(z) with amplitudes smaller than 10 °C (mostly obtained with CS1 and CS2), and remaining Tm(z) 

Figure 4.  Surface temperature and DTP measured at different cooling settings (CS). (a) Surface temperature 
 Tsurf_m(t) recorded during a full protocol. (b) Corresponding  Tm(z) measured at the start of the inactive period.

Figure 5.  Fitting of  Tsurf_m(t) and prediction of the  Tm(z). (a) Measured surface temperature  Tsurf_m(t) (blue 
dashed line) and its fit (black solid line)  Tsurf_e(t). (b) Comparison between measured distribution (blue dashed 
line)  Tm(z) and the predicted distribution  Te(z) (black solid line).
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Figure 6.  Te(z) evolution at different measuring time  tm. Accuracy of the estimation approaches the real data 
(black dashed line) with increasing  tm.

Figure 7.  Estimators �Tmax and �zmax at different  tm. (a) Average �Tmax (black dots) and its standard 
deviation in absolute values (blue dots, right axis). (b) Average �zmax and its standard deviation. In both cases 
the differential error becomes smaller and converges on a longer time scale.

Figure 8.  The dependency of the estimation accuracy on the amplitude of the measured  Tm(z). (a) Illustration 
of two types of measurement sets. Set A included  Tm(z) with amplitudes smaller than 10 °C (black curve), and 
set B included  Tm(z) with amplitudes bigger than 10 °C (red curve). (b) Estimation accuracy at different  tm for 
both data sets. Data points marked with circles are referred to �Tmax (black color for set A, red color for set B). 
Data points marked with diamonds are referred to �zmax . At lower cooling rate (set A), the deviation �Tmax 
and �zmax are kept respectively below 0.5 °C and 0.5 mm.
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with amplitudes bigger than 10 °C (obtained with CS3, CS5 and CS7) were included in set B. Estimators �Tmax 
and �zmax are showed in Fig. 8b for both sets.

For set A, we observed a weak dependency of the estimators on the tm duration. In contrary, for set B, a 
noticeable dependency of �Tmax and �zmax on tm can be seen, encompassing for an error convergence at longer 
tm. This could be explained by considering that temperature of the tissue, achieved during the cooling, delays the 
temporal window for which the thermodynamic equilibrium at the surface is reached. Hence, the time constant 
of Tsurf_m(t) dynamics, during the inactive period, influences the optimal estimation of the inside temperature 
profile. Fast dynamics observed for set A (see curves in Fig. 4a for comparison) will require shorter tm for a rea-
sonable estimation of Tm(z) (see Fig. 8b). In this case, tm has limited influence on the out coming result, meaning 
that the inactive period can be as short as 30 s.

Consideration of the estimation method. Reverse analytical solution of heat diffusion that leads to an 
estimation of the initial distribution of the temperature field is severely ill-posed31–33. A small variation of the 
measured thermal signal can significantly affect the prediction of the inner temperature distribution. Many com-
plex analytical and numerical  approaches31,33, sometimes implemented on an artificial neural  network25, have 
been used to predict the depth temperature profiles in tissues such as skin and blood vessels or tumor-mimicking 
 inclusion34. For instance, thermal response of the skin has been measured by pulsed photothermal radiometry 
and reconstructed using a combination of numerical  methods35. Likewise, a remarkable effort has been done to 
develop reconstructive algorithm for predicting increase in temperature during HIFU  treatments33. One way to 
do that is using finite element solution of the bioheat transfer equation combined with Tikhonov regularization 
 method33, or estimating the apparent time shifts in the ultrasound radiofrequency  signal34. Our assumption for 
modeling considers a homogeneous tissue, since the adipose layer of the sample was homogenously distributed 
and represents a simplification in comparison with the approaches mentioned above.

Thermal stimulation, induced with HIFU requires high spatial and temporal resolution, but above the boiling 
point (coagulation regime) high temperature inaccuracy is acceptable (approximately 2–3 °C)22. On the other 
hand, hyperthermic treatments with smooth thermal gradients and larger thermal mass tolerate lower spatial 
(2–3 mm) and temporal  resolution22. However, the required temperature precision is usually less than 1 °C22. 
Our results show inaccuracies of the temperature peak estimation below 1 °C within a temperature sampling 
time comparable to the one used in  HIFU34, and spatial inaccuracy of peak temperature below 1 mm. Similar 
accuracy with a deviation of 10% on the relative temperature was also achieved in photothermal therapy by 
volumetric reconstruction of the optoacoustic  signal16.

However, none of these methods can be successfully employed when a larger area is processed and fast non-
contact monitoring of DTP is required. For instance, HLL procedure usually employs a laser scanning system and 
an optoacoustic reconstruction method would require an ultrasound transducer with a volumetric dimension much 
larger compared to a single spot application. Photoacoustic thermal monitoring and 3D reconstruction could be more 
suitable for localized treatment areas, such as minimally invasive surgery and even tumor or vessel ablation. Another 
advantage of the proposed method is its non-contact nature, which avoids the insertion of a thermocouple within 
the skin that can induce a discrepancy between the probed area and the temperature of the surrounding  tissue15,22.

We now describe in detail the depth temperature profile (DTP) estimation method and compare the physical 
parameters used in the temperature estimation with previous work. The model considers the temporal evolution 
of the surface temperature in a homogenous tissue. The time-dependent matching process is supported by gener-
ated database and overcomes the reversibility problem of a heat equation, as already mentioned. Our approach 
starts with an introduction of an arbitrary field distribution Te(z) that approximates a realistic DTP, see Eq. (1):

The dimensionless parameters A, B and C define distribution characteristics of the generated Te(z) tempera-
ture field, parameter D [°C/mm] defines the correction for bulk temperature deeper in the tissue. For in-vivo 
studies, bulk temperature can be set to 36 °C. By modifying those parameters, temperature distribution Te(z) 
can be varied in order to adjust the subsurface temperature peak, surface temperature, or bulk temperature (see 
Supplementary information, section Description of arbitrary function parameters). Resolution of the database is 
given by appropriately choosing the set of parameters above described, taking into account the tradeoff between 
accuracy and computational time. Similar DTP was obtained from ultrasound signal generated in a tumor mim-
icking inclusion filled with plasmonic nanoparticle (tissue phantom and an ex-vivo porcine muscles)34, and in 
a study of temperature-dependent blood  perfusion36.

The absence of laser heating and forced-air cooling during the inactive period enables the use of basic laws of 
transient heat transfer. From generalized Fourier’s  equation37, temperature field evolution can be written as follows:

where ρ stands for mass density, cp for specific heat, and k for thermal conductivity of the observed sample. 
Thermal properties of simulated fat tissue were ρ = 860 kg/m3, cp = 2870 J/kgK, and k = 0.23 W/mK1, 38.

Field distributions Te(z), generated with Eq. (1), were used as initial condition for time-dependent solutions, 
calculated by Eq. (2). The interface boundary condition, applied at the air-tissue boundary governs the heat losses, 
due to natural convection, and body radiation as follows:

(1)Te(z) = (Tsurf − 1)+ (z + 1)
B

C(z+1)+A − D · (z + 1)

(2)ρcp
∂T(z, t)

∂t
= k∇2T(z, t)

(3)−k
∂Tsurf(t)

∂z
= hNC(Tair − Tsurf(t))+ σε(T4

env − Tsurf(t)
4)
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hNC represents heat transfer coefficient ( hNC = 13  W/m2  K), σ  the Stefan–Boltzmann constant 
( σ = 5.67× 10−8 W/m2 K4), and ε sample emissivity ( ε = 0.98)37,39. Tsurf stands for temperature at the sur-
face of the sample, Tair for temperature of the air in contact with the sample surface, and Tenv for surrounding 
temperature.

In the calculations, we used k in range from 0.17 to 0.32 W/mK. Best results were obtained for k = 0.23 W/
mK, which correspond very well with an average k = 0.233± 0.006 W/mK, measured for subcutaneous pig fat 
without the  skin38. Moreover, we chose hNC = 13 , which fits well within the range of common values between 
10 and 15 W/m2 K used in several  studies1,4,40,41.

The evaporation of water from the surface was not explicitly considered, since evaporative heat losses were 
not a dominant factor. In fact, surface of the sample did not contain visible moisture, and Tsurf remained way 
below 60 °C. Above this critical temperature water evaporation from the surface outweighs the other surface 
loss terms (convection and radiation), and leads to denaturation processes such as water-complex dissocia-
tion or structural phase  changes26,42. Here, the evaporative heat losses were not neglected, but attributed to the 
convective heat transfer coefficient (hNC). This represents a common approach that has been adopted in many 
 studies1, 27,43. Moreover, no visible moisture accounts for less than 6% of maximal evaporative heat loss and 
studies estimate that the contribution of evaporative heat losses from dry skin is commonly less than 10% of the 
total convective  term44,45.

We analyzed the possibility to extend the method to an in-vivo procedures by providing a more complex in-
vivo tissue model (IVM) (see detailed description in Supplementary information, section In-vivo tissue model 
(IVM)) combined with the arbitrary function (Eq. (1)). In an in-vivo experiment, the estimated DTP validation 
is challenging. Therefore, we considered a comparable in-vivo study by Milanic et al.27, wherein an estimation 
of  DTPMCML was obtained by weighted Monte Carlo photon multi-layer procedure. We adopted (from the same 
 study27) the surface temperature evolution Tsurf_in-vivo(t), measured during the inactive period, and used it as 
an input to the data matching function (see Fig. S2a). Estimated in-vivo  DTPINV was successively compared 
to the  DTPMCML (see Fig. S2b), adopted from the same  study27. From the comparison of the two temperature 
depth profiles we estimated a deviation of the peak temperature and position respectively, ΔTmax = 0.5 °C and 
Δzmax = 0.4 mm (see Supplementary information, section Estimation of the DTP from in-vivo measurement, 
Fig. S2b). Moreover, the shape of the estimated  DTPINV reveals great similarity to the  DTPMCML, which is well 
known to be the most used theoretical approach in this research field.

The presented non-contact method lays the groundwork for monitoring the depth temperature profile and 
for calibration of the laser parameters. This concept could be employed during the inactive period, in a long 
laser treatment, to better address the efficiency of the therapy in the next active cycle. By further research, we 
speculate a possibility to develop a feed-back control loop to adjust laser parameters and cooling system, based 
on a real-time measurement of the surface temperature and a light-tissue interaction model. This could lead 
to a prediction of the DTP profile during laser irradiation and correct calibration of the laser parameters at the 
beginning of clinical protocol.

Conclusion
Monitoring of the inner temperature profile is not trivial and becomes relevant in medical laser-based therapies. 
Here, we developed a non-contact temperature estimation method by combining the flexibility of thermography 
with a novel time-dependent data matching approach. The method was experimentally carried on an ex-vivo 
porcine fat tissue which allowed for measurements of cross-sectional DTP and reliable validation of the algo-
rithm. Our results show an accurate prediction of DTP by monitoring the evolution of the surface temperature. 
Average �Tmax and �zmax at different measuring time tm show a small deviation from the measured temperature 
profiles. Reasonable estimation accuracy of 0.6 ± 0.5 °C (ΔTmax) and 0.45 ± 0.4 mm (Δzmax) can be achieved with 
measuring time (tm) of 60 s. However, the dependency of the DTP estimation on tm becomes almost negligible 
at the lowest cooling settings and ensures a good estimation as fast as tm = 30 s. Moreover, we provide a further 
advanced tissue model that shows a good reproducibility of the in-vivo Tsurf(t) and the temperature distribu-
tion within a complex tissue. Therefore, the protocol paves the way for its extension to a clinical process that 
requires incremental heating, interrupted by inactive periods. In this temporal window the method could provide 
an evaluation of the DTP and calibration of optimal laser parameters for the next active period. Overall, our 
approach avoids necessity to specify a heating or cooling source and may support practitioners to appropriately 
calibrate parameters of medical device.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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