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Abstract

Conceptual frameworks are developed for evaluating the ability of different biosignatures to provide evidence
for the presence of life in planned missions or observational studies. The focus is on intrinsic characteristics of
biosignatures in space environments rather than on their detection, which depends on technology. Evaluation
procedures are drawn from extensive studies in decision theory on related problems in business, engineering,
medical fields, and the social arena. Three approaches are particularly useful. Two of them, Signal Detection
Theory and Bayesian hypothesis testing, are based on probabilities. The third approach is based on utility
theory. In all the frameworks, knowledge about a subject matter has to be translated into probabilities and/or
utilities in a multistep process called elicitation. We present the first attempt to cover all steps, from acquiring
knowledge about biosignatures to assigning probabilities or utilities to global quantities, such as false positives
and false negatives. Since elicitation involves human judgment that is always prone to perceptual and cognitive
biases, the relevant biases are discussed and illustrated in examples. We further discuss at which stage of
elicitation human judgment should be involved to ensure the most reliable outcomes. An example, how
evaluating biosignatures might be implemented, is given in the Supplementary Information. Key Words:
Biosignatures—Life detection—Decision theory—Signal Detection Theory—Utility theory—Bayesian
hypothesis testing. Astrobiology 20, 1236–1250.

1. Introduction

Searching for extraterrestrial life is one of the most
exciting human endeavors. Since the Viking missions to

Mars designed to detect signs of life in situ in the form of
active metabolism yielded results that were commonly
(Klein, 1978; Dick, 2006; Quinn et al., 2013), although not
universally (Levin and Straat, 2016), interpreted as negative,
subsequent strategy relied primarily on reconstructing geo-
logical history of potentially inhabited celestial bodies and on
determining their habitability without explicit reference to
the search for extant or extinct life.

Only recently, this strategy has changed. Unambiguous
evidence of the presence of large quantities of liquid water
in Mars’ history (Carr, 2006; Di Achille and Hynek, 2010)
and the discovery of organic material by the Curiosity rover
(Freissinet et al., 2015; Eigenbrode et al., 2018) have shifted
attention from habitability to searching for evidence of past
life on this planet. In parallel, studies on icy moons of
Saturn and Jupiter have led to a conclusion that these bodies
could support life (Hand et al., 2009; Priscu and Hand,
2012; Tsou et al., 2012; Lunine, 2017). Consequently, they

have been proposed as targets for future life-detection
missions. Other potential targets within the Solar System
(Schulze-Makuch and Irwin, 2006; Shapiro and Schulze-
Makuch, 2009), such as Titan (Fortes, 2000; Raulin and
Owen, 2002; Schulze-Makuch and Grinspoon, 2005) and
Venus (Cockell, 1999; Limaye et al., 2018), have been also
proposed, although they are considered by some as prob-
lematic on fundamental grounds (Pohorille and Pratt, 2012;
Hoehler et al., 2020). Further, discoveries of extrasolar
planets in habitable zones (Kane et al., 2016) have provided
strong impetus for observational efforts to detect signs of
life beyond the Solar System (Des Marais et al., 2008).

Most approaches aimed at detecting life rely on searching for
biosignatures. Following other, recent studies (Catling et al.,
2018; Kiang et al., 2018), we define biosignatures as chemical
species, features or processes that provide evidence for the
presence of life. A more precise definition is given in the next
section. Examples of biosignatures are chemical compounds or
classes of compounds characteristic of biological matter, for
example, pigments; specific features of compounds generated
biologically, such as chirality; characteristic biology patterns of
complexity, for example in the structure and distribution of
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amino acids or lipids; molecular oxygen on exoplanets; or signs
of metabolic activity. The current definitions differ subtly but
significantly from older ones (Des Marais et al., 2008), according
to which the existence of a biosignature ‘‘specifically requires a
biological agent.’’ The previous definitions imply the unique
relationship between biosignatures and life; finding a qualified
biosignature would be equivalent to claiming life detection. In
contrast, the updated definitions emphasize that biosignatures
contain information about the presence of life but in general may
be inconclusive. Since finding different biosignatures may give
us a different degree of confidence that they have been produced
biologically, they need to be carefully evaluated in this respect.
Such evaluation is necessary for both further development of life
detection science and planning future missions and remote ob-
servations aimed at searching for signs of life.

Evaluation of biosignatures is a complex, multistep pro-
cess. First, informative biosignatures should be identified,
organized, and considered in the environmental context. So
far, most activities in the field have been conducted along
these lines. In particular, several innovative ideas for bio-
signatures have been recently proposed (Cronin and Walker,
2016; Benner, 2017; Marshall et al., 2017; Johnson et al.,
2018). Their common feature is that they are not bound by
what is known about terrestrial life but instead appeal to our
current understanding of ‘‘universal biology.’’ In other words,
they should be associated with all forms of life, independently
of their environmental context. For this reason, these bio-
signatures are often called ‘‘agnostic.’’ The significance of
this approach is in expanding the concept of biosignatures
from what is known to exist to what might exist.

Once the inventory of biosignatures is available, next
steps follow. The evaluation criteria have to be formulated,
detection requirements have to be identified and confronted
with current technical capabilities, and appropriate detection
instruments have to be secured. In this respect, the recent
paper on the Ladder of Life Detection (LoLD) (Neveu et al.,
2018) stands out, as it takes, for the first time, a compre-
hensive approach aimed at addressing all these steps. The
authors do not attempt to be definitive. Instead, in their own
words, the study ‘‘is intended as a starting point to stimulate
discussion, debate, and further research.’’

The main goal of this paper is to contribute to this discussion
by focusing on a step that is possibly the most difficult—the
evaluation procedure. In the LoLD approach, the authors for-
mulate a set of binary rules (0/1 or true/false) that, once applied
according to the Boolean algebra, lead to an unambiguous,
binary conclusion whether the collected evidence is sufficient
to claim life detection. Even though the rules appear to be ad
hoc rather than based on a formal theory, and the connection
between the assignment of binary values and the domain
knowledge is unclear, it was argued that alternative, formally
better justified methods are too difficult to implement at this
time because of their complexity and our inability to assign
reliable probability values. Unfortunately, binary rules are
inadequate, independently of the current state of knowledge.

For example, according to Neveu et al. (2018), finding a
spectral signature of a pigment would be the ‘‘smoking gun’’
pointing to the presence of life, as no abiotic, uncatalyzed
pigment synthesis is known. However, a possibility of cata-
lyzed, abiotic chemistry that might take place in certain en-
vironments incapable of supporting life (such as, for example,
Titan), or in specific microenvironments (such as micelles,

microemulsions, or water droplets), is not considered. Even if
pigments were synthesized only biologically, they still could
be poor biosignatures. This would be the case if the likeli-
hood of finding them in living systems present at a target
environment were very low. Then, chances would be high
that missions or observations would return negative results
irrespective of whether life is present or absent. The binary
rules do not leave room for such considerations.

To this end, an important advancement was made in the
reports on strategies to search for signs of life on exoplanets
(Catling et al., 2018; Walker et al., 2018). In these reports,
the probabilistic nature of the evaluation problem was ex-
plicitly acknowledged by adopting the framework of
Bayesian hypothesis testing. A similar approach has been
used in many fields of science (see, e.g., Cleophas and
Zwinderman, 2018; Fenton and Neil, 2012; Nyberg, 2018)
and has proven to be particularly successful if a sufficient
amount of data is available. It could, however, lead to am-
biguous results if data are scarce, as pointed out further in
this paper.

Here, we take a broader perspective by appealing to de-
cision theory, a mature field of science concerned with
processes underlying human choices. The main feature of
this theory is its universality, as it applies to decisions made
in all application domains. From this perspective, evaluating
and choosing biosignatures that are the most informative for
life detection are not a unique problem but just another
application of knowledge from the field of decision making.

The next two sections are devoted to normative decision
making, which deals with how choices should be made. In
Section 2, we consider two commonly used frameworks that
are largely probabilistic in nature—Signal Detection Theory
(Green and Swets, 1966; Wickens, 2002; Schonhoff and
Giordano, 2006) and Bayesian hypothesis testing ( Jeffreys,
1973; Kass and Raftery, 1995; Andraszewicz et al. 2015). In
Section 3, a different but equally popular framework based
on utility theory is described. All three frameworks can be
used to evaluate biosignatures, but challenges faced in each
case are somewhat different. The frameworks described in
Section 2 require assigning probabilities that are associated
with events of interest. In many instances, this can be done
on the basis of statistical data. For example, medical diag-
nostics often takes advantage of the known frequencies with
which given symptoms are found among sick and healthy
patients. For unique or rare events, relevant statistical data
are not available and instead probabilities or utilities (see
Section 3) of different outcomes are assigned on the basis of
the domain knowledge. This situation is often encountered,
for example, in evaluating different ecological solutions
(Dorazio and Johnson, 2003; Regan et al., 2005; Dee and
Gerber, 2012). This is also the case with evaluating bio-
signatures. The role of domain knowledge and the means to
organize it are discussed in Section 4. Methods for quanti-
fying uncertainties in assigning probabilities are outlined in
the Supplementary Information (SI), part C.

All decisions involve at some stage human judgment,
which is often at variance with the assumptions of normative
theories. We deal with this issue, which falls into the realm
of psychological decision making, in Sections 5 and 6. It has
been widely recognized that this aspect of the problem
cannot be neglected (Bornstein and Emler, 2001; Elstein and
Schwarz, 2002; Budescu et al., 2014). In fact, accounting for
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human behavior beyond perfectly rational homo economicus
is the primary reason for the rapid development of behavioral
economics that led to Nobel Prizes in 1978, 2002, 2013, and
2017 to Herbert Simon, Daniel Kahneman, Robert Shiller,
and Richard Thaler, respectively. Similar concerns motivate,
for example, efforts to improve understanding climate change
(Budescu et al., 2014) and the development of decision-
making software to guide medical diagnostics (Miller and
Geissbuhler, 1999; Musen et al., 2014). It is also likely to
play an important role in evaluation of biosignatures.

The paper closes with conclusions. Instead of re-
commending a specific evaluation methodology, we sum-
marize advantages and disadvantages of different strategies.
In the SI, part B, we provide an example of how all steps of
the evaluation process might be carried out.

Several important issues involved in the complete treat-
ment of biosignatures for life detection fall outside the scope
of this paper. We do not provide a list of biosignatures, nor
do we identify specific evaluation criteria. Also, we do not
address technical requirements and capabilities to detect
biosignatures. In our discussion of evaluation strategies, we
limit ourselves to the inherent features of biological or
abiotic origin present at the target and do not consider the
technology-related aspects of the problem, such as con-
taminants. Issues related to detection and contaminations
can be considered in similar frameworks to those discussed
below (Lorenz, 2019).

One might ask whether evaluating biosignatures for life
detection is at all necessary. The answer to this question has
to be positive. Evaluations for scientific or programmatic
reasons are always made. The only choice is whether to
carry them out ad hoc or base them on well-defined, sci-
entific methods.

2. Probabilistic Frameworks
for Evaluating Biosignatures

2.1. Signal Detection Theory

A conceptual framework to consider life detection is
based on Signal Detection Theory (SDT), which provides a
precise language for decision making under uncertain con-
ditions. SDT has roots in both psychology and the military,
as it was initially applied during World War II to interpret
radar signals. Subsequently, it has found frequent applica-
tions in many fields ranging from medicine to telecommu-
nications and artificial intelligence. In SDT, it is assumed
that there is a stimulus that, if present, elicits response. For
example, a disease causes a response in the form of specific
symptoms that are recognized by a physician, prompting
appropriate treatment. In the case of life detection, the
presence of life (L) is the stimulus and the presence of a
biosignature (B) is a response to this stimulus. If the relation
between the stimulus and the response was unique, the
stimulus would be always followed by the response and
thereby correctly identified. In the absence of the stimulus,
there would be no response. These two outcomes are called,
respectively, ‘‘true positives’’ and ‘‘true negatives.’’ In most
cases of practical interest, however, the response to the
signal might be incorrect. Two distinct situations are pos-
sible. If there is response even though the stimulus is absent,
the outcome is called false positive. If there is no response to
the stimulus, the outcome is called false negative. In sta-

tistics, these two outcomes correspond to type I and type II
errors, respectively. For example, the presence of nodules
in the lungs is often used to diagnose lung cancer. How-
ever, healthy patients may also have nodules (false posi-
tives), and patients with cancer may have no nodules (false
negatives). All four possible outcomes, two yielding cor-
rect results and two yielding incorrect results, are sum-
marized in Table 1.

Signal Detection Theory (SDT) is most frequently used
for repeated decision making. Table 1 is populated with the
number of cases corresponding to each outcome. Subse-
quently, they can be converted to probabilities after proper
normalization. In other words, past statistical data define the
probabilities in the table. Application to unique events, such
as life detection, for which no statistics are available is less
common. In these cases, frequencies of different outcomes
cannot be determined, and only the probabilistic represen-
tation is possible. Instead, probabilities are assigned on the
basis of domain knowledge. How to carry out this assign-
ment is the focus of the discussion that follows.

The probabilities in Table 1 are conditional probabilities.
P(BjL) abbreviates the probability that biosignature B is
present under the condition that life is present, whereas
P(*BjL) is the probability that B is absent if life is present
(the symbol * abbreviates negation). These two probabil-
ities are not independent. They correspond to outcomes that
are complementary. If life is present, a biosignature is either
present or absent; no other outcomes are possible. There-
fore, their sum has to be equal to 1:

P BjLð ÞþP *BjLð Þ¼ 1 (1)

In the second column, P(Bj*L) is the probability of
finding biosignature B in the absence of life and P(*Bj*L)
is the probability that B is absent when life is absent. In
analogy to Eq. 1,

P Bj*Lð ÞþP *Bj*Lð Þ¼ 1 (2)

Thus, only two probabilities in Table 1 are independent
variables, one in each column. The remaining two proba-
bilities can be obtained from Eqs. 1 and 2. Depending on the

Table 1. Relation between Stimulus (Life)

and Response (Biosignature) in Signal

Detection Theory

Stimulus (Life)
present

Stimulus absent
(no Life)

Reaction
(biosignature)
present

True positive False positive
(error I)Biosignature

present if
there is life

Biosignature
present if no life

Probability
P(BjL)

Probability
P(Bj*L)

Reaction
(biosignature)
absent

False Negative
(error II)

True negative

No biosignature
if there is life

No biosignature
if no life

Probability
P(*BjL)

Probability
P(*Bj*L)
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specific focus, different pairs of conditional probabilities can
be chosen to characterize outcomes. If the focus is on true
and false discovery rates, then P(BjL) and P(Bj*L) are of
direct interest. P(BjL) can be interpreted as ‘‘signal’’ and
P(Bj*L) as ‘‘noise’’ that obscures this signal. If the focus is
on correct outcomes, then the corresponding probabilities
are P(BjL) and P(*Bj*L), which respectively are called
‘‘sensitivity’’ and ‘‘specificity’’ in SDT. If one wants to
characterize errors due to false negatives and false positives,
then the appropriate pair of probabilities is P(*BjL) and
P(Bj*L).

If the probabilities of both false positives and false neg-
atives were equal to zero, biosignature B would be always
present if life were present but would be always absent if
life were absent. Such B can be considered a perfect bio-
signature. In the language of SDT, B would be the ideal
response to the stimulus, not burdened with errors. In
practice, such biosignatures are unlikely to exist. All other
biosignatures can be evaluated with respect to this ideal. An
index developed for this purpose in SDT is called ‘‘in-
formedness’’ or Youden’s J statistics and is considered an
unbiased accuracy measure (Ruopp et al., 2008; Powers,
2011). It was originally introduced to assess performance
of a diagnostic test for cancer (Youden, 1950). The in-
formedness is defined as

J¼ P BjLð Þþ P *Bj*Lð Þ� 1 (3)

which means that J is specified by a sum of sensitivity and
specificity. It changes in the range between -1 and 1. Taking
advantage of Eq. 2, this equation can be rewritten in terms
of true and false positives:

J¼ P BjLð Þ�P Bj*Lð Þ (4)

It reaches the maximum value of 1 when the probability
of true positives, P(BjL), is equal to 1 and the probability of
false positives, P(Bj*L), is zero. If J is equal to zero, the
probabilities of true and false positives are equal. In this
circumstance, J provides no useful information about the
presence of life. In general, J is a measure of the distance
from perfect biosignatures. The closer this index is to 1 the
more likely it is that finding B means that life is present.

With the aid of Eq. 1, J can also be expressed in terms of
false positives and false negatives:

J¼ 1� [P Bj*Lð Þþ P *BjLð Þ] (5)

The sum of false positives and false negatives measures
the distance from perfect biosignatures.

In psychological literature on SDT (Swets, 1988; Lynn
and Barrett, 2014), the distance between true positive and
false positive, usually abbreviated as d’, measures the ability
of a decision maker to differentiate between signal and
noise. In a frequency formalism, both signal and noise are
represented as distributions, and d’ is the distance between
the peaks of these distributions. As d’ increases, so does our
confidence that we correctly distinguish the signal from the
noise. In contrast, no distribution is available in the proba-
bilistic formulation for single or rare events, as considered
here, and the equivalent of d’ is J calculated as a difference
between appropriate probabilities (see Eq. 4).

In Eq. 5, false positives and false negatives are taken with
equal weights. However, depending on specific goals, it
might be desirable to place more emphasis on either false
positives or false negatives. To do so, we can introduce
parameter a (0 £ a £ 1) and redefine J such that it is still
expressed in terms of the same probabilities and remains in
the range [-1,1]:

J¼ 1� [aP Bj*Lð Þþ (1� a)P *BjLð Þ] (6)

Large values of a (close to 1) correspond to avoiding false
positives whereas small values (close to zero) are used if the
goal is to avoid false negatives. Thus, a can be considered as
a ‘‘mission objectives parameter.’’ If several missions to a
given target are considered, the goal of the initial mission
might be to establish whether this target is worth further
exploration in search for life. Then, it might be desirable to
set a to a small value, not to overlook possible, though not
definitive, signs of life. To some extent, this strategy is
being pursued in Mars exploration. In contrast, for a single,
high-profile mission aimed at life detection at a distant
target, for example, Europa, it would be prudent to focus on
avoiding false positives and, therefore, set a to a high value.
It is, however, not advisable to use extreme values of a. For
example, if a is set to 1 to avert false positives, the proba-
bility of false negatives is ignored. Since probabilities of
false positives and false negatives are often correlated,
concentrating on biosignatures that provide a definitive ev-
idence for life may greatly increase probabilities of false
negatives, that is, chances that the mission will return null
results even if life exists at the target.

An equation that is nearly identical to Eq. 6 can be de-
rived if we assign utilities for detecting life to each proba-
bility in Table 1 and calculate the expected global utility.
This is done in the SI, part A. Probabilities of true positives
and true negatives will have positive utilities, whereas
probabilities of false positives and false negatives will be
associated with negative utilities. All these utilities will be,
in general, different.

In psychological literature, different weighing of false
positives and false negatives that reflects goals of a decision
maker is called response bias or decision criterion and arises
from the agent’s motivation. For example, in law an agent
wants to avoid false positives whereas in medicine the
emphasis is on avoiding false negatives. The response bias is
measured as the ratio of true positives to false positives, that
is, a signal/noise ratio, and is usually abbreviated b (Sta-
nislaw and Todorov, 1999). Since it allows for assigning
different weight to costs of false positives and false nega-
tives, it plays the same role as a in the formulation outlined
above (see Eq. 6). Depending on the goals of a decision
maker, it might explain over- or under-weighting different
outcomes, as proposed by Lopes and Oden (1999), who
formulated the choices in terms of security and potential.
For example, if true positive outcomes are favorable, people
focused on security will avoid false positives whereas those
focused on potential will concentrate on reducing false
negatives. For review of interdependences between deci-
sional weights and outcomes see Weber (1994) and Weber
and Kirsner (1996).

In probabilistic formulations of SDT outside psychology,
a measure of signal/noise ratio, K(B), defined as:
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K Bð Þ¼ P(BjL)

P(Bj*L)
(7)

can be used, along with J, to ascertain utility of a bio-
signature for detecting life. Although J and K(B) are dif-
ferent, they are monotonically related, which means that
they will yield the same ranking of biosignatures. An in-
teresting feature of K(B) is that it connects SDT with the
Bayesian hypothesis testing formalism, as described below.

2.2. Bayesian hypothesis testing

In Bayesian hypothesis testing, the quantity to be esti-
mated is the probability P(HjD), called posterior probability,
that a hypothesis H is true given data D. In life detection, the
hypothesis is that life is present, and the data are biosignatures.
Thus, P(HjD) is the conditional probability P(LjB) that life
is present if biosignature B is present and has already been
found. This is different from the probability P(BjL) of
finding B if life is present, which is sought in SDT. On this
basis, it might appear that Bayesian hypothesis testing and
SDT would lead to different evaluations of biosignatures. As
shown below, this is not necessarily the case. According to
Bayes’ theorem

P LjBð Þ¼ P(BjL)

P Bð Þ P Lð Þ (8)

where P(B) is the probability that B is present from either
biological or abiotic sources, and P(L) is the prior proba-
bility that reflects one’s belief about the presence of life
before evidence in the form of biosignature B is collected.
Bayes’ theorem follows directly from the chain rule of
probability calculus. This rule connects joint probability,
P(L,B), that both life and biosignature B are present with the
conditional probabilities P(LjB) or P(BjL).

P L, Bð Þ¼ P LjBð ÞP Bð Þ¼P BjLð ÞP Lð Þ (9)

Bayes’ theorem follows immediately from the second
equality.

P(LjB) can be compared with the probability, P(*LjB), of
the alternative hypothesis: there is no life if B is present. In
other words, B comes entirely from abiotic sources or con-
taminations. Analogously to Eq. 8, this probability can be
expressed as

P *LjBð Þ¼ P(Bj*L)

P Bð Þ P *Lð Þ (10)

where P(*L) is the prior probability that there is no life. Of
course, P(L) and P(*L) sum to 1. The ratio, RLB, of the
posterior probabilities in Eqs. 8 and 10

RLB¼
P(LjB)

P(*LjB)
¼ P(BjL)

P(Bj*L)

P Lð Þ
P *Lð Þ ¼K Bð Þ P Lð Þ

P *Lð Þ (11)

is the relative probability of the hypothesis that life is
present compared to the hypothesis that life is absent, both
evaluated assuming the presence of biosignature B. In the
last equality, we take advantage of the definition in Eq. 7. In

the Bayesian framework, K(B) is called Bayes factor. If RLB

is less than 1, it means that the presence of B does not give
us high confidence in the presence of life, as B is likely to be
of abiotic origin. If RLB is larger than 1 it is more likely than
not that life is present if B is present. In statistics, a mark-
edly stronger evidence is usually expected to claim confi-
dently that a hypothesis is confirmed. It would be typical to
require that RLB ‡ 20.

An inconvenient feature of Eq. 11 is that it depends not
only on the likelihood ratio but also on prior belief about the
probability that life is present at the target. The assignment
of this probability is subjective and might differ widely even
between experts, leading to the correspondingly different
evaluation of RLB. If ample data were available, evidence
captured in P(BjL) would be sufficiently strong to overcome
prior belief even if it disagreed with evidence. In life de-
tection, obtaining such data, especially in a single mission,
cannot be expected.

Fortunately, the difficulties due to the influence of the
prior disappear when two biosignatures are compared.
Consider another biosignature, B’. For this biosignature, one
can define the ratio, RLB, in exactly the same fashion as it is
done for B in Eq. 11.

RLB¢¼K B¢ð Þ P Lð Þ
P *Lð Þ (12)

Then, the ratio

RLB

RLB¢
¼ K Bð Þ

K B¢ð Þ (13)

is independent of the prior and depends only on the Bayes
factors for B and B’. If K(B) is larger than K(B’), then B can
be considered a better diagnostic biosignature than B’. We
would reach the same conclusion if we used Eq. 7 as the
evaluation index in SDT. Thus, the ranking of biosignatures
obtained from SDT and Bayesian hypothesis testing should
be the same.

2.3. Process of assigning probabilities

In many instances, probabilities defined in SDT, for ex-
ample, P(BjL) and P(Bj*L), might be difficult to estimate
because the ability to observe a biosignature if life is present
or absent does not arise from a single process but instead is
an aggregate property that depends on a series of processes.
Not only must a biosignature be produced in a given con-
text, but also it has to, for example, survive degradation and
be detected. It might therefore be beneficial to construct a
model that represents all processes leading to different
possible outcomes. Each constituent process is associated
with a probability. These probabilities are more elemental
than the probabilities in SDT and, therefore, might be easier
to estimate. Once all of them are assigned, the probabilities
required in SDT can be evaluated from the model with the
aid of the standard probability calculus.

A number of approaches can be used to represent the
connection between the existence of life in a given envi-
ronment and the possibility of observing a biosignature. One
of them is to create a decision tree, a tool commonly used in
decision analysis (Koning and Smith, 2017; Sullivan, 2018).
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Decision trees are flowchart-like diagrams in which each
node represents an outcome of a constituent process that
occurs with a certain probability. A decision tree usually
starts with a single node. Each node branches to two or more
nodes, depending on the number of outcomes of a process
under consideration. A simple example of a decision tree
that involves only the production and survival of a bio-
signature generated by biological and abiotic means is
shown in Fig. 1. Although this model is not aimed at pro-
viding the actual, complete description of a complex process
of biosignature detection, it is sufficient to illuminate several
key features of a properly defined life-detection model. As
seen in Fig. 1, such a model consists of two main branches
representing, respectively, possible biological and nonbio-
logical origins of a biosignature. If only the biological
branch were included in the model, estimates of false pos-
itives or ‘‘noise’’ would not be available, and no meaningful
index to measure utility of a biosignature could be con-
structed. The model in Fig. 1 can be readily generalized. For
example, to include terrestrial contamination the right
branch would be labeled ‘‘indigenous biological’’ whereas
the left branch would split to ‘‘abiotic’’ and ‘‘terrestrial
biological,’’ both contributing to false positives.

It is highly desirable that the decision tree be universal for
all biosignatures. This influences resolution of a model, as a
detailed model for one biosignature might not be appropriate
for another biosignature. If different models, potentially
containing different number of levels, were created and
evaluated for different biosignatures, it would not only
complicate the structure of the problem but also would make
outcomes prone to biases, as discussed in Section 5, and in
5.2.1 in particular. Additional information about decision
trees and alternative approaches is available in the SI, part D.

3. Frameworks Based on Utility Theory

Utility theory, which has deep conceptual and methodo-
logical roots, provides approaches to the problem of choice
that are alternative to probabilistic methods. In these ap-

proaches, choices reflect utilities of available options. The
concept of utility was introduced by Bernoulli in 1738
(Bernoulli, 1954), who observed that people considered
subjective rather than objective values of outcomes. In his
Expected Utility (EU) model, utility referred to monetary
outcomes, that is, payoffs in bets. Later, however, it was
broadly recognized that assigning utilities is a general fea-
ture of human perception that applies to different stimuli,
activities, situations, or outcomes. Here, options are bio-
signatures; and each of them, once discovered, has utility for
detecting life beyond Earth.

The philosophical basis for utility theory lies in utilitari-
anism formulated by Bentham and Mill. According to them,
rational behavior means maximizing utility. Modern, axi-
omatic versions of utility theory, especially under risk, are
largely based on the work of von Neumann and Morgenstern
(1947). Four axioms about preferences are usually accepted.

(1) Completeness: The decision maker is always able to
define preferences for any two options, A and B. A is
preferred to B, B is preferred to A, or the decision
maker is indifferent between A and B.

(2) Transitivity: If A is preferred over B and B is pre-
ferred over C then A is preferred over C.

(3) Independence: The order of preferences between two
options does not change if each of them is subjected
to the same linear transformation. It means that if A is
preferred to B then A + C is preferred to B + C, when
C is an additional, third option. Similarly, aA is
preferred over aB, where a is a constant.

(4) Continuity: If A is preferred to B and B is preferred to
C then there exists a number p, 0 < p < 1, such that
B = pA + (1 - p)C.

Although these axioms are quite reasonable, perhaps even
obvious, from the mathematical point of view, they are not
always preserved in human judgments. Several conse-
quences of deviations from the axiomatic theory will be
discussed in Section 5.1.

FIG. 1. Schematic of a ‘‘life-detection decision tree’’ with two levels (existence and survival). The tree was terminated
when biological and abiotic sources of biosignatures become indistinguishable. Bold lines and grey boxes lead to outcomes
that are true positives (left side) or false positives (right side).
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3.1. Multi-attribute decision approach

The framework broadly applied to decision making in
many areas, ranging from policy, business and finance de-
cision making to medicine and consumer choices, is based
on Multi-Attribute Utility (MAU) approach. This approach
is also suitable for evaluating biosignatures. In line with the
independence axiom, each option, which in the context of
life detection is a biosignature, is evaluated in MAU inde-
pendently of all other options. Each option is evaluated on
attributes or criteria related to their utility. For example, a
person buying a car might consider such criteria as price,
safety, repair record, fuel economy, maintenance costs,
performance, comfort, and design esthetics. In life detec-
tion, examples of relevant criteria to judge a biosignature
might be the likelihood of finding it in biological systems,
the ability to survive in the target environment in quantities
sufficient for detection, and the existence of abiotic pro-
cesses producing the biosignature.

To evaluate the overall utility of each option, one has to
account for all relevant criteria. Otherwise, important as-
pects are not included in calculating the overall utility, po-
tentially leading to significant inaccuracies. The criteria
must also be disjoint. If the criteria overlap, some aspects
are counted more than once, most likely with detrimental
effects to the accuracy of the overall utility. To ensure the
proper comparison of overall utilities of options, all of them
should be evaluated on the same set of criteria.

In MAU, each criterion is scored independently of other
criteria. Otherwise, the evaluation may be biased even
though all relevant criteria that are disjoint and the same for
all options are considered. This means, for example, that the
likelihood of finding a biosignature in biological systems
should be evaluated independently of the existence of abi-
otic processes producing this biosignature. Similarly, deg-
radation of a biosignature in an aqueous environment due to
hydrolysis should be evaluated independently of degrada-
tion due to radiation if both modes of degradation were
previously selected as evaluation criteria. If utility of a score
on one criterion depends on scores on other criteria, one
cannot construct a monotonic scale for criteria.

To obtain overall utility, scores on different criteria are
combined additively. Since different criteria may be of
different importance to the decision maker, that is, influence
choices to a different degree, scores on criteria are multi-
plied by weights assigned to criteria. The weights sum to 1.
This leads to the following formula for the overall utility,
U(B), of a biosignature (option) B:

U Bð Þ¼ w1 � u1þw2 � u2þ . . . þwn � un (14)

where indices 1, ., n count criteria, wi is the weight as-
signed to criterion i, and ui is the score of B on this criterion.

In summary, in accord with Eq. 14, evaluation of U(B)
consists of three steps. First, a set of appropriate criteria is
defined. Next, each criterion is assigned a weight. Weights
do not depend on specific biosignatures. The third step is to
score each biosignature on each criterion. Scores can be
positive or negative, depending on whether they describe
desired or undesired attributes. For example, criteria related
to abiotic sources of biosignatures reduce utility; therefore,
they should be associated with negative scores. This pro-

vides a set of weighted ui, which allows for evaluating the
global utility U(B) from Eq. 14.

It is also possible to formulate MAU such that utilities for
individual criteria are combined multiplicatively rather than
additively (Keeney and Raiffa, 1993). Empirical evidence as
to which of these two approaches is more accurate is mixed
(Jansen, 2011).

The defining characteristics of MAU are that evaluations of
options are independent, global and compensatory. This
means that all criteria have to be considered in evaluating the
overall utility, and a poor score on one criterion can be
compensated with high scores on other criteria. Even though
MAU is a method of choice in many decision-making prob-
lems, sometimes its characteristics lead to outcomes that are
not optimal. Other utility-based models exist that do not adopt
some of these characteristics (Payne, 1976; Svenson, 1979).

Specifically, the compensatory nature of MAU causes
concerns because evaluation criteria are often conflicting.
This is the case for cost and quality, cost and safety, or
maximizing return and minimizing risk of an investment.
For example, a car may have excellent fuel economy but
poor performance, or a low price but a questionable safety
record. In the medical field, conflicting criteria might be
diagnostic accuracy and availability of care. Azar (2000)
discussed the application of MAU to evaluating four tech-
niques for detecting breast cancer. Their features were found
to be in conflict. Magnetic resonance gives accurate, high-
resolution images but is costly, whereas mammography is
inexpensive but markedly less accurate. In the context of life
detection, a biosignature could be highly diagnostic of life
but degrade rapidly and therefore score poorly on the sur-
vivability criterion. Conflicting criteria might lead to a sit-
uation in which the option with the best overall utility scores
highly on most criteria but poorly on a few. Such a solution
might not be the desired one if a minimum level of per-
formance is required for every criterion. Examples abound
of natural or engineered systems that underperform or even
fail because just one element functions poorly.

3.2. Conjunction rule

A decision strategy that does not suffer from the potential
disadvantage of compensation is based on the Conjunction
Rule, which derives from the Principle of Satisficing pro-
posed by Simon (Simon, 1957; Svenson, 1979). In this
model of ‘‘rational’’ choice, only options that meet aspira-
tion level are considered. First, the minimum score that is
considered satisfactory is determined for each criterion.
Then, all options are treated separately, one at a time. Any
option that does not meet the minimum cutoffs for all cri-
teria is rejected. All options that pass the cutoff test are
considered satisfactory, and no further optimization is car-
ried out. In practice it means that the first such option should
be chosen. A typical situation to which the strategy applies
is when choosing a book to read on vacation. Searching the
bookstore for a book with the highest utility would be un-
necessary and wasteful.

As a single decision strategy, the Conjunction Rule is
clearly not useful for life detection because the goal is to
identify the most informative set of biosignatures. It may,
however, profitably complement MAU. First, the Conjunc-
tion Rule is applied to eliminate all biosignatures that do not
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meet minimum requirements for all criteria. Then, the re-
maining biosignatures are evaluated by way of MAU.

4. Role of Knowledge in Evaluating
Probabilities and Utilities

Evaluation of probabilities or utilities should be based on
the complete, current knowledge. This knowledge consists
of information and evidence bearing on biological or abiotic
sources of biosignatures. It is drawn from a wide range of
fields such as organic chemistry, cellular and molecular
biology, ecology, biogeochemistry, planetary science, and
astronomy. The inherently interdisciplinary, highly diverse
nature of knowledge, exceeding expertise of a single sci-
entist, necessitates creating a knowledge base (KB) that
forms the common, factual basis for the evaluation process.
Such a knowledge base should be structured to facilitate
efficient and reliable evaluation. In particular, arguments
supporting or contradicting the value of a given biosignature
as evidence for life should be explicitly stated and organized
in groups based on evaluation criteria, as this would assist
researchers in comparing different arguments, even if they
were derived from fields outside their main expertise. This
organization is markedly more useful to researchers than
outcomes of literature searches based on key words or other,
similar criteria.

Another desired feature of the KB is that it should be
community based. This means that information can be
contributed by all registered members of the community. In
contrast to encyclopedic knowledge, the providers of in-
formation do not have to be objective. Even if a specific
researcher supplies facts that are biased for or against a
given biosignature, the overall body of evidence from the
scientific community should provide a balanced viewpoint.

Curation would additionally protect the integrity of infor-
mation captured in the KB.

A structure that fulfills most of the requirements for the
KB already exists and has been implemented in the Hy-
pothesis Browser for Astrobiology (Pohorille and Keller,
2010). Below, we briefly outline its main features and de-
scribe how a modified version of this structure can be used
for life detection. In close analogy to the Hypothesis
Browser, scientific information of interest is organized via
arguments supporting or contradicting a statement that
presence of a given biosignature provides evidence for the
presence of life. For example, the argument about near
universality of homochirality in terrestrial biology supports
treating this feature as a useful biosignature whereas the
existence of natural or synthetic structures of mixed chirality
provides an opposing argument. The corresponding ontol-
ogy of the KB consists of five concepts: (i) biosignatures, (ii)
criteria, (iii) arguments, (iv) evidence, and (v) research
source. The relationship between these concepts is shown in
Fig. 2. Arguments are grouped according to criteria they
address. For example, arguments dealing with the univer-
sality of homochirality in biology are related to the presence
of this biosignature whereas arguments about racemization
rates address its survival. The discovery of nearly homo-
chiral species in abiotic environments provides an argument
for assessing the probability of false positives for this bio-
signature. Each argument is supported by evidence presented
in or inferred from scientific literature, which constitutes the
primary research source. This ensures that provenance of all
knowledge captured in the KB is known.

The likelihood of detecting a biosignature depends not
only on its intrinsic features but also on the environment.
For example, finding a pigment of biological origin is more
probable on Mars than in the depth of the ocean world of

FIG. 2. The ontology of the biosignature knowledge base.
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Europa, where a significant amount of light is unavailable.
Similarly, degradation pathways and rates of delivery of or-
ganic material are strongly dependent on the environment.
For this reason, arguments in the KB should contain infor-
mation about environments to which they apply. In fact, the
KB can be constructed as a two-dimensional biosignature ·
environment matrix that can be searched in both directions.

5. Elicitation Probabilities and Utilities

To make decisions or evaluations, information about a
subject matter has to be translated to the global probabilities
listed in Table 1 and/or global utilities. This process is called
elicitation. Since statistical data for life detection are not
available, elicitation is based on assessing domain knowl-
edge, which means that it has to involve, at some stage,
human judgment. This raises a question: At which stage of
elicitation should human judgment be involved to ensure the
most reliable results? As has already been mentioned in
Section 2.3, global probabilities might be difficult to eval-
uate directly. Instead, it might be simpler and more reliable
to evaluate probabilities for individual criteria and then
obtain global probabilities. This is analogous to scoring
biosignatures on each criterion, which is a required step in
utility-based approaches.

Another possibility is to push human involvement to an
even more elemental level and ask experts to judge sup-
porting and contradicting arguments collected in the KB
rather than probabilities or utilities. Arguments should be
evaluated on two dimensions—significance and strength.
These two traits are separate. Significance is the extent to
which an argument, if proven, informs elicitation. Strength
measures how well an argument is supported by evidence.
For example, the argument that any biological system
should contain polyionic molecules as information carriers
(Benner, 2017) is highly significant, but one might have
doubts whether it has been proven sufficiently strongly.
Conversely, the existence of molecules with mixed chirality,
such as gramicidin, in biological systems is undoubtedly
true, but the significance of this argument for contradicting
homochirality of life is uncertain, as known molecules of
mixed chirality perform only a very limited range of func-
tions in terrestrial biology. Evaluating arguments has a
number of advantages. It is easier to carry out than evalu-
ating probabilities or utilities. Also, it forces experts to judge
only the knowledge in the KB and leaves less room for
unsupported opinions. Finally, this approach is compatible
with dynamic evaluation, that is, evaluation that can be
readily updated as new facts become available. Its main
disadvantage is that it requires an additional elicitation step
of integrating evaluations of different arguments and con-
verting them to probabilities or utilities. The rules for doing
this can be developed, for example in the spirit of normal-
ized Eq. 14, but their veracity has to be carefully tested.

An important, complicating factor is that human judg-
ment involved in elicitation is always prone to perceptual
and cognitive biases. This applies not only to laypersons but
also to experts, even though the latter should be protected
from such biases. A number of findings document that ex-
perts often make judgments based on stereotypes, images
(Cooper et al., 2001; Cornell, 2001; Shefrin, 2001), or affect
(Savadori et al., 2004; Slovic et al., 1999, 2004). For ex-

ample, Slovic et al. (1999) asked members of the British
Toxicological Society to rate 30 chemicals on an affect scale
(bad-good) and to judge risks associated with the exposure
to these chemicals at levels that were markedly below the
standards accepted by the regulatory agency. Even though
these risks were negligible, they were evaluated as high, but
only for the chemicals rated unfavorably on the affect scale.
Sometimes, expert knowledge may reinforce rather than
reduce biased evaluations because of personal or group in-
terests. Savadori et al. (2004) found that perception of risks
and benefits from biotechnology was more biased among
experts than among non-experts, most likely because of
their personal involvement.

Since biases in judgments are inevitable, understanding
their sources is essential for assessing and reducing their
impact on evaluations. Although biases are of serious con-
cern in other fields (Garthwaite et al., 2005), they have
never been discussed in the context of life detection. For this
reason, general mechanisms of cognitive biases are briefly
discussed, and biases that are most relevant to life detection
are described. Some of them apply to both utilities and
probabilities, whereas others affect only probabilities. All
topics are illustrated with representative experiments in
cognitive psychology and relevant situations that might arise
during evaluating signs of life.

5.1. Independence axioms and comparative judgment

The chief concern with applying utility and probability
theories, discussed in the previous sections, to processes that
involve human judgment is related to the axioms that re-
quire each option and each criterion to be evaluated inde-
pendently from each other (see Section 3). In variance with
these axioms, it is broadly acknowledged that human
judgment is comparative (e.g., Russo and Dosher, 1983;
Mellers and Biagini, 1994; Noguchi and Stewart, 2014).
This applies to any kind of sensation, such as visual per-
ception, sound, or taste. All judgments are made relative to a
reference point. For physical stimuli, the most common
reference point is the lack of a stimulus, for example,
darkness, when changes in brightness are evaluated. The
most general principle of human sensation is diminishing
sensitivity to changes in stimulus with the increasing dis-
tance from the reference point. It is easier to differentiate
between coffee with no sugar and coffee with one teaspoon
of sugar than between coffee with 5 and 6 teaspoons of
sugar, even though the objective difference in sugar added
to the coffee is the same in both cases. In psychology, this is
called the Weber-Fechner law. In economics, this is called
marginal utility.

Comparative judgments also apply to cognitive evalua-
tions. In these cases, changes, most often evaluated with
respect to a status quo or another reference point, are also
subject to diminishing sensitivity. Weber (2018) illustrates
this in an example in which evaluation of risk defined as
variability of outcomes depends on the expected value of a
risky option. Risk of a lottery in which one can win $150 or
lose $50 is perceived as large. However, the same variability
is perceived as small when the expected value of a lottery is
1 million dollars.

A number of common biases stem from comparative
evaluations, such as taking stereotypes as reference points.

1244 POHORILLE AND SOKOLOWSKA



For example, experts in life detection might consider the
ubiquity of a biosignature in terrestrial life instead of the
likelihood that it is produced in any biological system.
Another common problem is that the assessment of utility of
an object depends on the context. For example, the assigned
utility of a given biosignature may depend on other bio-
signatures included in the set presented for evaluation. The
psychophysical and cognitive mechanisms of comparative
judgments related to reference points, stereotypes, and
context are discussed below.

5.1.1. Comparisons with reference points. Diminishing
sensitivity with respect to the reference point is a frequent
source of biases. If utilities are measured with respect to the
same reference point, the evaluated utility of an objective
value X is smaller than the sum of utilities of objective
values x1.xn that contribute to X: u(X) < u(x1) + .+ u(xn).
This means that the utility of one strong argument in favor of
biosignature A with strength of 8 on a scale from 0 to 10 will
be evaluated lower than the overall utility of 4 weak argu-
ments in favor of biosignature B, each having strength 2.

Another consequence of diminishing sensitivity is related
to overestimating the significance of the first evidence
contradicting a commonly accepted view, which typically
serves as the reference point. For example, for a long time it
was accepted that chiral molecules synthesized abiotically in
space existed as nearly perfect racemic mixtures. Significant
excess of one enantiomer was interpreted as evidence of
biological activity. The discovery of amino acids of abiotic
origin in meteorites markedly biased toward one optical
isomer (Pizzarello et al., 2012) is assigned high value as
evidence contradicting biological origins of homochirality
in general, even though the underlying mechanism might be
highly specific to a narrow range of meteorites (Burton and
Berger, 2018). A similar bias is also observed in evaluating
probabilities. When no good medical treatment for HIV was
available, initial, poorly effective drugs were perceived as
greatly increasing the probability of survival, because the
change from no hope, which was the reference point at that
time, to a very small probability of survival was perceived
as very salient. On this basis, it might be expected that
finding an abiotic route to synthesis of a biosignature be-
lieved to be produced only by biological means would lead
to overestimating the probability of its abiotic origins, even
if this route were rare in planetary or space environments.

5.1.2. Comparisons to stereotypes. In contrast to the
phenomenon of diminishing sensitivity, which is rooted in
psychophysics, comparisons to stereotypes lead to biases
that have their source in cognition. Probably the best-known
example of such bias is from an experiment by Tversky and
Kahneman (1983) in which respondents were given the
following description of a young woman: ‘‘Linda is 31 years
old, single, outspoken, and very bright. She majored in
philosophy. As a student, she was deeply concerned with
issues of discrimination and social justice, and also partic-
ipated in anti-nuclear demonstrations.’’ Next, participants
answered which was more probable: (1) Linda was a bank
teller or (2) Linda was a bank teller active in the feminist
movement. More than 80% chose the latter option, regard-
less of whether they were novice, intermediate, or expert
statisticians, even though a population defined in this option

is a subset of a population defined in option 1 and, therefore,
has to be less probable. This is called the conjunction fallacy
and follows from judging similarity of Linda to stereotypes
of a bank teller and a feminist instead of assessing proba-
bility. People compare salient features of objects and eval-
uate ‘‘the degree of correspondence. between an outcome
and a model’’ (Tversky and Kahneman, 1983, p 295).

Such correspondence is usually evaluated on the basis of
similarity and/or diagnosticity, which is defined as essential
features/criteria shared by all members of a given class
(Rosch, 1975; Tversky, 1977). An object is representative of
a class either if it is a prototype or a typical member irre-
spective of its frequency in the population, for example, a
robin is more representative of birds than a chicken, al-
though a robin is less frequent (Rosch, 1978/1988).

A similar situation might arise in evaluating probability
of the biological origin of biosignatures, which might be
done on the basis of their similarity to and diagnosticity for
terrestrial life. For example, nucleic acids are frequently
perceived as having higher diagnosticity than polyionic
polymers in general, since they serve as universal genetic
polymers for life on Earth. This is the case, even though
other polyionic polymers are capable of playing the same
role (Eschenmoser, 1999) and might have preceded nucleic
acids on early Earth (Hud et al., 2013) or be favored under
different space conditions. If the probability of finding nu-
cleic acids in extraterrestrial life were evaluated higher than
the probability of finding polyionic polymers, which might
be an outcome in some expert opinions, this would be an
example of conjunction fallacy. Another example of con-
junction fallacy was observed in our pilot study described in
the SI, part B, empirically demonstrating relevance of this
bias to life detection.

5.1.3. Biases related to choice-set (context) depen-
dence. Often, utilities or probabilities of biosignatures are
not evaluated independently but instead depend on other
biosignatures included in the evaluation set. The ‘‘effect of
decoys’’ in a choice-set illustrates this phenomenon (e.g.,
Ariely and Wallsten, 1995). Readers of the Economist were
given a choice between (A) a 1-year online subscription for
$59 and (B) a 1-year subscription to the print edition with
online access for $125. Forty percent chose A, and 60%
chose B, indicating that B was, on average, slightly more
attractive than A. However, when 1-year subscription to the
print edition without online access for $125 was added as
the third option, 80% chose B and only 20% chose A. Thus,
the attractiveness of B increased when a decoy option was
added to the choice set.

Another example of choice-set dependence is called
asymmetric dominance (e.g., Simonson, 1989). Assume that
there are two biosignatures, A and B, evaluated on two
criteria, and A is slightly better on the first criterion,
whereas B is slightly better on the second criterion. Then,
the perceived difference in their utility is expected to be
small. Assume further that biosignature C is added to the
choice set. C is worse than both A and B on the first criterion
but equally good as B and better than A on the second one.
Then B is never worse than C, but the same is not true for A
(see Table 2, set 1). In other words, B dominates C in this set
whereas A does not. As a result, the perceived utility of B is
found to increase compared to A. Conversely, adding
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biosignature D that is worse than A and B on the second
criterion and equally good as A on the first one will increase
the perceived utility of A (see Table 2, set 2). In this set, D is
dominated by A but not by B.

Similar biases were also documented in evaluating
probabilities. Windschitl and collaborators (Windschitl and
Wells, 1998; Windschitl and Young, 2001; Windschitl et al.,
2002) found that people judged probability of a focal out-
come not in absolute terms but rather in comparison to the
most likely alternative outcomes. For example, respondents
evaluated the probability of winning in a raffle in which they
held 17 tickets while others held 8, 8, 9, 8, and 9 tickets
higher than the probability of winning in a raffle in which
others held 7, 6, 16, 6, and 7 tickets (Windschitl and Young,
2001), even though their objective chances were, respec-
tively, 17/58 and 17/53. The biased evaluation resulted from
the comparison of the number of own tickets with the
highest number of tickets held by rivals instead of calcu-
lating the probability of winning. In the first raffle, no rival
held more than 9 tickets, whereas in the second raffle one
person held 16 tickets. The probability of a focal outcome is
judged higher when it is favored in comparison with the
strongest alternative. In life detection, judgment of the
probability that a biosignature was created in a biological
process (focal outcome) might depend on the distribution of
arguments in favor of its abiotic origin (residual outcome).
Even though arguments may produce the same total prob-
ability of abiotic origins of several different biosignatures,
these probabilities may be evaluated quite differently if the
distribution of argument strengths differs.

5.2. Specific biases in elicitation of probabilities

5.2.1. Subadditivity. A common bias in probability
judgment is that the probability of the whole is evaluated
lower than the sum of probabilities of its independent parts.
This phenomenon is called subadditivity. It is similar to
diminishing sensitivity, but the underlying mechanism is
different.

Subadditivity was first documented by Fischhoff, Slovic,
and Lichtenstein (1978). Car mechanics with an average of
15 years of experience were asked to evaluate the proba-
bilities of different causes of a failure to start a car. Initially,
the mechanics evaluated the probability that the reason ‘‘is
something other than the battery, the fuel system, or the
engine’’ as 0.22. When the question was divided into several
more specific causes (e.g., the ignition system), this proba-
bility increased to 0.44. Similarly, experts asked about
degradation of a given biosignature in general are expected

to provide lower probability estimates than when asked
about degradation due to a number of specific reasons, such
as radiation, hydrolysis, pyrolysis, and so on.

This phenomenon was initially interpreted in terms of the
availability or salience effect: ‘‘what is out of sight is also
out of mind’’ (Fischhoff et al., 1978, p 333). Fox and col-
leagues (Fox and Rottenstreich, 2003; Fox and Clemen,
2005) proposed a different explanation of subadditivity.
According to them, people initially assign equal probabili-
ties to all events, what is called the ignorance prior. Then
they adjust these probabilities according to their beliefs of
how the likelihood of these events differs. Bias arises because
the adjustment is usually insufficient. This interpretation is
particularly relevant to evaluating poorly constrained proba-
bilities with high uncertainty, which is often the case with
biosignatures.

5.2.2. Anchoring and other factors that impact focus of
attention. The interpretation given by Fox and Clemen
(2005) is related to another bias called anchoring and ad-
justment heuristic (Tversky and Kahneman, 1974). Ac-
cording to this heuristic, people focus attention on the initial
values called anchors and evaluate probabilities in relation
to them. Regardless of the source of the starting value, the
adjustment is usually too small (Slovic, 1972). For example,
experts asked about the probability of survival of a bio-
signature on Europa, given that the probability of survival
on Earth is p, are likely to anchor their attention on p,
providing estimates close to this value.

Anchoring applies even when explicit numbers are not
given. When asked whether biosignature A is more likely to
survive than biosignature B under given conditions, experts
mostly look for arguments supporting survival of A. In
contrast, when asked whether A is less likely to survive, the
same experts will tend to look for arguments contradicting
survival of A. This has implication for SDT. According to
anchoring and adjustment heuristic, asking questions about
true positives or false negatives and about false positives or
true negatives is not equivalent, even though it should be, as
each pair of probabilities adds to unity.

Similar biases may result from primacy and recency ef-
fects because of a stronger focus of attention and better
recall of information presented either at the very beginning
(primacy effect) or at the very end (recency effect) at the
expense of information given in the middle. For example, if
both the first and the last argument support biological origin
of a biosignature, experts will most likely overestimate the
corresponding probability. However, if the order of argu-
ments is changed such as the first and the last arguments
support abiotic origins of this biosignature, the probability
of its biological origin will be underestimated.

5.3. Advantages and disadvantages of different
measurement tools in light of biases

As discussed earlier, human judgments are not in agree-
ment with the independence axioms. There are two ways to
deal with this disagreement: either independence is enforced
by way of applying noncomparative measurement scales or
the independence axioms are relaxed, and measurements are
done with the aid of comparative techniques. How both
approaches are implemented is discussed in the SI, part E.

Table 2. An Example of Asymmetric Dominance

in Evaluation of Biosignatures

Biosignature
Rates on

Dimension 1
Rates on

Dimension 2

Set 1 A 6 4
B 4 6
C 2 6

Set 2 A 6 4
B 4 6
D 6 2
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Noncomparative scales are in agreement with logical
conditions, such as transitivity, but do not reflect the way in
which people make judgments. Forced to make non-
comparative judgments, respondents frequently use refer-
ence points or stereotypes that are unknown to those who
collect data. Comparative scales do not require external
reference points and are free from numbers and labels. Such
scales also have other advantages. They are easy to under-
stand and use and allow for capturing even small differences
between evaluated objects. This comes at a price of ordinal
instead of interval measurement. To convert ordinal to in-
terval measurement, as required in SDT or utility theory,
procedures of uncertain accuracy have to be used.

6. Conclusions

Evaluating biosignatures for their information value is
an essential step in developing research, mission, and
observational strategies for detecting life beyond Earth. In
this paper, we present the key aspects of this process that
are firmly based in normative and descriptive decision
theory. A number of possibilities exist to carry out eval-
uation at both formal and practical level. We do not en-
dorse any of them but instead discuss their advantages and
disadvantages.

Three formal frameworks broadly used in other applica-
tion domains based on SDT, Bayesian hypothesis testing,
and utility theory have been presented. The SDT framework
has some advantages over the Bayesian approach. Most
importantly, it does not rely on prior probabilities of finding
life that frequently are poorly constrained. Since the as-
signment of priors, P(L), at different targets is based not
only on limited, consensus knowledge but also on subjective
opinions, it is likely to differ significantly between experts.
This difficulty has been appreciated in the context of
exoplanets. As stated by Kiang et al. (2018), ‘‘P(life) is
truly quantifiable only with large statistics, after more
examples of life have already been discovered.’’ Since this
is unlikely to happen in the near future, it is difficult to
take advantage of the most attractive feature of Bayesian
statistics—a systematic way to update posterior probabil-
ities in the light of new data. Interestingly, as shown in
Eq. 13, prior probabilities disappear for comparative
evaluations of biosignatures at the same target, and only
Bayes factors remain relevant.

Another advantage of SDT is the ability to incorporate
goals in the process of evaluation, for example through
asymmetric weighing component probabilities to emphasize
avoiding false positives or false negatives. This feature is
one of the main reasons why SDT has been widely applied
in engineering, medicine, and psychology. Including goals,
a feature that SDT shares with the utility framework in which
scores are weighed by relative weights assigned by a decision
maker, reflects human decision-making often governed by the
need to balance desired and undesired features of different
action or options. The idea of considering goals in judgments
is close to the concept of satisficing introduced by Simon (see
Section 3.2). In the SDT formalism presented here, goals are
captured in parameter a in Eq. 6, which weighs the relative
importance of false positives and false negatives. In medical
diagnostics, the emphasis is usually on reducing false nega-
tives, whereas in life-detection missions the focus is likely to

be on avoiding false positives. The importance of avoiding
false negatives should not be, however, ignored. Otherwise,
there is danger of limiting the search to uniquely biological
but rare biosignatures, and by doing so greatly increasing the
likelihood of finding nothing.

Although probabilistic frameworks are more appropriate
from the formal standpoint, utility-based approaches have
practical advantages. There is a large body of evidence that
people, even expert statisticians, are often confused when
they have to deal with probabilities. In contrast, assessing
the pros and cons of options, assigning them relative im-
portance and scoring positive and negative aspects of dif-
ferent options is common in everyday decision making.
Thus, people have more experience with judgments based
on utility. A similar reasoning is behind a proposal to
evaluate the strength and significance of individual argu-
ments supporting or contradicting biological origins of a
given biosignature rather than probabilities, and subse-
quently apply an algorithm to turn these evaluations to
probabilities. Considering that the three evaluation
frameworks have different features, it might be worthwhile
to employ all of them.

Every evaluative process involves human judgment,
which is inevitably subjected to perceptual and cognitive
biases at the evaluation and measurement levels. These
biases will be, in general, different when biosignatures are
evaluated individually (noncomparative judgments) or
through comparison with other biosignatures (comparative
judgments) in probabilistic or utility theory frameworks, but
they will always exist. For example, biased responses to
sensory stimuli associated with the law of diminishing sen-
sitivity cannot be influenced because they arise from psy-
chophysics. However, it might be possible to reduce cognitive
biases related to this law through enforcing the desired ref-
erence points in carefully designed instructions or compara-
tive measurements. More generally, reducing or eliminating
some biases usually happens at a price of introducing other
biases. Since different biases are not expected to have equal
effect on outcomes, knowledge from psychological decision
making can be brought to bear to design the evaluation pro-
cess such that the overall impact of biases interferes as little as
possible with the goals of a study.

Several issues relevant to evaluating biosignatures have
not been addressed in this paper. For example, simultaneous
evaluation of several biosignatures has not been discussed.
If they do not depend on each other, simple probability
calculus applies. If they interact synergistically, it might be
more profitable to define them as a separate, ‘‘collective
biosignature.’’

A reason for serious concern is a possibility of ‘‘black
swan events’’ (Taleb, 2010), that is, findings that are very
rare, unpredictable, and extend beyond the realm of ex-
pectations based on current knowledge. Admitting such
possibility forms the basis for the concept of ‘‘weird life’’
(National Research Council, 2007) and motivates the search
for agnostic biosignatures, but almost by definition assign-
ing probabilities to such findings is extremely difficult.

This paper is aimed at presenting the basic concepts in-
volved in evaluating biosignatures of life detection. A host
of advanced approaches in probabilistic reasoning and de-
cision making (see, e.g., Pearl, 2014) can be brought to bear,
but to what extent it can be fruitfully done considering the
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nature of the available data is not known. This makes it an
interesting and important area for studies in both life de-
tection and decision theory.
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