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Abstract

Non-typable Haemophilus influenzae (NTHi) is a Gram negative pathogen that causes acute respiratory infections and is
associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a
remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic
heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious
processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct
geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules,
and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA2, lic2C+,
ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to
serum mediated killing and enhanced adherence to human respiratory epithelial cells.
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Introduction

The Gram-negative bacterium nontypable Haemophilus influenzae

(NTHi) is a commensal organism in the human upper respiratory

tract, and a cause of diseases, including otitis media, conjunctivitis,

sinusitis, pneumonia, chronic bronchitis and progression of

chronic obstructive pulmonary disease (COPD) [1]. This oppor-

tunistic pathogen is provided of molecular mechanisms devoted to

evade host immunity. A number of studies have reported NTHi

ability to resist killing by humoral immunity components such as

complement and antimicrobial peptides [2–3], and to colonise

respiratory epithelial cells by adhesion and biofilm formation [4–

5], and invasion and intracellular location [6]. Differential genome

content between isolates has been reported [7]; this aspect also

contributes to bacterial escape from the host immunity. Genetic

polymorphisms occur at a high rate within the NTHi population; a

major factor contributing to NTHi genetic diversity is DNA

exchange by horizontal gene transfer [8]. Phase variation, the

reversible high-frequency on/off switching of gene expression

mediated by mutations in simple sequence repeats (SSRs) located

within the open reading frame (ORF) or the promoter of a gene,

also contributes to diversity. SSRs, predominantly comprised of

tetranucleotide repeat units, mediate phase variable expression of

multiple molecules expressed on the bacterial surface; the

repertoire of SSRs varies between NTHi strains [9]. SSRs control

expression of epitopes playing a role in molecular mimicry:

phosphorylcholine (PCho) mimics the eukaryotic platelet associat-

ed factor (PAF) and is a ligand for the PAF receptor; digalactose

mimics human Pk antigen; sialic acid (5-acetylneuraminic acid or

Neu5Ac) is frequently present in host cell membrane glyco-

sphyngolipids [10–11].

Genetic variability between NTHi isolates underlies the striking

heterogeneity of the lipooligosaccharide (LOS) outer core, a major

virulence determinant. NTHi LOS is a complex glycolipid

comprising a membrane-anchoring lipid A linked by a single 2-

keto-3-deoxyoctulosonic acid (Kdo) to an heterogeneous oligosac-

charide composed of neutral heptose (Hep) and hexose (Hex)

sugars, but lacks an O antigen [11]. Each Hep of a conserved

trisaccharide inner core can be a point for the addition of Hex and

further chain extensions, the degree and pattern of which varies
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among strains [11] (Fig. 1). The genetic blueprint for NTHi LOS

biosynthesis is known; lgtF encodes a glycosyltransferase respon-

sible for adding glucose as the first sugar to HepI [12]; lic2C and

lpsA encode glycosyltransferases that initiate sugar extensions from

HepII and HepIII, respectively [12]. The lic1 operon (lic1A to

lic1D) encodes four proteins responsible for the synthesis and

transfer of PCho to the LOS [13]. The lic2A, lgtC and lex2B genes

encode glycosyltransferases required to add a digalactose to the

LOS [14]. Sialic acid is incorporated to LOS as a terminal sugar

by four sialyltransferases encoded by lic3A, siaA, lsgB and lic3B [15–

16]. The multiple LOS components contribute to its heterogene-

ity, and influence the biology of the bacteria [11]. PCho plays a

role in NTHi resistance to antimicrobial peptides and serum,

association with epithelium, and biofilm formation [3,17–20].

Digalactose is associated with virulence and resistance to

complement [21–22]. LOS sialylation renders NTHi resistant to

complement-mediated killing and plays some role in biofilm

formation [23–25]. The lic2C, lic2B and lic3B genes are variably

present among NTHi strains [12,15,24,26]; lic1A, lic2A, lgtC, lex2A,

lic3A and lic3B contain SSRs based on tetranucleotide repeats

[9,27–28].

NTHi strains may express a repertoire of proteins to adhere to

the respiratory epithelium; typically, PE, Hap, HMW1, HMW2,

Hia, Hap, P2, P5 and OapA outer membrane proteins are

nonpilus adhesins [29–31]. These proteins often display sequence

diversity between strains; given their potential variability, two of

these proteins were selected for further analysis in the current

study. P5, encoded by ompP5 [32–33], is a member of the OmpA

protein family; P5 contains host-adhesive domains that bind to

human mucin and to the surface-expressed carcinoembryonic

antigen-related cell adhesion molecule-1 (CEACAM1) in human

pulmonary epithelial cells [34–35]. OapA mediates epithelial

adhesion via an unknown receptor [29].

A relationship between NTHi pathogenesis and genomic

content has been proposed, and several studies have highlighted

the importance of LOS and adhesins on NTHi pathogenesis

[7,26,36–41]. In this study, we hypothesised that NTHi isolates

could be distinguished by genotypic and/or phenotypic signatures,

which could be associated with their capacity to interact with the

host. Indeed, a survey of nine genes encoding bacterial surface

molecules in a NTHi collection of non-isogenic clinical isolates

revealed a highly prevalent molecular pattern with potential

clinical implications. Such a molecular pattern could have an

influence in bacterial host cell adhesion and in resistance to serum

mediated killing.

Results

Molecular epidemiology of a collection of NTHi clinical
isolates

A total of 111 NTHi strains from 111 patients suffering

respiratory (pneumonia, bronchiolitis, sinusitis, acute bronchitis,

acute tracheobronchitis, common cold) and non-respiratory

(conjunctivitis, bacteremia, otitis media, colonisation in lung

carcinoma) infections, and chronic respiratory diseases exacerba-

tions (COPD, cystic fibrosis, bronchiectasis, diffuse parenchyma-

tous lung disease, chronic asthma, chronic interstitial lung disease,

polycystic lung) were collected in two Spanish hospitals within

January–June 2008 (Table S1). Pulsed field gel electrophoresis

(PFGE) analysis indicated that all 111 NTHi isolates had unique

genomic compositions (data not shown).

Distribution and prevalence of bacterial surface
structure-related genes

The collection of NTHi isolates was PCR-screened for the

presence or absence of nine genes encoding proteins responsible

for the expression of surface-exposed molecules (Fig. S1A and S1B

and Table S2). Strain Rd KW20 was used as a control because its

genome has been fully sequenced [42]. Genes were chosen based

on their potential to be variably present (lic3B, siaA, lic2C), variably

expressed (lic2A, lic1D, lic3A, lic3B), sequence variable (ompP5,

oapA), or invariable present (lgtF). The screening revealed three

different gene patterns, named 1 to 3 (Table S3). Pattern 2 (lgtF+,

lic2A+, lic1D+, lic3A+, lic3B+, siaA2, lic2C+, ompP5+, oapA+) was

the most prevalent (94.6% of isolates) in both strain sets (92.2% in

Hospital Universitario Bellvitge-HUB, 97.9% in Hospital Son

Figure 1. Schematic representation of NTHi LOS structure. Relevant sugars linked by the products from the genes lgtF, lic2C, lpsA, lic3A, lic3B,
siaA, lsgB, lic1ABCD, lic2A, lgtC and lex2B are shown. Abbreviations: Kdo, 2-keto-3-deoxyoctulosonic acid; Hep, L-glycero-D-manno-heptose; Glc,
D-glucose; Gal, D-galactose; PEtn, phosphoethanolamine; P, phosphate; PCho, phosphocholine. For each LOS structure the heptose backbone
comprises from top to bottom HepI, HepII and HepIII.
doi:10.1371/journal.pone.0021133.g001

A Prevalent Molecular Pattern in NTHi Isolates
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Espases-HSE). NTHi398 [6,43] belongs to pattern 2. Pattern 1

(lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA2, lic2C2, ompP5+,

oapA+), found in 4.5% of isolates, was present only in strains

collected in HUB; pattern 3 (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+,

siaA+, lic2C2, ompP5+, oapA+), found in 0.9% of isolates, was

present only in strains collected in HSE. Main differences among

patterns were driven by lic2C and siaA. Given that those genes

encode a glycosyltransferase initiating sugar extension from HepII

and a sialyltransferase, respectively, sugar extension from HepII

and sialylation were found to be variable modifications in the

NTHi LOS molecule.

The lic2A gene was present in 100% of strains. Gel

electrophoresis revealed lic2A size differences among isolates,

likely due to the length of the 59-CAAT-39 SSR present within the

59region of lic2A ORF (Fig. S1C). Nineteen isolates representing

the three molecular patterns defined were selected for further

characterization; pattern 1 (NTHi1500, NTHi1559, NTHi1560);

pattern 2 (NTHi398, NTHi1513, NTHi1549, NTHi1553,

NTHi1556, NTHi1557, NTHi1558, NTHi1566, NTHi1568,

NTHi1606, NTHi1607, NTHi1621, NTHi1622, NTHi1623);

and pattern 3 (NTHi1619) (Table 1). Those isolates contained

between 7 and 33 59-CAAT-39 repeats in their lic2A coding

sequences (Fig. S1C and Table S4). The lic2A gene has the 59-

CAAT-39repeat tract preceded by putative initiation codons in

two reading frames, x/y codons in frame 1 and z1/z2 codons in

frame 2 [44–45]. Fifteen out of 19 (78.9%) isolates contained an in

frame lic2A gene. The 73.3% of isolates belonging to pattern 2

conserved one reading frame (Table S4). NTHi1550 (pattern 2)

showed a lic2A PCR product of significantly higher molecular

weight than the rest of strains (Fig. S1C), 49 59-CAAT-3 units in

the SSR within this lic2A gene, which would be non-permissive for

translation.

The lic3A and lic3B genes were present in 100% of isolates. PCR

products of equivalent size were obtained for each gene in all

strains, as the respective SSR was not included in the amplified

portion of each gene. The siaA gene was found in 0.9% of isolates.

The reasons accounting for the low prevalence observed for siaA

are currently unknown. The extended presence of both lic3A and

lic3B would favour LOS sialylation and, consequently, NTHi

phenotypes related to such a LOS modification.

P5 and OapA were selected based on the notion that they display

sequence diversity among strains, which could modulate their

immunogenic and/or adhesive properties; 100% of isolates

contained both genes. The ompP5 PCR product was size invariable.

A PRED-TMBB b-barred analysis predicted five extracellular loop

domains (1–5) for P5 [46]. Each predicted P5 extracellular loop was

sequenced in the 19 selected isolates (Table S5). A point mutation

rendered a premature stop codon in ompP5 from NTHi1568.

Sequence alignments showed different degrees of variability for

each predicted loop, i.e. loop 1, 16 different sequences; loop 2, 13

different sequences; loop 3, 11 different sequences; loop 4, 8

different sequences; loop 5, 3 different sequences (Table S5). The

sequence of loop 1, predicted to be the longest extracellular domain,

was of two types. A region encompassing the motif GINNNGAIK

(red) was found in P5 from 17 isolates; two isolates contained the

motif GVRAMGKQ (blue). A comparable motif distribution had

been reported previously [33]. Loops 2, 3 and 5 were of similar

length; loop 4 was the shortest.

Table 1. Features of NTHi isolates selected for further characterisation.

NTHi strain Clinical data Sample type Molecular pattern a-PCho reactivity a-4C4 reactivity Sialic acid

1500 aCOPD sputum 1 high d2 e+

1559 pneumonia BALf 1 high 2 2

1560 COPD sputum 1 high +/2 +
b398 COPD sputum 2 high 2 +

1513 COPD sputum 2 high 2 +

1549 COPD transthoracic needle aspiration 2 high +/2 +

1553 COPD sputum 2 double 2 +

1556 COPD sputum 2 double 2 +

1557 COPD sputum 2 high ++ +

1558 bronchiectasis sputum 2 high 2 2

1566 COPD sputum 2 double 2 +

1568 COPD sputum 2 high +/2 2

c1606 bronchiectasis sputum 2 low 2 +

1607 COPD sputum 2 high + 2

1621 COPD bronchial aspiration 2 high 2 2

1622 bronchiolitis nasopharynx exudate 2 high ++ +

1623 COPD bronchial aspiration 2 high 2 +

1630 acute tracheobronchiolitis sputum 2 high +++ 2

1619 cystic fibrosis nasopharynx exudate 3 high ++ +

aCOPD: chronic obstructive pulmonary disease.
b398: reference NTHi strain, isolated in HSE and used previously [36–37].
cStrains in this table listed below and including NTHi1606 were isolated in HSE. Strains 1500–1568 were isolated in HUB.
dSignal intensity upon reaction with 4C4 antibody: 2, no signal; from +/2 to +++, increasing signal.
eLOS sialylation: 2, absence of sialylated forms; +, presence of sialylated forms.
fBAL: bronchoalveolar lavage.
doi:10.1371/journal.pone.0021133.t001

A Prevalent Molecular Pattern in NTHi Isolates
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The oapA PCR products were size variable between strains (data

not shown). Six different sequences were found; Table S6 shows

sequence differences for the region of the gene starting at aa 195.

61.1% of isolates had Rd KW20-like sequence; 5.6% had Hi

Eagan (type b)-like sequence containing a 12 amino acid insertion

[29]; other isolates displayed four additional insertion sequences.

Taking as a reference the OapA longest sequence, encompassing

two QAEQP sequence repeats (red) (NTHi1622), we found 61.1%

of strains with a 12 aa deletion, 5.6% of strains with a 32 aa

deletion; 5.6% of strains with a 35 aa deletion; 11.1% of strains

with a 44 aa deletion; and 11.1% of isolates with a 48 aa deletion

(Table S6).

Together, the analysis of seven LOS biosynthesis and two outer

membrane protein encoding genes in a collection of NTHi clinical

isolates revealed three patterns of distribution, one of them being

prevalent.

NTHi lipooligosaccharide phenotypic distribution among
clinical isolates

By having multiple phase-variable loci, NTHi can generate a

range of LOS glycoforms that allow the organism to adapt to

different host microenvironments [11,28]. We assessed the

expression and distribution of three phase variable LOS

modifications involved in virulence, PCho, sialic acid and

digalactose, in the subset of NTHi isolates under study. Addition

of PCho to NTHi LOS requires the lic1ABCD operon [13]. lic1D,

encoding the PCho transferase, was shown to be present in 100%

of strains. PCho incorporation to LOS is dependent on the

number of phase-variable 59-CAAT-39 repeats in the SSR within

the lic1A reading frame. All strains expressed PCho; 77.5% of

strains (45% from HUB and 32.5% from HSE) displayed high

PCho levels; 4.5% displayed low PCho levels (all from HUB); 18%

of strains (8.1% from HUB and 9.9% from HSE) displayed a

mixture of high or low expressing colonies. 76.2% of strains

belonging to the prevalent pattern 2 showed high PCho signal.

LOS from our selected subset of isolates was analysed by SDS-

PAGE, following neuraminidase treatment to assess sialic acid

decoration. Electrophoretic profiles showed heterogeneity (Fig. 2).

Neuraminidase treatment resulted in lessening or removal of one

or more LOS bands in 13/19 (68.4%) of strains, indicating a

variable degree and pattern of sialylation (Fig. 2). 66.6% of strains

belonging to pattern 2 showed sialylation. All strains contained a

combination of two or the three sialyltransferases analysed, lic3A,

lic3B and siaA, suggesting that variation in gene content and/or

expression could contribute to LOS sialylation diversity.

Analysis of LOS digalactose by dot-blot in our selected subset of

isolates showed that 8 of 19 isolates (42.1%) reacted with mAb

4C4; 60% of strains belonging to pattern 2 gave a positive signal

with mAb 4C4 (Table 1). Strains with a number of 59-CAAT-39

repeats in their lic2A SSR non-permissive for translation of full-

length Lic2A (see Table S4, NTHi398, 1513, 1556, and 1558) did

not react with mAb 4C4. Isolates containing a number of 59-

CAAT-39 repeats permissive for Lic2A translation displayed

heterogeneous 4C4 reactivity (Table 1).

These data showed diversity among NTHi isolates regarding

LOS electrophoretic profile that was independent of gene pattern.

PCho decorated all LOS analysed and sialic acid was also present

in the LOS of most strains tested.

Contribution of molecular patterns to NTHi serum
resistance and epithelial adhesion

We assessed the contribution of the prevalent genetic signature

observed to NTHi interaction with the human serum and the

respiratory epithelium. We assessed serum mediated killing by

incubating bacteria with an increasing range of serum doses

(serum percentage ranged between 0.15% and 10%). Table 2

shows serum resistance for three strains belonging to pattern 1

(table 2 upper region, NTHi1500, NTHi1560, NTHi1559),

fourteen strains belonging to pattern 2 (table 2 middle region,

NTHi1566-NTHi1568), and one strain belonging to pattern 3

Figure 2. Electrophoresis profiles of LOS isolated from representative NTHi strains. LOS from representative NTHi strains were isolated
and separated after SDS-PAGE; strains NTHi1500, 1559, 1560 (pattern 1); NTHi398, 1513, 1549, 1553, 1556, 1557, 1558, 1566, 1568, 1606, 1607, 1621,
1622, 1623, 1630 (pattern 2); NTHi1619 (pattern 3). A pair of profiles, before (2) and after (+) neuraminidase treatment, is shown for each strain.
Arrows show bands removed or altered following neuraminidase treatment.
doi:10.1371/journal.pone.0021133.g002
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(table 2 lower region, NTHi1619). Resistance to serum mediated

killing was greater for isolates belonging to pattern 2 (NTHi1566,

1513, 1553, 1557, 398 and 1622) (Table 2). The widest differences

among strains were observed at 10, 5 and 2.5% serum. Serum

resistance levels correlated to the presence of sialic acid on the

LOS (Table 2, labeled with *), in agreement with previous findings

[47]. No good correlation between digalactose presence and serum

resistance could be established (Table 2, labeled with 6).

We next assessed the adhesion of our selected subset of NTHi

strains to human airway epithelium, by using A549 cells as a

model. Although the level of bacterial adhesion varied between

strains, a number NTHi isolates belonging to pattern 2

(NTHi1622, 398, 1566, 1513, 1557), were more adherent

(Fig. 3). NTHi1622 binding to A549 cells was significantly higher

than the adhesion of the rest of strains tested; NTHi1566 adhesion

was significantly higher than all strains tested, except NTHi398;

NTHi398 adhesion was significantly higher than all strains tested,

except NTHi1500.

The P5 protein has been shown to be a bacterial ligand for the

CEACAM1 receptor [34–35]. CEACAM1 expression on A549

cells has been reported [35–48]; tightly confluent/over-confluent

A549 monolayers seem to present significant levels of CEACAM1

[49]. Given that P5 extracellular loops were found to be highly

variable among strains, this diversity could account for different

bacterial capacity to bind to CEACAM1, which could determine

differential bacterial adhesion rates. To guarantee the receptor

presence on A549 cells, adhesion assays were carried out by using

over-confluent A549 cell monolayers, where CEACAM1 could be

detected by western blot (Fig. 4D). Adhesion to A549 over-

confluent cells was analysed for seven strains (representative of

genetic patterns 1, 2 and 3, and representative of high, medium

and low adhesion to A549 cell). Those strains showed a host cell

adhesion trend similar to the one shown before (Figs. 3 and 4A).

NTHi1622 adhesion was significantly higher than the adherence

shown by the rest of strains tested; NTHi1500, 398, 1566 and

1619 displayed an intermediate adhesion capacity; NTHi1560 and

NTHi1606 showed lower adhesion than the rest of strains tested.

To further guarantee CEACAM1 presence, identical adhesion

assays were carried out by using HeLa-BGP (biliary glycoprotein

or CD66a, currently known as CEACAM1) cells [50], a HeLa

derivative cell line stably expressing hCEACAM1-4L (Fig. 4D).

Adhesion to HeLa-BGP cells was analysed for the same subset of

seven strains, displaying host cell adhesion patterns similar to those

found for A549 cells (Figs. 3 and 4B). Considering the

heterogeneous isolation sources of the NTHi strains under study,

we also assessed bacterial adhesion to a different respiratory

epithelial cell type. The analysis of NTHi adhesion to Detroit 562

human pharynx epithelial cells for the same subset of seven strains

is shown in Fig. 4C. In general terms, NTHi adhesion to Detroit

562 cells was higher than adhesion to A549 or HeLa-BGP cells.

NTHi1622 and NTHi1566 displayed higher adhesion than the

rest of strains tested. NTHi398 showed an intermediate adhesion

level; NTHi1500, 1560, 1606 and 1619 seemed to be lower

binders. CEACAM1 could also be detected on Detroit 562 cell

extracts (Fig. 4D).

In summary, NTHi isolates belonging to the most prevalent

gene pattern are more resistant to complement mediated killing

and adhere better to airway epithelial cells. Adhesion capacity

varies among strains. Comparable adhesion diversity was found

for a subset of strains showing different P5 extracellular loops

sequence when adhesion to three independent human cell lines

expressing CEACAM1 receptor was assessed.

Discussion

We analysed the distribution, conservation and expression of

genes encoding NTHi surface structures, which revealed a

prevalent molecular pattern in a collection of non-isogenic NTHi

clinical isolates from different pathological origins. The fact that all

isolates rendered different PFGE profiles gives further support to

the notion that NTHi genetic content is heterogeneous among

isolates [8]. Strains belonging to the identified prevalent pattern

showed prominent levels of resistance to serum mediated killing

and adhesion to respiratory epithelium, suggesting that this

molecular signature could be advantageous for NTHi pathoge-

nicity. This notion has been observed for Staphylococcus aureus, by

establishing genetic relationships between nasal carriage and

clinical isolates [51]. Strains endowed with the identified prevalent

signature contain lgtF, lic2A, lic1D, lic3A, lic3B, lic2C, ompP5 and

oapA. Of note, Rd KW20, extensively used as a reference strain in

H. influenzae studies, does not present the same molecular profile.

Indeed, Rd KW20 molecular profile is lgtF+, lic2A+, lic1D+, lic3A+,

lic3B2, siaA+, lic2C2, ompP5+, oapA+. Gene pattern 2 facilitates

sugar chain extensions from HepI and HepII in the LOS.

Although sugar extensions from HepIII were not analysed here,

lpsA is present in NTHi strains tested to date [12]. A previous

survey on NTHi otitis media isolates showed lic2C in 48.1% of

strains [12]. We observed significantly higher lic2C prevalence

(94.6%) in our NTHi collection. Same trend was observed for

lic3B, present in 100% of isolates in our collection, but in 60% of

previously analysed NTHi otitis media isolates [15]. Such different

gene prevalence could relate to differences in strain collection size

or anatomical origin.

Table 2. Resistance to normal human serum for
representative NTHi strains.

NTHi strain

Serum
percentage

10% 5% 2.5% 1.25% 0.6% 0.3% 0.15%

1500* 0 0 0 1,2 36,8 64,6 89,5

1560*6 0 8,2 29,2 42,5 60,7 70,8 62,6

1559 1,3 6,7 13,8 23,1 39,1 53,1 68,4

1566* 16 68,6 110,7 102,8 103 102,8 84,6

1513* 13,5 36,5 63,5 82 108,8 105 97,8

1553* 10,9 50 74,1 91,5 94,1 102,1 105,9

1557*6 0 33,7 55 97,6 98,8 103,6 90,5

398* 0 21,8 79,2 88,4 99,5 93,5 93,7

1622*6 1,5 10,8 46,4 74,5 77,8 82,5 84,5

1549*6 2,1 10,8 22,7 38,6 55,9 75,9 81,7

1623* 0,6 5,4 23,2 54,8 75 68,5 82,7

1606* 0 0 36,3 55,5 69,2 76,9 93,4

16076 2 28,8 59,9 75,4 91,5 94 83,5

1621 0,3 5,4 23,7 63,2 75,3 70,9 77,9

1558 0,3 0,6 14,1 28 48,5 67,6 71,5

16306 0 0,6 11,4 53,6 80,5 84,7 77

15686 0 0 0,6 7,2 30,2 56,3 75,8

1619*6 0,9 4,3 20,1 33,8 53,3 68,5 77,7

Results are expressed as percentage survival of inoculating bacteria against
serum concentration.
*LOS is sialylated.
6LOS contains digalactose.
doi:10.1371/journal.pone.0021133.t002
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The lic1A, lic2A, lic3A and lic3B genes contain multiple copies of

a tetranucleotide repeat within the 59end of their coding

sequences. The repeat copy number can vary due to slipped-

strand mispairing, resulting in altered gene expression and LOS

structural variation [28]. Our complete strain collection expressed

PCho, mostly at a high level. Although PCho addition to LOS is

variable, dependent on lic1A phase variation [22], its ubiquitous

expression in our isolates would support that PCho expression is

advantageous for the pathogen. In fact, PCho promotes NTHi

infection and persistence by reducing host inflammatory response

and promoting the formation of stable biofilms [17–18,52]. The

lic2A gene was also present in all isolates; however, when LOS

decoration with digalactose was assessed, expression was variable

within and between strains. MAb 4C4 interacts with a digalacto-

Figure 3. Adhesion of representative NTHi clinical isolates to A549 airway epithelial cells. NTHi strains were used to infect A549 cells at
an MOI of 100:1 for 30 min. Bacterial adhesion was quantified following lysis of host cells, serial dilution, and viable counting. The level of adhesion
was determined as follows: percent adhesion = (cfu output/cfu input)6100. Black bars correspond to strains with pattern 1; gray bars to strains with
pattern 2; white bar to strain with pattern 3.
doi:10.1371/journal.pone.0021133.g003

Figure 4. Adhesion of representative NTHi isolates to over-confluent A549, to HeLa-BGP and to Detroit 562 pharynx epithelial cells.
NTHi strains were used to infect (A) over-confluent A549, (B) HeLa-BGP and (C) Detroit 562 epithelial cells at an MOI of 100:1 for 30 min. Bacterial
adhesion was quantified following lysis of host cells, serial dilution, and viable counting. The level of adhesion was determined as follows: percent
adhesion = (cfu output/cfu input)6100. (D) Detection of human CEACAM1 receptor in confluent A549, HeLa-BGP and Detroit 562 epithelial cells by
Western Blot with mouse anti-CEACAM1 and goat anti-mouse conjugated to horseradish peroxidase antibodies (upper panel). Extracts were prepared
from non-infected cells. Detection of tubulin (bottom panel) was used as control. In (A), (B) and (C), black bars correspond to strains with pattern 1;
gray bars to strains with pattern 2; white bar to strain with pattern 3.
doi:10.1371/journal.pone.0021133.g004
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side epitope when located as the terminus of a globotetraose

extension from HepI or HepII; this expression could change due

to phase variation in the lic2A, lgtC or lex2 loci. All isolates tested

carry at least two sialyltransferase genes and most isolates express

sialylated LOS. Four sialyltransferase encoding genes have been

identified so far in H. influenzae strains [15–16]. This functional

redundancy could be focused to favor LOS sialylation, supporting

the notion of a relevant role for this LOS modification during

NTHi infection. In agreement with previous reports [24], we

found a correlation between LOS sialylation and serum resistance.

Of note, epidemiological data suggest that LOS sialylation could

be linked to disease severity [53].

The ompP5 gene encodes putative surface-exposed loops, highly

heterogeneous between strains. Previous studies showed ompP5

sequence variability [32–33]; an ompP5 orthologue in H. parasuis

shows diversity among isolates [46]. Given that P5 has immuno-

dominant properties [54], NTHi is likely to evolve a high variability

rate in this protein to evade adaptive immunity. P5 also displays host

cell adhesive properties, by binding to CEACAM1 receptor [34–

35]; P5 observed diversity may modulate bacterial adhesion to cell

surfaces, which may be related to the adhesion heterogeneity among

the NTHi strains analysed in this study. NTHi adhesion to A549

and HeLa-BGP cells was similar for the strains tested; NTHi

adhesion to Detroit 562 cells was comparable, in general terms, to

adhesion to A549 and HeLa-BGP cells, with subtle differences. Of

note, different cell types are endowed with distinct receptor

molecules; thus, adhesion variability between cell types could be

related not necessarily to P5-CEACAM1 adhesion dynamics, but to

additional bacterial adhesive molecules which would bind their

partners on the host cell surface. OapA is an envelope protein

contributing to nasopharynx colonization [31] and cell adhesion

[29]. OapA sequence diversity observed here may modulate

bacterial interaction with cell surfaces. Adhesion is generally a

crucial stage during infection processes [55]. NTHi adhesion is the

result of the combined effect of multiple variable adhesive

molecules, the combinations of which vary among strains. Strains

tested here displayed adhesion heterogeneity; even though, the most

adherent isolates belonged to the most prevalent molecular pattern.

Of note, NTHi1622, NTHi398 and NTHi1566, displaying

significantly higher adhesion rates, contained long OapA sequences,

the prevalent GINNNGAIK motif in their P5 loop 1, and PCho and

sialic acid decorating their LOS.

Bacterial population studies have suggested the association of

the genotype IS1016+, hia+, hmw2 with NTHi invasive isolates

[41], the presence of the IS1016-bexA deletion with non-type b H.

influenzae [39], and the association of lic2B+, hmw+ and nine other

genomic loci with NTHi otitis media isolates [37]. We present

here a molecular profile found prevalent in a collection of NTHi

strains of heterogeneous clinical origin. Based on our observations,

we postulate that this profile could be a general feature providing

the pathogen with advantages during infectious processes. These

findings provide information with potential clinical implication.

The prevalent bacterial surface structures could be suitable targets

for designing new antimicrobial molecules. Future studies will

attempt to expand our knowledge about the features dependent

upon the molecular signature presented here.

Materials and Methods

Ethics statement for collection of NTHi clinical isolates
The study was approved by the Ethics Committee of the

Balearic Islands and all aspects of the study comply with the

Declaration of Helsinki. Ethics Committee of the Balearic Islands

specifically approved that not informed consent was required

because data were going to be analysed anonymously. Bacterial

strains were isolated from human clinical samples which were

collected following Hospital Universitario Bellvitge and Hospital

Universitario Son Espases approved procedures by each Micro-

biology Service.

Bacterial strains and culture conditions
NTHi strains from 111 patients from 17 days to 92 years of age

were isolated between January and June 2008 in Hospital

Bellvitge-HUB (Barcelona) and Hospital Son Espases-HSE (Mal-

lorca), two Spanish tertiary reference hospitals. Sixty four strains

were isolated in HUB from sputum (52 strains), bronchial or

tracheal aspirate (5), conjunctive exudate (2), blood (2), broncho-

alveolar lavage (BAL) (2) and pulmonary abcess (1). Forty seven

strains were isolated in HSE from sputum (24), bronchial or

tracheal aspirate (14), nasopharyngeal exudate (5), conjunctive

exudate (3) and ear exudate (1). Rd KW20 is a non-capsular

serotype d-derived strain for which a genome sequence has been

completed [42]. NTHi398 is a COPD isolate [6,43]. NTHi was

grown at 37uC with 5%CO2 on Chocolate-agar plates or on Brain

Heart Infusion (BHI)-agar supplemented with hemin (10 mg/ml)

and b-NAD (b-nicotinamide adenine dinucleotide, 2 mg/ml).

Pulse field gel electrophoresis (PFGE)
NTHi isolates were characterised by macrorestriction analysis of

chromosomal DNA after SmaI digestion and fragment separation

by PFGE using a CHEF-DR III contour-clamped homogeneous

electric field apparatus (BioRad), programmed at 6 V/cm2 for

23 h, with switching times ramped from 1 to 30 s. DNA fragments

were visualised by ethidium bromide staining and interpreted

following previous criteria [56].

Genomic DNA preparation and PCR amplification
Chromosomal DNA was isolated from a 5 ml culture grown

overnight in sBHI. Bacteria were centrifuged (14.000 g, 5 min),

the pellet was resuspended in 567 ml of TE. Subsequently, 30 ml of

10% SDS and 3 ml of proteinase K (20 mg/ml) were added, mixed

and incubated, 1 h at 37uC. Then, 100 ml of 5 M NaCl were

added, followed by 80 ml of 10% CTAB/0.7 M NaCl. Samples

were incubated, 65uC for 10 min. An equivalent volume of

chloroform/isoamyl alcohol was added, mixed and centrifuged

(14.000 g, 5 min). The aqueous supernatant was transferred to a

fresh tube, and re-extracted with phenol/chloroform/isoamyl

alcohol. Thereafter, 0.6 ml of isopropanol were added to the

supernatant, the mixture was centrifuged. The pellet was washed

twice with 70% ethanol, dried, and resuspended in 100 ml sterile

water.

Genes were screened with primers in Table S2: lgtF (lgtF-

F1+lgtF-R1, 1461 bp), lic2A (lic2A-Fs+lic2A-Rs, 909 bp), lic1D

(lic1D-F1+lic1D-R1, 826 bp), lic3A (lic3A-F1+lic3A-R1, 888 bp;

lic3A-F2+lic3A-R1, 846 bp), lic3B (lic3B-F1+lic3B-R1, 891 bp;

lic3B-F2+lic3B-R1, 851 bp), siaA (siaA-F1+siaA-R1, 854 bp), lic2C

(lic2BA+lic2BC, 1035 bp; lic2BA+lic2BB, 1898 bp), ompP5 (P5-

Fw+P5-Rv, 1046 bp; P5-seqF4+P5-Rv, 912 bp; P5-seqF5+P5-Rv,

985 bp), oapA (oapA-Fw+oapA-Rv, 1170 bp). PCR was performed

on chromosomal DNA using Taq DNA polymerase: 5 min

denaturation (94uC); 1 min periods of denaturation (94uC),

annealing (55uC) and polymerisation (72uC) for 30 cycles. For

genes where one single product size was observed for all isolates,

PCR products from two randomly chosen isolates were sequenced.

For ompP5, PCR products from the subset of selected strains were

sequenced. For lic2A and oapA, at least one representative PCR

product per size was sequenced.
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Colony immunoblot
PCho level was assessed by immunoblotting as described

previously, by using mouse anti-PCho TEPC-15 antibody [13].

Analysis of LPS by electrophoresis and dot-blot
LPS patterns from selected NTHi isolates were analysed as

previously described [57]. Bacterial lysates were prepared from

cells grown overnight on BHI plates supplemented with Neu5Ac,

then suspended in PBS (pH 5.8) to a concentration with an

absorbance of 1 at 260 nm. Lysates were treated with neuramin-

idase and analysed by Tricine-SDS-PAGE and staining with silver

(Quicksilver; Amersham Biosciences). The neuraminidase, purified

from Clostridium perfringens, cleaves terminal sialic acids bound to

oligosaccharides. Assessment of digalactose levels on the surface of

NTHi strains was performed using 2 ml lots of bacterial lysates in

dot-blots [57], using monoclonal antibody 4C4, which recognises

Gal-a-(1-4)-b-Gal [58].

Cell culture and bacterial infection
A549 human alveolar epithelium (immortalised type II

pneumocytes, ATCC CCL-185) was maintained as before [6].

Cells were seeded (to reach 46105 cells/well) in 24-well plates,

and serum starved 16 h before infection by replacement of

medium with supplemented RPMI lacking FBS. When neces-

sary, cells were seeded for a longer period of time to reach an

over-confluent monolayer (approximately 86105–16106 cells/

well) [49]. HeLa-BGP is a stably transfected HeLa cell line

expressing hCEACAM1-4L receptor [50]. HeLa-BGP cell line

was propagated as described before [50]. Cells were seeded

(46105 cells/well) in 24-well plates, 24 h before each experi-

ment. Detroit 562 human pharynx epithelium (immortalised

pharynx epithelial cell line, ATCC CCL-138) was maintained

following manufacture’s instructions. Briefly, Detroit 562 cells

were maintained in DMEM tissue culture medium supplement-

ed with 1% HEPES, 10% heat inactivated foetal calf serum

(FCS) and antibiotics (penicillin and streptomycin) in 25 cm2

tissue culture flasks at 37uC in a humified 5% CO2 atmosphere.

Cells were seeded (105 cells/well) in 24-well plates, 24 h before

each experiment. Stationary phase grown NTHi were recovered

with 1 ml PBS from a Chocolate-agar plate and adjusted to

OD600 = 1 (109 c.f.u./ml). In all cases, cells were infected in

1 ml EBSS (Earle’s Balanced Salt Solution) with the freshly

obtained bacterial suspension, at approximately MOI 100:1, for

30 min, washed three times with PBS, and lysed with 300 ml of

PBS-Saponin 0.025% for 10 min at room temperature. Serial

dilutions were plated on sBHI-agar. Bacterial adhesion is

represented as % = (c.f.u. output/c.f.u. input)6100.

Serum resistance assay
Bacteria grown on medium supplemented with Neu5Ac (30 mg/

ml) were assayed for survival against the killing effect of normal

human serum [24].

Detection of CEACAM1 by Western blotting
A549 cells were seeded on 6-well tissue culture plates to reach

over-confluence (approximately 46106 cells/well). HeLa-BGP

cells were seeded on 6-well tissue culture plates at 26106 cells/

well. Detroit 562 cells were seeded on 21 cm2 tissue culture dishes

at 107 cells/dish. In all cases, cells were highly confluent before

processing. Cells were washed 3 times with cold PBS, scraped and

lysed with 100 ml lysis buffer (16 SDS Sample Buffer, 62.5 mM

Tris-HCl pH 6.8, 2% w/v SDS, 10% glycerol, 50 mM DTT,

0.01% w/v bromophenol blue) on ice. Samples were sonicated,

boiled at 100uC for 10 min and cooled on ice before polyacryl-

amide gel electrophoresis and Western Blotting. CEACAM1 was

detected with primary mouse anti-human CEACAM1 (R&D

Systems, clone MAB2244) antibody diluted 1:500 and secondary

goat anti-mouse antibody conjugated to horseradish peroxidase

(Thermo Scientific) diluted 1:1,000. Tubulin was detected with

primary mouse anti-tubulin antibody (Sigma) diluted 1:3,000 and

secondary goat anti-mouse antibody (Pierce) conjugated to

horseradish peroxidase diluted 1:1,000. When necessary, the

membrane was washed twice for 15 min with PBS-0.5% Tween-

20, incubated for 30 min in RestoreTM Western Blot Stripping

Buffer (Thermo Scientific) at 37uC, and washed twice for 15 min

with PBS-0.5% Tween-20.

Statistical methods
Statistical analyses were performed using analysis of variance,

the two sample t test with two tails followed by the Mann Whitney

test. When required, ANOVA followed by Bonferroni’s multiple

comparison test was performed. A P value of ,0.05 was

considered statistically significant. Analyses were performed using

GraphPad.

Supporting Information

Figure S1 Location of primers and PCR fragment sizes
of genes analysed in the present study. (A) Localization of

primers used for PCR amplification of LOS biosynthesis and

adhesin encoding genes in a collection of NTHi clinical strains. (B)

1% agarose gel showing representative PCR products obtained for

lgtF, lic2C, lic1D, lic2A, lic3A, lic3B, siaA, ompP5 and oapA. (C) 1%

agarose gel showing representative lic2A PCR products displaying

size differences associated with variations in the number of -

CAAT- repeats in the 59region of the reading frame. (-CAAT-)x
refers to the number of tetranucleotide repeats present in strains

Rd KW20 (22 repeats), NTHi1609 (10 repeats), NTHi1500 (11

repeats), NTHi1525 (15 repeats), NTHi1556 (18 repeats),

NTHi1549 (20 repeats), NTHi1501 (26 repeats), NTHi1553 (31

repeats), NTHi1550 (49 repeats). 1 Kb and 100 bp ladders (New

England Biolabs) were used to asses PCR product sizes (B and C).

1 Kb ladder includes fragments of 10, 8, 6, 5, 4, 3, 2, 1.5, 1 and

0.5 Kb. 100 bp ladder includes fragments of 1.517; 1.2; 1 (Kb),

900, 800, 700, 600, 500, 400, 300, 200 and 100 bp.

(TIF)

Table S1 Clinical origin of NTHi isolates used in this
study.

(DOC)

Table S2 Primers used in this study.

(DOC)

Table S3 Distribution of LOS biosynthesis genes in a
collection of 111 clinical NTHi isolates.

(DOC)

Table S4 Distribution of lic2A phase-variable 59-CAAT-
39tetranucleotide repeats for representative NTHi iso-
lates.

(DOC)

Table S5 P5 sequence in predicted extracellular loops 1
to 5 for representative NTHi isolates.

(DOC)

Table S6 OapA protein sequence in the variable region
identified for representative NTHi isolates.

(DOC)
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