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Abstract

The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum
of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well
adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory
holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract
essential features in order to adjust their behavior. The key question, however, has been to understand how the neural
circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational
perception suggest that a neural population enhances information that is important for survival by minimizing the statistical
redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy
to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a
population code that maximizes the information across the neural ensemble. The emerging population code displays filter
tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the
compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively
similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings
suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual
cues are encoded by sensory systems.
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Introduction

In order to explain a biological information processing strategy,

one must understand how the stimuli is encoded and decoded

along the different neuronal pathways [1–4]. Adaptation repre-

sents one of the most important innate characteristics of the

nervous system. For example, visual and auditory sensory systems

adopt different mechanisms through evolutionary processes to

achieve the same general sparsity encoding strategy [5–8].

Curiously, the reflexive nervous system exhibits an astonishing

capacity in adjusting autonomic functions to a variety of internal

and external behavioral conditions. It is likely that the neural

processing of regulatory messages evolved to make the best use of

the incoming information to ensure autonomic function accuracy.

It remains unclear, however, whether the autonomic nervous

system shares guiding principles analogous to sensory systems. Due

to the dynamic nature of the cardiac system, one needs to frame

the problem in a dynamical system setting, exploring time for the

computation.

In the cardiac system, adaptation of the heart rhythm is

mediated by the neuroregulatory messages sent by the autono-

mous nervous system. Physiologically, the electrical stimuli

arriving in the heart from reflexive pathways are expressed by

beat-to-beat variations assumed to reflect the interplay between

the sympathetic and the parasympathetic activities [9]. Under

normal conditions, the cardiac rhythm depends on the mutual

entrainment of pacemaker cells in the sinoatrial (SA) node. At the

system’s level, pacemaker cells synchronize their intrinsic frequen-

cy on the neuroregulatory stimuli to which they are exposed [10].

If the heart processes neuroregulatory messages based on

biological constraints, one would expect a strategy to adapt the

information flow to maintain a proper regulation of the cardiac

rhythm.

In a dynamical setting, the simplest way to represent a complex

system is to describe its input-output mapping by a filter using a

reduced mathematical descriptor called the transfer function.

Although the idea of filters in cardiac physiology control context

might seem far fetched, transfer functions have been largely

explored to study the behavior of cardiac autonomic function

[11,12]. Therefore a filter representation is useful to describe the

responses of the heart using a limited number of mathematical

descriptors.

According to experimental studies, the cardiac autonomic

signals are modulated into different ranges of frequency [13].

There is evidence that the heart translates sympathetic and vagal

stimuli compatible with low-pass filtering, differing on their corner

frequencies [11,12]. In the presence of noise and uncertainty, the

cardiac system adds robustness to the cardiac rhythm through

parallel built-in redundancies to avoid heart failure [14]. A bank of

filters optimized to recognize self-similar patterns seems an

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e20227



efficient manner to maintain the cardiac regulation because it

allows for independent regulation across the frequency spectrum.

The challenge is to come up with a generative model that provides

the characteristics of those filters just by observing the heart

rhythm itself. The current experimental analysis of autonomic

responses is able to derive the filtering proprieties of the heart.

However, the coding mechanisms of an intact cardiac system

remain unclear [15]. Despite the effort to describe the response

proprieties of sinoatrial (SA) node, the autonomic cardiac

regulation has not been fully understood. Previous studies are

often restricted to transfer function relationships, limiting these

analyses to the amplitude spectrum information.

A more principled alternative uses the statistical proprieties of

heartbeat intervals to model the cardiac neuroregulatory encoding

messages. Indeed, several authors [16–18] have argued that a

more complete model characterization of the heart beat dynamics

depends on the generative mechanism underlying the cardiac

rhythm. In a number of recent papers [16–18], neural and

hormonal variables (i.e., nonlinearities and nonstationarities) have

been probabilistically integrated into previous cardiac models,

showing that a heartbeat design system can, in part, successfully

estimate the cardiac rhythm using these parameters. Whilst these

models have greatly advanced our capacity of predict cardiac

dynamics, they do not explain the strategy underlying the

transformation of neuroregulatory commands into the cardiac

rhythm.

A longstanding computational hypothesis in perception suggests

that specialized neurons reduce the redundancy of messages that

are frequently happening [19,20], efficiently coding information

under band limited conditions [21]. This hypothesis postulates that

neurons are similar to a large set of encoders statistically

independent of each other [22]. Specifically, efficient codes

learned from natural images and sounds helped to clarify the

functional organization and topological structure of early visual

and acoustic sensory stages, respectively [5,6]. This approach

provided evidence that early neural sensory processing is strongly

biased towards the behavioral importance of the stimuli [23]. This

reasoning also suggests that olfactory neurons obey the same

general principles [7]. But, can similar ideas be applied to uncover

the neural processing of non-sensory systems, such as the cardiac

system?

Herein we use a theoretical framework to investigate whether

the SA node in the heart encodes neuroregulatory messages with a

strategy similar to sensory systems, but of course adapted to the

dynamical nature of cardiac rhythms. Using independent

component analysis (ICA) with new assumptions plausible for

the heart physiology, we maximize the (non-Gaussian) information

in the heartbeat intervals derived from normal sinus rhythm in

healthy volunteers. The filter properties emerging from the

population code suggest that the efficient coding hypothesis is

not limited to sensory systems as it was first assumed [20]. Rather,

our analysis lends support to the idea that redundancy reduction

represents a underlying strategy for functional self-organization in

biological systems.

The Relevance of Efficient Coding in Heartbeat Intervals
The concept of an efficient code [20] implicitly means that

message encoding or transmission of information in a system must

approach theoretical limits [24]. When this concept was first

applied to computational perception by Attneave and Barlow

[19,20], one drawback was the stimulus neutrality with respect to

efficient coding [23]. Thus, an important step in estimating

efficient codes is to infer which stimuli convey more information to

the system. Follow up research [23,25] has shown that sensory

neurons in visual or auditory cortices have preference for

naturalistic signals over white-noise sources. It implies that the

efficiency of the code varies from stimuli to stimuli, depending on

their behavioral relevance.

In the case of the heart, this reasoning implies that reflexive

stimuli are likely to cause the most efficient codes, which is a

hypothesis that in principle can be experimentally verified in the

laboratory. Yet, the cardiac system response is very likely altered

with the current invasive procedures required to acquire such

stimuli. Alternatively, it is possible to estimate a population code

based on efficient coding theory using heartbeat intervals.

Heartbeat intervals are signals derived from electrocardiograms

that accounts for the neuroautonomic fluctuations in the heart

[26]. They are obtained from the temporal difference of

consecutive R-peak waves. Their temporal structure is composed

of repetitive responses originated in the SA node and modulated

by sympathetic and parasympathetic stimuli within the limited

dynamic range of the heart.

According to previous work [27], heartbeat intervals are

encoded in the spontaneous discharge of thalamic somatosensory

neurons. Short-term spectral analysis of heartbeat intervals are

divided in three frequency bands located at very-low (VLF) (0.00–

0.03 Hz), low (LF) (0.03–0.15 Hz), and high (HF) (0.15–0.5 Hz)

frequencies [9]. Several authors [28] have associated the LF band

with sympathetic and parasympathetic effects due to situations in

which both autonomic tones drive similar responses. For instance,

heart rate variability at rest virtually disappears with vagal

blockade, suggesting that low frequency variability might be

related to both sympathetic and parasympathetic effects. However,

in nearly all of the physiological conditions, the activation of one

autonomic tone is likely to result in an inhibition of the other

[26,29–31]. The HF band has been associated to vagal tones and

with respiratory sinus rhythm (SNA) synchronization. The VLF

band is harder to estimate accurately since it requires very long

windows for good estimation according to the time frequency

uncertainty relation. This suggests that the heart possesses different

decoding mechanisms. If so, what sorts of features are likely to

emerge from a set of filters optimized to decode neuroregulatory

messages using an efficient coding framework?

Results

The Model
Our generative model of the autonomic cardiac regulation

(Fig. 1) assumes that the heart efficiently transforms an array of M
neuroregulatory impulsive messages st,st{1, . . . ,st{M occurring at

unknown times into cardiac dynamic responses rt,rt{1, . . . ,rt{M

using a set of switching linear decoding filters w1
t , . . . ,wM

t of order

NvM, i.e. r
j
t{t~

XN{1

i~0
st{twj

t{i, t~1, . . . ,M which pro-

duce the observable heart’s autonomic response through an

additive operation r~
XM

j~1
r

j
T{t, t~1, . . . ,M.

According to this model, the goal of cardiac neural processing

can be described as a way to maintain an optimal representation of

the neuroregulatory information, even in presence of noise or

redundancy. Note, however, that the uncertainty caused by the

noise plays a fundamental role in determining which information

should be encoded or removed, even deciding if redundancy

should be at all used [2,32,33]. The aim is to maximize the

information embedded in the cardiac responses reducing the

redundant neurocontrol signals that may arrive.

In this efficient design, a set of encoding filters can be estimated

through an iterative process of optimization that has been called

independent component analysis (ICA) [34]. This method [35]

searches for features-like filters (or basis functions) that transform
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an observed dataset into a set of elements, whose components are

considered independent. Therefore the neuroregulatory compo-

nents and the filter coefficients can be recoverable from the system

output, i.e. after the sum. Or equivalently, a message st{p in an

observation window of size N is efficiently encoded (in the sense

described below) by a filter h
p
t as

st{p~
XN{1

i~0

rt{ih
p
i , ð1Þ

where h
p
t corresponds to the inverse of wp

t .

In order to conduct this analysis, a set of hypothesis is necessary.

We assume that the neuroregulatory messages are impulsive, i.e.

they exist at a time scale of milliseconds (action potentials), while the

filters’ responses exist at the time scale of tens of seconds. Because of

the fast on-off nature of the neuroregulatory messages compared

with the filter responses, we assume that they can be modelled as a

point process of non-overlapping Dirac delta functions during the

observation window, making them statistical independent. There-

fore, the filter responses can be considered impulse responses and

are independent because they are the convolution of the point

process with unknown filters. The goal of the analysis is to find the

unknown filter coefficients by observing several windows of length

M samples of the heart’s autonomic response r represented by

heartbeat intervals. Herein, we selected heartbeat interval windows

composed of M~256 samples obtained from a set of normal sinus

rhythm volunteers (see methods), to estimate with ICA the filter

coefficients and the occurrence of the neuroregulatory activity.

Although it is possible to derive codes with smaller windows size, this

number of samples was chosen to provide sufficient information

about the interactions underlying the autonomic cardiac regulation.

Longer windows may invalidate the assumption of statistical

independence required for the ICA decomposition because each

filter may be excited by more than one neuroregulatory message.

Decoding Population
The decoding filters emerging from the statistical structures

underlying the heartbeat intervals show (Fig. 2A) a wide variety of

impulse response shapes. The vast majority are time localized,

meaning that the analysis window was able to capture the timescale

where the statistical regularities of the heartbeat intervals occurred.

Despite the observed diversity of sinusoidal oscillations and

amplitude envelopes of the filters, the population code has a distinct

time-frequency organization (Fig. 3). This organization was not

clear from the individual analysis of each filter, neither in frequency

nor time, but became visible when the entire decoding population

was distributed in the joint time and frequency plane (Fig. 2B).

Moreover, a striking resemblance with the frequency band division

of short-term heartbeat intervals emerges. This result is expected,

since the encoding filters tend to match the statistical structures

underlying the variations of the autonomic cardiac activity.

However, nowhere in the algorithm was this structure programmed,

i.e. it emerged from the data and the ICA methodology.

Principal component analysis (PCA) is an alternative way to

quantify an encoding population. The idea is that the space of

responses of an observed system could be replaced by a reduced

space of decorrelated and orthogonal functions given by PCA.

This fact has lead several authors to attempt to form an optimal

representation of an observed signal using PCA functions. The

problem is that PCA is strictly a second order decomposition

(assumes a Gaussian distribution for the generative model, which is

unlikely to be found in biological or natural signals) unable to

distinguish between uncorrelatedness and independence. For

instance, decoding filters obtained from the same heartbeat

ensemble differ appreciably from the ones optimized by ICA.

They do not self-organize to explain the modulatory properties of

the autonomic system, e.g., sympathetic and vagal tones.

Still, can the decoding filters learned by ICA be a result of

misestimating the modulatory frequency contributions underlying

sympathetic and vagal activity? This is a difficult question to answer

in general, but to evaluate the method we created a synthetic dataset

composed of sparse structures drawn from a temporal series that

was sub-band modulated by a set of bandpass filters. Each filter has

the bandwidth constraint to 0.05 Hz, but displaced to cover a

frequency range varying from 0.01 until 0.5 Hz. The decoding

population emerging from this dataset using ICA have temporal

structures that are similar to bandpass-filters (Fig. 4A). They have

an average bandwidth centered around 0.05 Hz (Fig. 4B and 4C).

This result supports the accuracy of the estimated decoding

population, because the bandwidth of the predicted decoding

population matches the design of the bank of filters.

Time and Frequency Trade-off within the Decoding
Population

If the cardiac rhythm accuracy depends on the capacity of the

heart to decode sympathetic and parasympathetic stimuli, it should

Figure 1. Proposed theoretical model of autonomic cardiac regulation. The cardiac response r is modulated by autonomic functions
stimulating the heart with stimuli of intensity st evoking a response that is represented by the output of a set of M filters wM

t .
doi:10.1371/journal.pone.0020227.g001
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be possible to correlate the time and the frequency distribution of

the decoding filters to the cardiac responses. According to previous

studies [6,36,37], the filtering properties of the auditory system can

be characterized using the ratio of center frequency over bandwidth

of a population code, called the Q factor. In the cardiac case, we

conducted a clustering analysis of the filters’ quality factors. We

selected the Gaussian Mean Shift (GMS) method because it does not

require the selection of the number of clusters, once the kernel

bandwidth is chosen from the data (see methods). As shown in

Fig. 5, we found three different clusters of Q factors that span the

0.01 to 0.5 Hz band, dividing it in regions distinct from the

traditional VLF, LF and HF bands. The analysis of the joint

decoding population shows that the bandwidth of the filters for VLF

and LF increases almost linearly with the center frequency, i.e. a

constant Q filter bank that preserves the time resolution (Fig. 6A).

For HF, the bandwidth is nearly constant for center frequencies

ranging from 0.14 to 0.29 Hz, favoring spectral resolution instead of

time resolution. And, it increases gradually with the steepest slope

between center frequencies located at 0.29 and 0.5 Hz, again

preserving the time resolution (see Fig. 6A). These results suggest

Figure 2. Population code optimized through heartbeat intervals derived from normal sinus rhythm volunteers. Each waveform was
adapted upon a time window composed of 256 beat-intervals. (A) From a total number of 256, the plot illustrates a typical set of decoding filters
organized from the highest to the lowest center frequency. Although the self-organization of the decoding population is not homogenous, it shows
three different patterns. (B) Joint time-frequency plane representing the overlap of 245 contour plots. In this time-frequency tilling-like pattern
representation, each ‘‘tile’’ was obtained from the amplitude envelope and spectral power of the optimized filters at 95% of the energy peak.
doi:10.1371/journal.pone.0020227.g002

Figure 3. Spectral analysis of the decoding filters. ( left) Temporal representation of filters followed by the ( right) normalized power spectral
whose center frequencies are (A) 0.05 Hz, (B) 0.24 Hz, and (C) 0.33 Hz. Their waveforms remarkably resemble bandpass filters.
doi:10.1371/journal.pone.0020227.g003
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that sympathetic and vagal decoding in the heart are compatible

with scale base decompositions such as the wavelet and multirate

Fourier transforms. But, why did the heart evolve to use multiscale

transform properties to decode sympathetic and vagal contributions

in this way? One argument to explain the decoding filter

characteristics is the fundamental compromise, captured in the

Gabor uncertainty relation [38], between time and frequency

resolution. For example, a filter with high-frequency selectivity has a

poor time resolution, and vice-versa. Choosing between low- and

high-frequency selectivity impinges severe limitations between fast

and slow autonomic cardiac regulation and it is one of the obstacles

to proper processing in biological systems that are subject to real

time response requirements [39–41]. Moreover, a fast cardiac

response tends to cause a broadening of the filter bandwidth,

decreasing the capacity of the system to filter environmental noise at

the cost of selectivity. This behavior can be observed by analyzing

the quality factor or sharpness of the filters through dividing the

center frequency by bandwidth. The ICA decomposition also shows

(Fig. 6B) that HF have a lower susceptibility to unwanted artifacts

than VLF and LF, specifically around 0.14 to 0.29 Hz, where the

respiratory sinus arrhythmia (RSA) synchronization is located [42].

This result is consistent with the fact that a sympathetic contribution

increases the cardiac rhythm, whereas vagal activity behaves in an

opposite way. It is also directly related to the system time response

(damping ratio), which is represented by the inverse of the quality

factor value multiplied by two. A high-damping ratio means a fast

cardiac activity in contrast to low-damping ratio (Fig. 6C).

Furthermore, filters with broad envelopes are likely to be optimized

to process sinusoidal waveforms. Thus, the analysis of the filter

envelope patterns suggests that the RSA frequency contributions are

happening more frequently. The frequency region where the

envelopes have higher values are concentrated between 0.14 and

0.29 Hz (Fig. 6D), which is consistent with experimental studies

that characterize the respiratory components influencing autonomic

cardiac regulation [43].

As a first approximation, the emerged decoding filters can be

modelled by Gabor functions expressed as a Gaussian envelope

modulated by a sinusoidal signal as (Fig. 7)

g(t)~e{p(
t{t0

s ) cos (w(t{t0)zc), ð2Þ

where the Gabor parameters are defined elsewhere [44]. The

matching [45] between the decoding filters and the g(t) yield a

high correlation index (0:81+0:8; mean + SD, n~245) with

slightly differences on their filter parameters.

Again, note that no assumption about the filter type, the low/

high frequency scaling ratio nor the division into frequency bands

are included in our approach. The ICA procedure naturally finds

the filters that better adapts to the statistical structure in the

heartbeat dataset. If each filter has a preferred frequency range

that corresponds to a cardiac response, combining these

frequencies would probably result in different cardiac rhythms.

Thus, this methodology is appropriate to speculate whether or not

sympathetic and parasympathetic contributions are statistically

independent. A separate identification of vagal and sympathetic

influences could explain why vagal and sympathetic influences are

sometimes driven in the same direction.

Model Response Compared to Physiological
Measurements

Despite the well-known sympathovagal balance, one of the

inherent properties of heartbeat intervals is that the amplitude

spectrum of beat-to-beat variations decays according to the 1=f
power law [46]. If the average power spectrum of the filter bank

decreases linearly with frequency (Fig. 8A), one can expect that

the decoding filters modulate its input signal to have a 1=f b falloff.

Thus, could the decoding population itself give rise to long-range

correlations close to the ones reported in physiological studies?

One way to verify this is to convolve a temporal series drawn from

a spectrally white random distribution with the decoding filters.

After 50 repetitions, the average response of the decoding filters

(Fig. 8B) to a Gaussian white noise yields a slope b that varies

from 1:109 to 1:591 (1:42+0:10, n~50). The variability at the

low end of the spectrum is expected because of the limited

duration of the analysis window (256 samples) that precludes good

estimation of the filters at the low end of the spectrum, again due

to Gabor’s uncertainty relation.

To establish if the estimated filters are indeed a representational

form of cardiac population code, one must show that the

optimized filters decode an incoming signal similarly to the SA

node. Thus, we carried out a comparison based on the responses

of the SA node and the decoding filters to a uniform stimulus

varying in time. The problem is that, at the moment, is very hard

to predict which decoding filter evokes the most similar response to

the SA node. One form to circumvent this problem is to find a set

of M filters that minimizes the error e(t) between the responses of

the sinoatrial node r(t) and the decoding filter wp(t) to any given

stimuli s tð Þ according to [47],

Figure 4. Bias test. (A) Partial representation of a population code composed of (decoding) waveforms learned from ICA using a sparse dataset
results in bandpass-like filters. The dataset was drawn from a sub-band modulated signal ensemble constrained to have a 0.05 Hz bandwidth. (B) The
center frequency Vs. bandwidth pattern derived from the population code composed of 128 filters illustrates that the learned decoding population
have bandwidth centered around 0.05 Hz. (C) Joint time and frequency plane of the decoding population (see Fig. 2 for details).
doi:10.1371/journal.pone.0020227.g004
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Figure 5. Non-supervised frequency band division. Cluster analysis of the filter center frequency in hertz (horizontal axis) versus the filter
bandwidth in hertz for the population code. Each color (blue, red, and black) corresponds to a different cluster (see methods).
doi:10.1371/journal.pone.0020227.g005

Figure 6. Analysis of the filter behavior. Filter characteristics of the population code (red circle) and its best match with the Gabor function (gray
circle) according to Eq. 2. The bandwidth (A) was quantified at -3 dB of the power spectrum maximum amplitude. The quality factor or sharpness (B)
represents the ratio between the center frequency and bandwidth of the filters. The damping ratio (C) is a measure based on the quality factor and
shows that the filters characteristics have underdamped (v1) proprieties. The width of each filter temporal envelope (D) was measured at 3 dB below
the peak of the energy power using the Hilbert transform.
doi:10.1371/journal.pone.0020227.g006

Coding and Decoding of Heartbeat Intervals
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e2 tð Þ~ r tð Þ{
XM
p~1

XN{1

t~0

aps tð Þwp t{tð Þ
" #2

~ r tð Þ{r̂r tð Þ½ �2, ð3Þ

where r̂r tð Þ represents the estimated filter response and a a scaling

factor (see methods). We have to include the search for the best

scaling factor because the ICA decomposition is blind to scaling.

Using a dataset derived from rabbits in a time window N (see

methods), the decoding population overall response is smoother

then the observed cardiac output. The estimated responses, for both

sympathetic (Fig. 9A) and vagal (Fig. 9B) stimulation follow the

expected heart response, but lack the fast oscillations. We also

quantify the reliability of the decoding response by measuring the

relationship between the cardiac response and the estimated

noise e tð Þ in (3) using the signal-to-noise ratio, SNR(dB) ~
10 log10 var r(t)½ �=var e(t)½ �, by sliding a time-window length of 270

seconds over 24 heart rate intervals. The SNR varies from 8:67 to

14:05 dB ( Fig. 10), which correspond to approximately 92:96 and

96:95 percent of accuracy in psychophysics [48] (see methods).

Discussion

The statistical encoding and decoding of information in the

perceptual system has drawn a lot of attention in recent years [1–

3,7]. In the visual system, the ICA methodology is applied to learn

efficient codes from natural images and yields spatial filters

[4,8,49]. In the auditory system, the ICA methodology is used to

derive an optimal code for natural sounds in an analysis window

(analogous to our work) and provides an explanation to the time

and frequency properties of the auditory nerve responses [6]. Our

results are relevant to the study of neural information processing

systems because they present for the first time an efficient coding

principle beyond sensory systems. The ICA methodology is

applied to describe functional optimization in the autonomic

cardiac response, which is plausible due to the difference in time

scales between the neural action potentials and the slow response

of the heart muscle. This enables the estimation of filters impulse

responses in a linear independent mixture of time filters. The

reason we are able to estimate the filters impulse responses in the

generative model is due to the assumption that the neuroregula-

tory messages are sparse (i.e. zero/one signals) modelled

Figure 7. Similarities between the decoding filters (green) and Gabor functions (blue). (A) Temporal structure. (B) Power spectrum
distribution.
doi:10.1371/journal.pone.0020227.g007

Figure 8. Power law analysis. (A) Power spectrum of the averaged set of decoding population code. (Black) Very-low, (red) low, and (blue) high
frequency bands. (B) Binned log-log plot of the filter response (245 filters) to a Gaussian white noise. The straight line represents the power decay
with slope b~1:26.
doi:10.1371/journal.pone.0020227.g008

Coding and Decoding of Heartbeat Intervals
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Figure 9. Comparing cardiac response (black line) with filter response (magenta line). The responses are shown in units representing the
standard deviation. (A) The sympathetic system response to a stimulus intensity chosen from a continuous signal that was drawn randomly from a
Gaussian distribution in contrast to a decoding filter response (SNR = 14.05 dB). (B) The corresponding vagal nerve (PNS) response and its estimated
response using a decoding filter (SNR = 12.62 dB). Besides the fast oscillations, the decoding filters yielded a response the tracks fairly well the
observed (physiological) cardiac response.
doi:10.1371/journal.pone.0020227.g009

Figure 10. Signal-to-noise ratio between (physiological) cardiac and filter responses for six different time varying stimulus.
Response to sympathetic stimulus (X) and response to vagal stimulus (e).
doi:10.1371/journal.pone.0020227.g010
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mathematically as delta functions, which makes the filter impulse

responses statistical independent (if the delta functions do not

overlap in time). Therefore, we venture to say that the information

theoretic principle of redundancy reduction seems to be

appropriate to explain self-organized functional optimization in

multiple organs and that an effort should be made to create

synergisms between this multidisciplinary knowledge. For instance,

if we hypothesize that the nervous system is adjusted to account for

the statistical proprieties of the environment in which it is exposed,

the efficient coding hypothesis [19,20] can be extended to the

cardiac system whose function is also largely dependent upon the

input stimuli. Accordingly, a specialized cell is likely to behave as a

feature detector (e.g., a filter) if it only responds to very distinct

stimulus [50]. Contextually, cardiac pacemaker cells have been

described as a large network of oscillators with different intrinsic

frequencies that synchronize (phase-lock) and fire together (beat)

[51]. Remarkably, a number of reports [11,12] raised evidence

that the sinoatrial node regulation varies according to specific

sympathetic and vagal frequency stimuli. Theoretical studies, on

the other hand, have shown that the behavior of heartbeat

intervals could be scaled using wavelet-like filters (Gaussian

derivatives), but the authors could not explain the basis to the

robust temporal structure underlying the cardiac rhythm [52]. We

submit that the efficient coding hypothesis explains this robustness.

As another example, it is known that cardiac pacemaker cells

synchronize their intrinsic frequency to drive the heart rhythm

within a limited number of cardiac response levels, but the

mechanisms are unclear. Analogous rules can be found in large

monopolar cells in the fly’s compound eye where receptive fields

are known to be created by lateral inhibition [53]. This analogy

suggests that the heart may also exploit lateral inhibition to reduce

the variability of the responses to certain levels, which can be

obtained by minimizing the correlations that probably exist

between autonomic stimuli arriving from different pathways

similarly to redundant stimuli arriving at sensory neurons.

From the ICA model we conclude that the cardiac system

seems to have evolved and be adapted to an unpredictable

environment of stimuli [54]. Furthermore, if the decoding filter

shapes are adapted to the statistical structure underlying the

heartbeat intervals, then one can advance a hypothesis about how

the population code in the heart decodes neuroregulatory

messages and how their organization can be interpreted in terms

of time and frequency selectivity. Our results show that the

quality factor varies according to the center frequency of the

decoding filters. It suggests that the heart has a mechanism to

alter the filter sharpness to regulate the cardiac rhythm. These

variations are consistent with the standard frequency band

division proposed to analyze the autonomic cardiac fluctuations

[9]. Anatomically, the entrainment of the pacemaker cells have

some similarities to the injection locking in lasers [39,55]. It can

be interpreted as a mechanism to reduce the noise and amplify

the salience of neuroregulatory stimuli, promoting a faithful

decoding of the regulatory signal. Our results also shows that

VLF and LF decoding filters are likely to process signals with high

temporal resolution, which in turn cause susceptibility to noise

due to the low quality factor. On the contrary, HF filters have

high-frequency selectivity and are more immune to noise. Such

time and frequency selectivity agrees with the idea that the

responses of the cardiac rhythm are enhanced by noise [56,57].

This versatility of responses seems to be a reliable option to adjust

the cardiac regulation against life threatening conditions, but only

when fast cardiac responses are essential for survival. Altogether,

these results corroborate the view that the cardiac system is

optimized to use the regulatory information in a proper manner

to maintain the accuracy of the heartbeat. That is, without

introducing redundancy, and preserving energy [58].

A common abstraction in computational perception is the

analogy of natural images with edges, where an edge can be

represented by a superposition of Gabor-like functions [5,59]. In

an analogous manner, gammatone filters are the corresponding

optimal decoders for natural sounds [6,37,59]. We have found that

the closest equivalent to an optimal decoder for heartbeat intervals

is the Gabor wavelet-like function. In theory, if a signal power is

equally divided among a set of filters whose organization has a

wavelet-like time and frequency resolution, the linear filter bank

organization can be adjusted to have the same amount of

information at each filter output (channel) resulting in a

X fð Þ~1=f distribution [60,61]. We have experimentally shown

that integrating the decoding filter responses to a flat log-log power

resemble an amplitude spectrum that decays with a 1=f
distribution (b~1:26, as shown in Fig. 8B) for frequencies above

0.005 Hz. This experiment lends support, rather than rules out the

hypothesis that heartbeat intervals amplitude spectrum is modu-

lated by a set of filters processing neuroregulatory information.

Recall that no attempt was made to select any of the filters to

approach the spectral proprieties of heartbeat intervals. This is

controlled by the statistics of the data and our selection of the

observation interval. The observation interval imposes a limit not

only on the maximum number of filters, but also in the maximum

length of their impulse response. The accuracy of the filters’

impulse response at lower frequencies is compromised by the

analysis window (whose size may be truncating their impulse

responses), which corroborates our results in Fig. 8B. The

frequency resolution for our methodology is estimated to be

0.003 Hz. However, longer observation windows may challenge

the independence requirement that is the basis of our ICA

methodology. It should be interesting to test whether a careful

selection of the filters to avoid truncation of impulse responses due

to impulses too close to the boundary and window size could result

in a more realistic scaling exponents as those observed in healthy

subjects (b~1). Physiologically, the scale-invariance of the

heartbeat intervals should be interpreted as a mechanism that

adapts the statistical structure of the input signal to the preferred

structure of the encoding mechanisms, just like in the somatosen-

sory neurons [1,62,63].

Compared to the present paper, earlier experimental studies

[11,12,64–66] have been able to map the autonomic functions

attached to the cardiac system using input-output relationships.

Specifically, they characterize the cardiac responses to either

invasive vagal or sympathetic stimuli within a reduced dynamic

range. However, it is debatable if they reflect natural cardiac states

because specialized circulatory mechanisms and feedback systems

are often sectioned off to avoid the influence of components other

than sympathetic and vagal contributions. Moreover, the transfer

analysis based on both sympathetic and vagal stimuli is still

challenging due to several unknown factors [11,65].

In contrast, our work uses directly the statistical structure that

can be predicted from the heartbeat intervals to access the

autonomic regulation. Clearly, one of the advantages of our work

lies on allowing an analysis of autonomic interactions without

disturbing the physiology. Indeed, it is remarkable that reducing

the redundancy in heartbeat intervals yields features whose

characteristics explain several aspects of the cardiac behavior.

Nevertheless, the limitations of our noninvasive and computation-

ally simple model are also worthwhile to be described. First, the

modeling is functional (generative model) and does not point

directly to the physiology. Second, the model lacks feedback

connections known to exist from lower to high order processing
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stages to mediate the control of the cardiac dynamic range. Note

that although feed-forward arrangements play an important role

to describe cardiac rhythms (such as baroreflex mechanisms and

circadian variations), they don’t give any information about how

the cardiac circuitry self-organize to provide heartbeat control.

Third, our analysis is limited to healthy volunteers and does not

account for pathophysiological changes. Fourth, even though our

results provide an elegant connection between the statistics of

heartbeat intervals and the neuronal processing in the heart, the

ICA model cannot capture all dynamic patterns. Among them, the

magnitude of the transfer function and the shape of the phase

curves. Nor can it determine the effect of the interaction between

sympathetic and vagal stimulation. Including these characteristics

into a cardiac system design could probably increase the accuracy

and improve the robustness of the model. Therefore understand-

ing the computational aspects underlying these characteristics is an

important step for further research in this area.

The relationship between the known cardiac dynamics and the

model hypothesis should be closely analyzed. For instance, previous

research on cardiac dynamics has shown that the sympathovagal

interactions regulating heart rate display nonlinear behavior [12].

At the surface, the concept of linear filters assumed in our generative

model may appear inconsistent with the cardiac dynamics.

However, this is not the case because in our model the linear filters

switch in time, producing an aggregate response that is compatible

with a global nonlinear filter [67] (i.e. the mixture of experts

implements exactly a similar methodology). Accordingly, if the

nonlinear coding behavior is likely to happen in high-order neural

processing connected to the extraction of complex features [68], the

filters could also represent some dynamics at higher autonomic

levels. It is interesting to note that in our model the switching is

actually controlled by the input, so there is no need for a gating

network as in the mixture model. But further development of the

heart ICA model may complement this gating by feedback from the

output, which may bring the feedback loops that are known to exist

in the heart from lower to high order processing stages to mediate

the control of the cardiac dynamic range. In order to derive our

model, we have assumed that short time heartbeat intervals are

stationary. But once the filters are learned from the data the overall

model can still be applied to long term studies, because the filters are

totally controlled by the input stimuli that can vary over longer time

scales. This is similar to Gabor wavelets transforms, which are

appropriate to unveil dynamic proprieties concealed by non-

stationarity [52]. We have also found compelling evidence that the

joint response of the filters can approximate the response of the

cardiac system. By directly comparing the similarity between the

response of the decoding filters and the cardiac system, we aim to

directly test whether or not the decoding filters are able to predict

the cardiac response. We assume that this process has the same

quantitative value as comparing the predicted filter proprieties to

the ones estimated physiologically [5,6,36].

Cardiac dynamics may vary according to specific physiological

functions (such as the thermoregulation and the respiratory rate of

each species); therefore, the parameters attributed to heartbeat

oscillations could happen at different frequencies when compared to

the human physiology. Indeed it has been reported that the high

frequency band of rabbits is localized at higher frequencies than

humans, whereas very-low and low frequency band limits remain

unaltered [69]. Although we have learned the filters from heartbeat

intervals derived from humans, the filters were able to yield a

response that matches the cardiac response of physiological data

obtained from rabbits. Of note, however, the learned filters span

their frequency range, so that it covers frequencies up to 0.5 Hz

(healthy volunteers). Therefore, the model cannot discern the faster

frequencies (w 0.5 Hz) that are expected to exist in the

physiological measurements obtained from rabbits. Moreover, the

objective of the generative model is to evidence properties of the

generation mechanisms underlying the heart beat variations, rather

than focusing on particular hemodynamic parameters or searching

for a specific transformation. This is consistent with filters learned

from neural networks optimized to code natural images or natural

sounds, whose characteristics resemble the response proprieties of

the cells found into the receptive fields in V1 and inner ear [5,6].

From an anatomical point of view, we suspect that the filters

may be located at the SA node, which is the pacemaker structure

of the heart. It has been reported that the size of the pacemaker

cells localized at the SA node gradually increase from the center to

periphery [70]. Where, the cell capacitance (which is proportional

to the size of each cell) had a significant correlation with the

pacemaker cycle length, meaning that each cell would be tuned to

a given frequency, similarly to a band-pass filter that integrates

specific information.

Our analysis offers a hypothesis to explain the strategy used by

the heart to regulate the cardiac rhythm. That is, by learning a

reduced number of mathematical descriptors (filters) according to

the efficient coding paradigm, we are able to describe operational

point changes of the cardiac regulation that could result in a wide

variety of heart rhythms. The challenge, however, is to design

computational models that could use the combined filter response

to raise insights about the sympathovagal interactions. Advanced

models could even be used to simulate several other aspects of the

autonomic regulation, such as cardiac gain control and masking

effects (inhibitory and excitatory). In more general terms, the

fundamental aspects of our study might be appropriate to analyze

other neural circuits such as the regulation of glands and smooth

muscles, where sympathovagal interactions aim to establish a

dynamic equilibrium; and the respiratory control system in which

self-tuning adaptive regulation is essential to maintain homeostasis.

In conclusion, it seems that efficient coding theory may represent a

much broader principle to explain how biological systems process

information than its initial application to sensory systems [20].

Methods

The Generative Model
Let us consider a bank of M linear FIR filters with impulse

response w1
t , . . . ,wM

t of unknown coefficients and arbitrary length,

where the longest filter has a duration NvM. Each filter is excited

by a realization of a point process (single delta function

st{t~1, t~1, . . . ,M and 0 everywhere else in the interval

½0,M�) of unknown arrival time t in the interval ½0,M� and

unknown amplitude. The impulse response of the j-th filter is

denoted r
j
t and given by

r
j
t{t~

XN{1

i~0

st{twj
t{i, t~1, . . . ,M: ð4Þ

For simplicity, the convolution sum can be extended to M.

Neither the excitation nor the filter outputs are observable. The

measurable quantity is

r~
XM
j~1

r
j
t{t, t~1, . . . ,M: ð5Þ
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The signal r is segmented into at least M windows of duration

M. We further assume that the M delta functions inputs to the

filter bank do not overlap in time during each observation period

½0,M�, making them statistically independent. Therefore, the

impulse response of the filters in the filter bank are statistically

independent also (although they very likely will overlap in r). We

will also assume that r is locally stationary during ½0,M2�.
We claim that this generative model for r can be framed as an

instantaneous mixture of independent filters and that their impulse

responses can be estimated from r using established algorithms

from the field of independent component analysis (ICA). Using

matrix notation the ICA problem can be described as follows. The

ICA problem (addressed in this paper) focus on coding (by

maximizing information of) an observed random matrix

R~½w1
t , . . . ,wM

t �
T

S~wS, where R~½r1
t , . . . ,rd

t �
T

and rk
t ~

½r(1), . . . ,r(M)�. The matrix R is pre-whitened and has zero-

mean, and the matrix S represents a set of vector codes given by

latent variables that are statistically independent and non-

Gaussian. The matrix S can be obtained as a linear transformation

of R, such that S~½w1
t , . . . ,wM

t �
T

R~WR, where W~w{1. If

each vector code can be expressed as st~Wrt , then it is easy to

see that the rows of W yield finite impulse response (FIR) filters,

namely ht, and similarly the columns of w yield FIR filters wt [71].

Our hypotheses have the following implications for the cardiac

system. The neural messages impinging into the heart and the

filter responses specified by the heart muscle exist at two different

time scales: the neural messages occur at a much faster time scale

(few milliseconds); while the filters have frequency response in the

tenths of Hz, hence the time scale difference between impulses

responses and neural messages is at least two orders of magnitude.

Therefore, the assumption of delta functions excitation is

reasonable, which makes the interpretation of r
j
t as an impulse

response of the unknown filter appropriate. The action potential

shape and the sparsity of neural firings in time will also make the

assumption of 0=1, nonoverlapping excitation of the neural filters

reasonable.

The FastICA Algorithm
A detailed description of the FastICA algorithm have been

previously reported elsewhere [35]. Briefly, the coding matrix W is

obtained by a repetitive process of optimization. It uses an

approximation of the negentropy that maximizes the non-Gaussian-

ity of s through parallel one-unit iterations and symmetric

orthogonalization. In an elementwise operation it can be expressed

as [72]

W/U Wrð ÞrT{diag U
0

Wrð Þ1N

h i
W ð6Þ

W/(WWT)
{1

2
W ð7Þ

where U :ð Þ and U
0
:ð Þ correspond respectively to the first and

second derivative of a nonquadratic function herein represented

by log cosh (:). Moreover, the 1N stands for a unitary vector

N|1. After constraining the matrix W to unit norm, we test the

experiment using five different numbers of iterations to investigate

the accuracy of the results. That is, the adaptive process was

optimized through 103,2|103,5|103,7|103, and 104 iterations

each yielding its own W matrix. Across all trials, the matrix W
shows no qualitative differences. It is easy to see that the filters

(rows of W) are optimized in a specific way that their waveforms

do not depend upon any particular constrain. Their shape is

adapted to maximize the information contained on the statistical

structure of heartbeat intervals.

Cluster Analysis
The statistical data analysis of the filter proprerties (center

frequency and bandwidth) are assigned into subsets (clusters) using

an unsupervised method called Gaussian mean shift [73]. That is,

given a dataset fxngN
n~1 [ Rd , and defining a kernel density

estimate

p(x)~
1

N

XN

n~1

K(E x{xn

h E2

), ð8Þ

and assuming that g(x)~{K
0
(x), the previous equation can be

rearranged (+p(x)~0) into an iterative process, such that

m(x)~

PN
n~1 xng(E(x{xn)=hE2)PN

n
0
~1

g(E(x{x
0
n)=hE2)

{x, ð9Þ

is denominated mean shift scheme, which represents the difference

between the weighted mean and the x. Using a Gaussian kernel

g(x)~e{x=2, the mean-shift algorithm can be expressed according

to:

p(njx(t))~
exp ({

1

2
(jj(x(t){xn)=hjj2)

PN

n
0
~1

exp({
1

2
jj(x(t){x

n
0 )=hjj2)

,

x(tz1)~
XN

n~1

p(njx(t))xn: ð10Þ

The cluster bandwidth, h, was estimated using a K-nearest

neighbor algorithm with k~200. We selected the Gaussian mean-

shift algorithm because there is no need to select the number of

clusters, which is unknown in our case.

Datasets
Herein, we used two datasets: heartbeat intervals from normal

sinus rhythm and heart rate signals derived from Japanese rabbits.

(i) The heartbeat intervals database was used to estimate the

matrix. The heartbeat data is described in [74] and it is freely

available at http://www.physionet.org/physiobank/database/

nsr2db/. Shortly, they consist of records of heartbeat intervals

derived from 24 hours of ECG signals sampled at 128 Hz. They

were obtained from a total of 59 volunteers, each one of them

reporting normal sinus rhythm pattern. The volunteers were

composed of 30 men (varying from 28.5 to 76 years old) and 24

women (varying from 58 to 73 years old). These data were then

organized into 256-sample segments and filtered by an adaptive

process [75] to correct undesired artifacts, such as ectopic beats. It

resulted in a total of 22,685 non-overlapping segments that upon

whitening process were reduced to 256 segments yielding the

random vector. (ii) Alternatively, a heart rate database was used

to test the capacity of the decoding filters to obtain the cardiac

responses. It consists of cardiac responses to a time varying
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stimulus corresponding to band-limited Gaussian white noise.

They are composed of six signals whose input is a stimuli and the

output the heart rate sampled at 200 Hz and 10 minutes long.

Each signal was resampled at 1 Hz and segmented into intervals of

270 seconds, resulting in 24 segments corresponding to the cardiac

response to sympathetic and vagal stimulation. The details about

the surgical and experimental procedures where previously

described elsewhere [65]. And, they are briefly summarized in

the next subsections.

Surgery
All the following animal procedures are in agreement with

guiding principles of the Physiological Society of Japan. Herein

intravenous injections (2 ml/kg) containing urethan (250 mg/ml)

and a-chloralose (40 mg/ml) were used to anesthetize eight white

Japanese rabbits (2.3–3.3 Kg), while they were mechanically

ventilated using oxygen-enriched room air. During surgical

procedure and stimulation, additional anesthesia doses (0.5 ml/

kg) were injected, when necessary, to ensure a proper anesthesia

level. For the purpose of monitor aortic pressure, a catheter (via

femoral artery) was used. The effects of arterial baroreceptors

flexes were removed by bilaterally cutting the carotid sinus and

aortic depressor nerves using a midline cervical incision.

Moreover, feedback effects arriving from the cardiopulmonary

region were removed by sectioning the vagal nerved located at the

neck. For sympathetic and vagal nerve stimulation, bipolar

platinum electrodes were implanted: one pair at the stellate

ganglia (after midline thoracotomy and sectioning the sympathetic

nerves) and one pair at the cardiac end of the right vagal nerve. To

avoid desiccation and guarantee insulation, a mixture of paraffin

and white petroleum (Vaseline) was used to soak both nerves and

electrodes. After maintaining body temperature constant (370C,

using heating pad), cardiac recordings were obtained from a pair

of (stainless steel) electrodes (implanted in the right atrium)

connected to a cardiotachometer (model N4778, NEC Sanei,

Tokyo, Japan) to measure the instantaneous heart rate. The

cardiotachometer locate and mark the time positions of the

heartbeat events fujgJ
j~1 of the heart to compute the heart rate.

Defining a time series composed of j time differences between two

consecutive heartbeat events in seconds as rj~uj{uj{1w0 , the

(instantaneous indexes of) heart rate is expressed in beats/min as

r(t)~60=rj .

Stimulus and Data Recording
The nerve stimuli is comprised of a frequency-modulated signal

(frequency stimuli varies every second) drawn from a band-limited

Gaussian white noise, whose amplitude varies in time at each

2 ms. Both sympathetic and vagal power spectrum nerve stimuli

vary slightly until reaches 0.5 Hz and decays gradually to 1/10

around 0.8 Hz, reaching noise levels as it approaches 1 Hz. The

amplitude of sympathetic (1.8–3.8 V) and vagal (4.2–6.2 V) nerve

stimuli are, respectively, adjusted to yield a heart rate increase and

decrease around 50 beats/min (at frequency stimuli of 5 Hz).

Stimuli and yielded instantaneous heart rate response were

sampled and recorded at 200 samples per second with a 12-bit

resolution (NEC PC-98, Tokyo).

Decoding
To translate the filters learned from the human experiment to

the decoding methodology, we convolved a known continuous

signal (used in the physiological experiment with rabbits)

resampled at 1 Hz with interpolated filters at 1 Hz to estimate

the instantaneous heart rate [as described in (3)]. Because the

neural network (based on ICA) used to maximize information is

blind to scaling, a scaling factor [as shown in (3)] is introduced to

translate the response of the interpolated filters to heart rate

signals. That is, taking into account that the filters are expected to

span a set of independent basis, the scaling can be solved by

projecting the heart rate signal onto the response of the filters.

Time and Frequency Analysis
The joint time and frequency plane represents the overlapping

of contour plots. Each one estimated through a type II Cohen

Class using a spectrogram kernel [76] whose input is the Hilbert

transform of the decoding filters w(t). The Hilbert transform

H½w(t)� is represented by the imaginary part of the analytical signal

A½w�~w(t)ziy(t), where y(t)~H½w(t)�~ 1

p

ðz?

{?

w(t)

t{t
dt. The

envelope is then expressed as A(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2(t)zy(t)2

q
. Some of the

estimated filters are not well localized in frequency. Those filters

whose spectral power is not concentrated in one peak were

excluded. From the total of 256 filters, three in VLF and eight in

LF were omitted from the analysis.

Signal-to-noise and Accuracy
The percentage of reconstruction accuracy P½%� is measured

based on SNR in a psychophysics context as

P½%�~ 1

2
1zerf(

ffiffiffiffiffiffiffiffiffiffiffi
SNR

8

r
)

" #
, ð11Þ

where erf(:) represents the error function.
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