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crucial for optimal performance. Our results highlight the 
potential of using co-registered fine-grained kinematics and 
fMRI measures to interpret functional MRI activations and 
to potentially unmask the organisation of neural correlates 
during motor control.

Keywords  Motor control · fMRI · Kinematics · Neural 
networks · Error corrections · Upper limb

Introduction

During rhythmical movement, sensory and motor sys-
tems need to interact closely to sustain the rhythm and to 
meet task requirements. Understanding how our system 
controls such a basic, all day movement is a prerequisite 
to improve motor (re)learning models to ameliorate reha-
bilitation in case of neurological movement disorders, like 
stroke. Mathematically, the simplest way to model rhyth-
micity is by means of a continuous oscillator (e.g. Haken 
et al. 1985). Biological noise interfering with planning and 
execution makes human movements unavoidably variable, 
which asks for correction processes (Franklin and Wolp-
ert 2011). One of the principles governing human motor 
control states that optimised control is characterised by a 
maximum efficiency, e.g. minimal costs (Guigon et  al. 
2007). Minimal cost is dependent on the varying interac-
tion between different system characteristics, including 
anatomical constraints, force generating capacities, and 
biological noise inducing the intra and interpersonal vari-
ability that is inherent to our system’s output (van Galen 
and Hueygevoort 2000).

Current knowledge about the neural correlates of rhyth-
mical upper limb movement is based on standard finger 
and wrist movement paradigms that compare different 

Abstract  In rhythmical movement performance, our brain 
has to sustain movement while correcting for biological 
noise-induced variability. Here, we explored the functional 
anatomy of brain networks during voluntary rhythmical 
elbow flexion/extension using kinematic movement regres-
sors in fMRI analysis to verify the interest of method to 
address motor control in a neurological population. We 
found the expected systematic activation of the primary 
sensorimotor network that is suggested to generate the 
rhythmical movement. By adding the kinematic regressors 
to the model, we demonstrated the potential involvement 
of cerebellar–frontal circuits as a function of the irregu-
larity of the variability of the movement and the primary 
sensory cortex in relation to the trajectory length during 
task execution. We suggested that different functional brain 
networks were related to two different aspects of rhythmi-
cal performance: rhythmicity and error control. Concerning 
the latter, the partitioning between more automatic con-
trol involving cerebellar–frontal circuits versus less auto-
matic control involving the sensory cortex seemed thereby 
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movement conditions within people (high frequency ver-
sus low frequency, Kelso et al. 1998; rhythmic versus dis-
crete movements, Schaal et al. 2004). Using this paradigm, 
simple unilateral rhythmical movements have been shown 
to elicit contralateral activations of the primary sensori-
motor cortex (S1 + M1) and of the supplementary motor 
area (SMA), complemented by an ipsilateral activation 
of the anterior cerebellum (Allison et al. 2000; Ball et al. 
1999; Schaal et al. 2004). Bilateral movements are associ-
ated with a symmetric facilitation of neural activity in the 
sensorimotor network, with additional frontal activations 
to ensure coordination between limbs. It is mediated by 
increased intrahemispheric connectivity and enhanced tran-
scallosal coupling of SMA and M1 (Grefkes et  al. 2008; 
Jäncke et al. 2000).

The activation pattern is comparable between dominant 
and non-dominant sided movements in extension and inten-
sity when people move at their preferred frequency (Lutz 
et al. 2005; Jäncke et al. 2000; Koeneke et al. 2004). How-
ever, when movement frequency is imposed, activations 
during non-dominant sided movements increase in inten-
sity compared to those of the dominant side (Lutz et  al. 
2005). Second, activation increases and expands for both 
uni and bilateral movements when movement frequency 
is increased above the preferred frequency (e.g. Kelso 
et  al. 1998; Rao et  al. 1996). Together, this demonstrates 
that moving at a non-preferred frequency is marked by an 
increase in costs. Therefore, imposing a fixed frequency 
may lead to different task-induced cost levels between par-
ticipants and thus lead to biased results when comparing 
rhythmical motion and its neural correlates between people.

Over the time course of the movement, fine-grained 
kinematic variables capture the outcome of the interaction 
between the planned movement and the noise-dependent 
variability (Newell and Corcos 1993). Here, we explored 
whether kinematics may additionally provide information 
on the underlying control system, when the kinematic out-
come is linked directly to brain activity. We simultaneously 
recorded brain activation (fMRI) and movement kinemat-
ics during a sensorimotor task that consisted of a self-paced 
continuous flexion/extension of the elbow. We focused on 
uni as well as bilateral movements, as many daily living 
tasks involve bilateral coordination. The task is evaluated 
as a simple well-known movement that does not require 
complex motor learning.

Based on the described theoretical model of motor con-
trol, we hypothesised that rhythmic voluntary flexion of 
the elbow is modulated by neural networks involved in (1) 
the sustained execution of the basic oscillatory rhythmical 
component and (2) correction processes in reaction to the 
variability resulting from biological noise. Sustaining the 
movement in rhythmical motion has been shown to involve 
the primary sensorimotor network, whereas discrete 

movements solicit additional higher cortical planning areas 
(Schaal et al. 2004). First, we expected to confirm the role 
of the sensorimotor network by performing a standard 
general linear-model analysis. Second, because task costs 
were as much equalised over participants as possible, we 
expected that correlating natural variation in movement 
execution with variation in BOLD-activation might unmask 
different brain regions involved in the secondary correction 
processes that could be (partly) separated from the primary 
sensorimotor network.

Materials and methods

Participants

Thirteen healthy volunteers (age 44.8 ± 14.5, 7 male) par-
ticipated. All were right-handed (Edinburg Handedness 
Inventory, Oldfield 1971). The study protocol was regis-
tered as clinical trial (NCT01554449) and approved by the 
local ethics committee. The procedures complied with the 
ethical standards outlined by the Declaration of Helsinki. 
All participants gave written consent before inclusion. The 
study is part of a larger protocol focussing on rehabilitation 
of the upper limb early post-stroke (MARGAUT: 2010-
A00596-33). These volunteers are included in the control 
group of the MARGAUT study. Exclusion criteria were 
as follows: (1) age >18 years, (2) history of neurological, 
psychiatric or orthopaedic disease, (3) medical treatment 
impacting the nervous system, (4) substance use, and (5) 
contra-indications to MRI. One male participant had to be 
excluded due to fMRI artefacts.

Protocol

During the acquisition of functional MRI (fMRI) imag-
ing, participants performed a continuous flexion/exten-
sion movement of the elbow with the right upper limb, the 
left upper limb, and the two upper limbs synchronously 
(bilateral). Each movement condition (e.g. right, left, and 
bilateral) was performed during a separate fMRI acquisi-
tion. All three experimental fMRI acquisitions followed 
the same time course. The order of acquisitions was fixed: 
participants started with the right-sided condition, followed 
by the left sided and finished with the bilateral condition. 
Participants had to close their eyes to limit interference 
with eye movements and to increase concentration on task 
realisation. The atypical selection of movement, the fixed 
order of execution, and the closing of the eyes were based 
on a pilot evaluation with an early post-stroke group for 
the MARGAUT protocol. First, the rather proximal elbow 
flexion/extension was selected, because recovery of move-
ment post-stroke, generally, evolves from proximal to 
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distal (Langhorne et al. 2009). Second, the order was fixed 
because an important effect of fatigue was observed when 
post-stroke participants had to perform the movement twice 
consecutively with their paretic upper limb. And third, clos-
ing the eyes seemed to help post-stroke subjects to better 
concentrate on movement realisation. Together, this proto-
col may allow us to study the evolution of upper limb motor 
recovery in an early post-stroke population. We first, how-
ever, verified the interest of the method within a healthy 
population as described in this work. Keeping a fixed-order 
acquisition for the control group allowed us to evaluate a 
possible order effect that could influence results. To limit 
the task-dependent increased risk of head movements, the 
participants’ head was fixed using supportive foam-blocks. 
Exclusion criteria for head movements were set at 1.5 mm 
absolute pitch, roll or jaw displacement.

A 1.5  T whole-body MRI system (MAGNETON 
AVANTO, Siemens, Erlangen, Germany), equipped with 
a standard 12-channel receive-only head coil, was used. 
Sixty volumes of BOLD echo-planar image (EPI) were 
obtained for each fMRI acquisition. Each acquisition fol-
lowed a block-design of a three-times repeated sequence of 
ten ‘resting’ volumes alternated with ten ‘active’ (flexion/
extension movement of the elbow) volumes (TR = 3.56 s, 
TE =  50  ms, FOV =  230  mm, 36 axial slices extending 
from the vertex to lower parts of the cerebellum, slice 
gap  =  0.75  mm, voxel-size 3.59  ×  3.59  ×  3  mm3, flip 
angle  =  90°). The start of each block (duration 35.6  s) 
was announced by a rapid auditory stimulus (500  ms). 
A 3DT1 MPRAGE (TR/TE/TI 2100/4.1/1100ms, 15° 
flip angle, aligned with the corpus callosum, voxel-size 

0.98  ×  0.98  ×  1  mm, 176 transversal slices) was also 
obtained for each participant.

During rest-periods, the arms lay alongside the body 
with the forearm in neutral position between supination and 
pronation. The hands were clenched lightly in a fist. During 
movement-periods, the forearm and hand remained in this 
basic orientation while flexing and extending the elbow in 
a rhythmic manner, starting with the arm in the extended 
resting position. The maximum flexion amplitude was con-
strained by the MRI tube. Participants were free to select a 
comfortable amount of flexion within this boundary. Par-
ticipants practised the procedures in fMRI setting before 
onset. They were instructed to relax, to move nothing but 
the elbow joint, and especially to limit head movements. 
The performed movement was registered using a 1.5 T MRI 
compatible 3D motion capture system (Zebris®, CMS-20, 
Medical GmbH, Isny, Germany). A marker was placed on 
the head of the third proximal phalange of each hand. Data 
were low-pass filtered at 5 Hz with a zero-lag Butterworth 
filter. The Zebris® receiver was placed in front of the fMRI 
tube at the end of the scanner table (180 cm) (Fig. 1). The 
quality of the fMRI recordings, and the assumed compati-
bility between the Zebris® and the MAGNETON AVANTO 
1.5 T MRI, was evaluated before study onset. No interfer-
ence and artefacts on fMRI images were observed when the 
Zebris’s® sampling frequency was set at 20 Hz.

Kinematic preprocessing

Simple oscillatory movements typically present a smooth 
and bell-shaped velocity profile that is slightly variable 

Fig. 1   Schematic representa-
tion of experimental setup, 
with a plot of the right elbow 
movement amplitude during 
the fMRI acquisition over time 
(left lower corner) and a 3D 
representation of movement in 
space (right lower corner)
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among cycles (Mottet and Bootsma 1999), signing the 
presence of multiple time scales in the control process 
(Newell and Corcos 1993; Ramdani et al. 2009). The most 
important aspects of movement organisation pertain to its 
scaling, shaping (Mottet and Bootsma 1999), and the struc-
ture of its variability (Sethi et  al. 2013). To capture these 
aspects and gain insight into the organisation of the move-
ment, two groups of kinematic variables were selected: (1) 
shaping kinematics and (2) structural kinematics. To cal-
culate these, we extracted the principal oscillation using 
a principal component analysis with x, y, z time series of 
hand position as input. Then we parsed the principal oscil-
lation in sub-cycles of one flexion and extension movement 
based on the maxima between two velocity peaks.

Kinematic data analysis

First, the shape of the movement was defined by calculating 
the frequency (FREQ: how fast) and the amplitude (AMP: 
how large) of the principal oscillation. We calculated the 
absolute distance between the lowest and highest point of 
each sub-cycle and defined the mean of all sub-cycles to 
get AMP. The total number of cycles within time was then 
used to calculate the FREQ of the principal oscillation.

Second, three dimensionless variables were calculated to 
define the structure of the movement: the smoothness of the 
movement, the directness of the trajectory in space, and the 
irregularity of the movement’s structure orthogonal to the 
principal oscillator. These variables provided more detailed 
information on the control strategy used. The smoothness 
of the movement was quantified by counting the number 
of velocity peaks (NVP) on the x, y, z time series. As the 
movement was self-paced and spatially not restricted, the 
NVP was corrected for the FREQ and the AMP. The higher 
the NVP value, the less smooth was the unfolding of the 
trajectory in space–time, which indicates a higher amount 
of submovements towards the goal (Todorov 2004). The 
directness of the trajectory in space was defined by the nor-
malised trajectory length (nTL). By normalising the move-
ment time series by its standard deviation in space, differ-
ences in path length represent the ‘deviations’ around the 
optimal trajectory rather than the actual trajectory length 
in the 3D space (Donker et al. 2008). The higher the nTL 
value, the longer was the hand-path trajectory between 
flexion and extension. It provides information on the ampli-
tude of the disparity between the optimal and the actual 
trajectory.

Finally, to gain insight into the structure of the variabil-
ity of the movement, the deviation from the average ideal 
oscillation as the Cartesian distance to the origin (Strang 
et al. 2012) was computed on the plane orthogonal to the 
principal oscillator. The irregularity of the variability was 
calculated using a sample entropy measure (SampEn) 

(Ramdani et al. 2009), following the algorithm from Phy-
sioNet, with M = 2 and r = 0.2 (Richman and Moorman 
2000). The higher the SampEn value, the higher was the 
irregularity of the variability around the main oscillation, 
which has been interpreted as a sign of automatic control 
(Roerdink et  al. 2006). Notably, in the domain of motor 
control the SampEn has mainly been used in relation to 
postural control. Consequently, the generalisation of a 
rationale to the control of another type of behaviour has to 
be made carefully. Postural oscillations seem to be the nat-
ural consequence of intermittent open loop actions to coun-
teract the unstable nature of the bipedal posture (Loram 
and Lakie 2002; Loram et  al. 2011). To prevent falls in 
an economical fashion, posture is intermittently stabilised 
with serial ballistic impulses towards the goal of the task: 
standing still. Despite the obvious differences between the 
tasks of standing still and of rhythmically flexing the elbow 
(Craik 1947; Loram et al. 2005; Vince 1948), the mode of 
control shows some similarities. To prevent end-point (the 
hand) deviations from the preferred trajectory around the 
fixed point (the elbow) in an economical fashion, the elbow 
‘oscillation’ trajectory will be intermittently stabilised by 
means of serial ballistic impulses towards the goal of the 
task: flexing/extending the elbow, while preventing inter-
nal/external rotational movements. This rationale guided 
the applied data analysis: the way we calculated SampEn 
was not based on the primary voluntary oscillation, but the 
captured irregularity of the variation along the main oscil-
lation, i.e. the corrections of the continuous falls out of the 
goal trajectory.

To sum up, the NVP captures the amount of submove-
ments during the oscillation; the nTL captures the ampli-
tude of the directional variability of the hand-path trajec-
tory in space; And the SampEn captures the irregularity 
of this variability in the plane orthogonal to the principal 
oscillator independent of its amplitude; i.e. the automatic-
ity of control. The kinematic variables are mathematically 
independent and are normally distributed. Differences 
between left, right, and bimanual movements for each kin-
ematic variable were evaluated with repeated measures 
ANOVA. Correlation between kinematics was evaluated by 
means of a simple Pearson’s correlation matrix.

fMRI data analysis

Spatial preprocessing was performed using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/) and MATLAB (R2012a, The 
MathWorks). Images were re-oriented to the anterior com-
missure, slice-time corrected, realigned to the first vol-
ume, co-registered, normalised to T1 template (provided 
by Montreal Neurological Institute MNI), and smoothed 
(8 mm FWHM Gaussian filter).

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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For each experimental condition, a general linear model 
analysis was performed based on the time-course model 
of the BOLD-response function in relation to the stimuli 
onset, to define brain activations related to the motor task. 
Realignment parameters were included in the model. Sta-
tistical t-maps comparing the active blocks with resting 
blocks were generated on a voxel-by-voxel basis. Contrast 
between ‘active’ and ‘rest’ was then calculated per partici-
pant per condition. The main effect of task was analysed 
by means of a full factorial analysis [family wise error cor-
rected (FWE), p  <  0.05]. A within-subject ANOVA was 
performed to gain insight into the specific condition effects 
(T threshold: p < 0.001, FWE corrected at cluster level).

Brain activation was evaluated against specific move-
ment characteristics by adding the individual kinematic 
variables as linear regressors into the design matrix for 
each specific participant, describing the evolution of brain 
activity (intensity of activation) against variation in kin-
ematic variables (the actual movement executed) over par-
ticipants. An explorative low cluster-forming T threshold 
for peak voxel activation was used (uncorrected p < 0.05), 
with a cluster size >10 voxels.

The AAL toolbox was used to identify the clusters via 
local maximum analysis based on peak activation values 
(Tzourio-Mazoyer et al. 2002). Additionally, the percentage 
of the identified region covered by the cluster was evaluated.

Results

Participants

There was no correlation between the kinematic variables 
and the age of the subjects (AMP/age p = 0.84, r = −0.06; 
FREQ/age p  =  0.61, r  =  0.16; NVP/age p  =  0.062, 
r = −0.55; nTL/age p =  0.16, r = −0.43; SampEn/age 
p = 0.12, r = 0.46), nor did we find an impact of age on 
brain activations.

Movement kinematics

Flexion/extension of the elbow is a well-known move-
ment in the context of rehabilitation. The elbow move-
ment was associated with a fluid, rhythmic motion that 
was well integrated in the corporeal capacity. Its veloc-
ity profile had a smooth sinusoidal appearance with 
slight variations between cycles resulting from natural 
noise. No outliers were identified and no significant dif-
ferences between right, left or bilateral movements were 
observed for any of the kinematic variables. Overall, 
participants scaled their movement in time and space 
with a mean FREQ of 0.63 Hz (±0.17 Hz) and AMP of 
33.2 cm (±6.18 cm). Their movement was structured in 

time and space with an average NVP of 40.1 (±3.7), nTL 
of 1.11 (±0.34), and SampEn of 1.17 (±0.29). Correla-
tion between kinematic variables can be found in Table 1. 
A positive correlation is observed between FREQ and 
SampEn (r =  0.78, p =  0.0096) and a negative correla-
tion between nTL and SampEn (r = −0.45, p = 0.0034).

Functional basis network

No movement artefacts were observed during the task 
for the 12 volunteers. The movements of the head were 
between a maximum average translation of 0.74 mm and 
a maximum average rotation of 0.016° and a minimum 
average translation of −1.08  mm and a minimum mean 
rotation of −0.0096°.

As expected, the continuous flexion/extension of the 
elbow elicited, primarily, the activation of the sensorimo-
tor network including the primary motor cortex, the pri-
mary sensory cortex, and the supplementary motor area 
(SMA). It also elicited activations of the supramarginal 
gyrus and the rolandic operculum. The within-subject 
ANOVA showed that the left-sided primary sensorimotor 
cortex was specifically linked to right-sided movement, as 
was the right-sided primary sensorimotor cortex to left-
sided movement. Bimanual movements were characterised 
by additional activations of the vermis and of the middle 
frontal regions, which are known to play an important role 
in motor planning when performing bimanual tasks (Jäncke 
et al. 2000). A detailed overview of task and condition acti-
vations can be found in Table 2 and Fig. 2.

Note that we found a more extended activation of the 
primary sensorimotor network during dominant right-
sided movements. This was surprising, as participants 
moved at a self-selected speed, which should induce 
comparable levels of effort between dominant and non-
dominant sided movements, and thus comparable levels 
of extension and intensity of activation. This might indi-
cate the presence of an order effect, resulting from the 
fixed order of task execution (right, left, and bimanual).

Table 1   r values of correlation matrix between kinematics

AMP amplitude, FREQ frequency, NVP number of velocity peaks, 
nTL normalised trajectory length, SampEn sample entropy

*  Significance at p  <  0.01; significant level between FREQ and 
SampEn p = 0.0096 and between nTL and SampEn p = 0.0034

AMP FREQ NVP nTL SampEn

AMP 1

FREQ −0.39 1

NVP 0.25 −0.38 1

nTL −0.40 0.05 0.00 1

SampEn −0.24 0.78* −0.37 −0.45* 1



2644	 Exp Brain Res (2017) 235:2639–2651

1 3

Ta
bl

e 
2  

x,
 y

, z
 M

N
I 

co
or

di
na

te
s 

of
 t

he
 p

ea
k 

vo
xe

l 
in

 r
el

at
io

n 
to

 c
lu

st
er

 s
iz

e 
(K

E
) 

an
d 

F
 s

co
re

 [
F

] 
fo

r 
th

e 
m

ai
n 

ef
fe

ct
 o

f 
ta

sk
 (

FW
E

 c
or

re
ct

ed
 a

t 
vo

xe
l 

le
ve

l, 
p 

<
 0

.0
5,

 3
3 

de
gr

ee
s 

of
 f

re
ed

om
),

 
cl

us
te

r 
si

ze
, a

nd
 T

 s
co

re
 [

T
] 

fo
r 

co
nd

iti
on

-s
pe

ci
fic

 a
ct

iv
at

io
ns

 (
p 

<
 0

.0
01

, F
W

E
 c

or
re

ct
ed

 a
t t

he
 c

lu
st

er
 le

ve
l, 

22
 d

eg
re

es
 o

f 
fr

ee
do

m
),

 a
nd

 d
efi

ne
d 

w
ith

 A
A

L
 to

ol
bo

x 
SP

M
8

R
eg

io
n

R
L

M
ai

n 
ta

sk
 a

ct
iv

at
io

n
R

ig
ht

 >
 le

ft
L

ef
t >

 r
ig

ht
B

im
an

ua
l >

 u
ni

m
an

ua
l

x
y

z
k E

[F
]

x
y

z
k E

[T
]

x
y

z
k E

[T
]

x
y

z
k E

[T
]

Pr
im

ar
y 

m
ot

or
 c

or
te

x
R

30
−

40
66

57
56

34
−

17
63

11
0

4.
75

L
−

29
−

27
66

−
27

54
−

29
−

23
63

45
4

7.
62

Pr
im

ar
y 

se
ns

or
y 

co
rt

ex
R

34
−

30
63

57
44

34
−

30
63

11
0

6.
66

L
−

32
−

37
51

−
37

55
−

35
−

30
63

45
4

7.
62

Su
pp

le
m

en
ta

ry
 m

ot
or

 a
re

a
R

7
3

51
14

4
76

L
−

9
6

40
14

4
40

M
id

dl
e 

fr
on

ta
l a

re
a

R
27

59
14

30
4.

23

L
−

29
55

14
42

4.
79

R
ol

an
di

c 
op

er
cu

lu
m

R
56

13
6

41
68

L
−

42
−

0
14

44
91

Su
pr

am
ar

gi
na

lis
R

60
−

30
25

30
72

L
−

55
−

23
40

89
94

C
er

eb
el

lu
m

R
27

−
46

−
27

11
71

22
6

L
−

18
−

50
−

24
11

71
22

6
−

12
−

46
−

20
61

5.
25

V
er

m
is

1
−

63
−

20
11

71
19

9
−

1
−

66
−

20
54

5.
28



2645Exp Brain Res (2017) 235:2639–2651	

1 3

Kinematic related functional network

First, we executed a separate linear regression with a low 
cluster-forming T threshold for each movement condition 
(left/right/bimanual) to explore the link between the brain 
activation and the kinematics of a movement. We observed 
two phenomena: (1) there were condition-specific differ-
ences, dependent on whether the movement was performed 
with the dominant, non-dominant or both sides, and (2) 
there were general similarities in activation patterns inde-
pendent on movement condition (Table 3). Based on these 

observations, we hypothesised that these general similari-
ties might indicate the existence of common task-depend-
ent control strategies that are independent of condition-spe-
cific activations.

Aware of the increased risk of false positives when using 
low cluster-forming T thresholds (Eklund et al. 2016), we 
repeated the linear regression, but this time we grouped 
all conditions together allowing an increase in statistical 
power. The cluster-forming T threshold was increased to 
p  <  0.005 uncorrected with cluster >30 voxels, visible in 
Table 4. We found indeed most of the general activations, 

Fig. 2   Functional basis net-
work: the main effect of task 
(flexion/extension of the elbow), 
FWE corrected, p < 0.05 at 
voxel level and the condition-
specific activations p < 0.001, 
FWE corrected at cluster level, 
22 degrees of freedom. R right 
sided, L left sided, B bilateral, U 
unilateral movement, RH right 
hemisphere, LH left hemisphere
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but we also observed the emergence of some new regions, 
and the disappearance of some others with the stricter 
threshold applied. The correlation between the fMRI BOLD 

response and each kinematic variable was as follows: 
FREQ r = 0.71, F(1,34) = 32.9, p < 0.0001; NPV r = 0.62, 
F(1,34) = 21.18, p < 0.0001; nTL r = 0.66, F(1,34) = 25.39, 

Table 3   Kinematic related activations

[x, y, z] MNI coordinates of peak value, cluster size (KE), and T value [T] of each cluster >10 voxels related to the kinematic variables for the 
separate conditions (Right, Left, BIM) with an explorative low T threshold of p < 0.05, uncorrected

L left hemisphere, R right hemisphere, G task-general activation, S condition-specific activation

Right Left BIM

Zone [x, y, z] KE, [T] Zone [x, y, z] KE, [T] Zone [x, y, z] KE, [T]

AMP

 G Front inf R [30, 29, −9] 23, 2.79 Temp sup L [−45, −7, −5] 58, 5.04 Front inf L [−55, 9, 33] 65, 3.70

Front inf L [−35, 36, 14] 13, 5.08 Temp mid R [56, −10, −9] 25, 2.90 Temp mid L [−65, −56, 6] 53, 3.39

Temp mid R [37, 9, −35] 11, 2.38 Vermis 45 [1, −53, −6] 43, 3.77

Vermis 45 [17, −46, 10] 60, 4.78

 S Precun L [−6, −63, 29] 39, 3.73 Amygdala R [20, 0, −16] 41, 5.03 Ant cerebel-
lum R

[7, −37, −9] 37, 4.39

Occip mid R [40, −86, 21] 15, 3.76 Insula R [43, 0, 3] 63, 4.31

FREQ

 G Post cerebel-
lum L

[−26, −69, 
−24]

20, 3.77 Post cerebel-
lum L

[−16, −82, 
−35]

28, 4.85 Post cerebel-
lum L

[−48, −69, 
−20]

20, 4.83

 S Hippocamp L [−26, −20, 
−13]

12, 4.24 Front sup R [11, 26, 40] 175, 5.85 Post central L [−32, −30, 51] 127, 4.79

Temp sup L [−65, −50, 18] 42, 4.14 Front sup L [−22, 36, 51] 39, 4.99 Angular R [43, −60, 40] 12, 4.03

Temp sup R [60, −50, −1] 11, 3.49 Front mid L [−32, 42, 18] 39, 4.75 Cing ant RL [7, 26, −9] 12, 3.98

NVP

 G Front mid R [40, 42, 3] 37, 3.41 Supramarg R [60, −17, 18] 50, 5.48 Front mid R [30, 6, 51] 81, 11.29

Supramarg R [66, −23, 33] 89, 4.16 Temp mid R [43, −60, 6] 113, 5.54 Front mid L [−26, 6, 48] 83, 6.13

Temp mid R [40, −63, 14] 41, 2.77 Cing mid R [24, −10, 59] 186, 4.94 Supramarg R [56, −23, 18] 59, 5.61

Cing mid L [−6, 3, 44] 35, 3.52 Temp mid L [−62, −6, −5] 15, 5.27

 S Fusiform L [−35, −46, 
−20]

53, 6.00

SMA R [4, −0, 36] 186, 4.80

Lingual R [14, −60, −20] 103, 3.93

nTL

 G Temp mid L [−48, −14, 
−24]

50, 4.42 Temp mid R [43, −73, 18] 49, 6.81 Temp mid L [−45, −14, 
−28]

49, 3.75

Parahipp L [−22, −14, 
−28]

27, 3.07 Parahipp R [20, −46, −1] 16, 4.21 Parahipp R [24, 0, −24] 39, 4.25

Parahipp L [−16, −17, 
−24]

26, 3.40

 S Post central R [53, −20, 33] 45, 3.28 Front inf op L [−39, 9, 21] 26, 6.43 Fusiform L [−19, −46, 
−16]

41, 3.67

Cing ant R [7, 36, −1] 33, 3.22 Cing ant R [7, 26, 25] 19, 3.55

Lingual L [−22, −73, 
−9]

17, 4.75

SampEn

 G Front mid R [37, 39, 40] 36, 6.29 Front mid R [43, 13, 36] 134, 7.49 Post cerebel-
lum L

[−48, −69, 
−28]

26, 4.57

Post cerebel-
lum L

[−32, −46, 
−31]

245, 5.71 Post cerebel-
lum L

[40, −46, −35] 32, 5.04 Post central L [−32, −37, 55] 59, 4.35

Post central L [−26, −33, 63] 30, 4.09

 S Occip mid L [−26, −73, 29] 326, 8.98 Front sup LR [−22, 36, 55] 759, 9.79 Precuneus R [17, −56, 21] 121, 4.86

Temp mid L [−65, −50, 3] 145, 7.08 Caudate LR [14, 13, 10] 166, 7.85
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p < 0.0001, SampEn r = 0.70, F(1,34) = 31.39, p < 0.0001. 
See Table 4. Unexpectedly, the correlation of brain activa-
tion with AMP did not reach cluster-forming significance 
at p < 0.005. This might be dependent on multiple factors, 
like body morphology (e.g. size biceps, arm length) and the 
fMRI tube, influencing the preferred amplitude differently 
over participants. In a future study, arm length should be 
added as a covariate to gain a more profound insight.

In greater detail, a stronger activation of the left poste-
rior cerebellar lobe was observed with a higher preferred 
frequency, as well as increased activation of the right M1. 
Second, less smooth movements, as identified by a higher 
NVP, were linked to stronger activations of the right-sided 
middle frontal, supramarginal, temporal, and cingulum 
regions. Third, longer trajectories as identified by a higher 

nTL were linked to increased activation of the left S1. And 
fourth, a stronger irregularity of the variability around 
the primary oscillatory component, as identified by the 
SampEn, was correlated with stronger activations of both 
posterior cerebellar lobes and right middle frontal regions. 
An overview of the brain activations in relation to the kin-
ematics and the correlation graphs can be found in Fig. 3.

We also explored the possible negative correlation 
between brain activity and kinematics (e.g. less activation 
with higher preferred frequency). It was found that only 
nTL was negatively correlated with the posterior cerebel-
lum (Table 4).

Discussion

Rhythmical movement generation involves a basic oscilla-
tory component and correction processes to cancel out the 
variability induced by biological noise. Here, we explored 
whether looking into the variation of voluntary movement 
kinematics combined with the variation in brain activation 
might provide additional insight into actual organisation of 
the neural correlates of these two processes. Therefore, two 
analyses were performed. First, brain activation was evalu-
ated by means of a basic general linear model, and second, 
kinematic characteristics of the voluntary elbow movement 
were added as linear regressors to the general model.

The functional basis network that was activated during 
elbow flexion/extension consisted of the primary sensori-
motor cortex, the SMA, the supramarginal gyrus, the rolan-
dic operculum, and the anterior cerebellum. This was com-
parable with motor networks described by more traditional 
finger-tapping paradigms (amongst others: Allison et  al. 
2000; Ball et  al. 1999; Schaal et  al. 2004; Stoodley and 
Schmahmann 2009). Although expected, this was an impor-
tant observation, because it validated the use of the elbow 
flexion–extension as an alternative movement to study the 
link between brain activation and function. It also showed 
that the expected increase in task-related head movements 
due to the larger and more proximal nature of the move-
ment was not sufficient to induce important artefacts. Sub-
sequently, by adding movement kinematics as regressors 
to the BOLD-activation contrast matrix, two interesting 
observations were made: (1) only few of the regions of the 
functional basis network showed variations in activity with 
variation in movement kinematics, and (2) the activations 
that were observed coincided partly over conditions—right, 
left or bimanual.

Motor behaviour can be explained in terms of build-
ing blocks on both cerebral and spinal level that together 
construct the required movement (Mussa-Ivaldi and Bizzi 
2000; Bizzi et  al. 2002). Alongside processing condi-
tions, specific blocks that are required to coordinate a set 

Table 4   Overview of task-general activations after grouped corre-
lation of all conditions between kinematics and fMRI activity, with 
MNI coordinates [x, y, z] of the peak voxel, the cluster size (KE) 
and the T score [T] of each cluster (p < 0.005 uncorrected with clus-
ter > 30 voxels, degrees of freedom = 10)

No negative significant correlations were observed except for the nTL 
with a cluster in the left posterior cerebellum

L left hemisphere, R right hemisphere, xx no significant correlation

x y z kE [T]

FREQ

 Positive

  Posterior cerebellum L −26 66 −20 482 5.73

  Precentral R 24 −23 55 62 4.13

 Negative

  xx

NVP

 Positive

  Front mid R 20 −7 59 55 4.19

  Supramarg R 56 −23 21 80 3.72

  Temp mid R 47 −60 10 39 3.49

  Cing mid R 7 6 44 99 4.60

 Negative

  xx

nTL

 Positive

  Post central L −48 −23 36 36 3.65

 Negative

  Posterior cerebellum L −29 −40 −31 75 3.87

SampEn

 Positive

  Posterior cerebellum L −26 −66 −20 120 5.60

  Posterior cerebellum R 37 −79 −31 66 5.01

  Frontal mid R 47 29 36 40 4.86

 Negative

  xx
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of muscles to perform a specific movement (Degalier and 
Jspeert 2010), task-general information blocks that are 
independent of the specific details might be processed in 
parallel. Based on our results, we here hypothesise that 
the activations that coincided over conditions might be 
involved in the general control of the motor task (flexion/
extension of the elbow), rather than in condition-specific 
processes (dominant/non-dominant/bilateral task execu-
tion). Focussing on these general building blocks, we found 
that the irregularity orthogonal to the main oscillation, 

as captured by the SampEn, was related to activations 
of the posterior cerebellum and middle frontal regions. 
Tatch (1980) proposed that these regions form a network 
together. This cerebellar–frontal motor circuit was thought 
to be involved in the development and automation of inter-
nal models (Penhune and Steel 2012). The frontal regions 
mediate the selection of alternative motor options in a 
given context, whereas the cerebellum plays a crucial role 
in the control of the movement by means of feedforward 
and attention direction (Desmurget and Grafton 2000). The 

Fig. 3   Overview of positive correlations between fMRI activity 
(BOLD signal intensity) and movement kinematics. Left image cor-
related clusters for the grouped movement conditions. T-contrast 
[0 1], p < 0.005, uncorrected with cluster >30 voxels, df = 10). RH 
right hemisphere, LH left hemisphere, R right sided, L left sided, B 
bilateral movement. Right graphs regression plots between each kine-

matic variable (x-axis) and the response intensity (y-axis) of the most 
pertinent cluster ([x, y, z] coordinates provided). FREQ (frequency): 
r  =  0.71, F(1,34)  =  32.9, p  <  0.0001; NPV (number of velocity 
peaks): r = 0.62, F(1,34) = 21.18, p < 0.0001; nTL (trajectory length): 
r  =  0.66, F(1,34)  =  25.39, p  <  0.0001; SampEn (sample entropy): 
r = 0.70, F(1,34) = 31.39, p < 0.0001
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information from these two regions is supposed to be com-
bined in the basal ganglia, which are thought to function as 
a gateway for habitual actions—like the automatic execu-
tion of routine movements (Leisman and Melillo 2012). 
The activation of the observed cerebellar–frontal circuit 
was increased with more irregular fluctuations around the 
principal oscillator. The irregularity of fluctuations is pro-
posed to represent a continuity of the amount of attention 
invested in motor control, whereby high irregularity is con-
sidered as a signal of more automatic behavioural control, 
whereas more regular behaviour indicates a more conscious 
control of task execution (Roerdink et al. 2006).

The finding that both the network and the kinematic 
variable that unmasked this network have previously been 
linked to automaticity of control might be a coincidence. 
Alternatively, this finding might support the described rela-
tion between irregularity and automaticity of control as 
observed in postural control studies (Roerdink et al. 2006). 
Martinez et al. (2016) highlighted the neural correlates of 
stepping stability in a distributed network (subcortical/cor-
tical region), suggesting a transition in the control strategy 
across the stimulated range of comfortable frequencies 
from more reactive (conscious, feedback) to a predictive 
(automatic, feedforward) control. We also found that the 
irregularity of the fluctuations increased with the frequency 
of movement. Therefore, taking our reasoning one step fur-
ther, this might indicate that a higher preferred frequency 
reflects a more automatic control strategy, whereas a lower 
preferred frequency might indicate a more conscious 
strategy. This hypothesis, although we recognise that it is 
very explorative, is supported by the negative correlation 
between irregularity and trajectory length of the movement, 
as well as by the negative correlation between the posterior 
cerebellum with the trajectory length. The trajectory length, 
as captured by nTL, was positively related to activations of 
the primary sensory cortex—involved in sensory feedback 
to adjust movements based on the difference between the 
planned and the executed movement (Christensen et  al. 
2007). The higher the activations observed in the primary 
sensory cortex (related to more twisting and turning, i.e. a 
longer trajectory length), the lower was the activation in the 
cerebellar–frontal areas, i.e. less automatic control.

Therefore, we would like to propose with considera-
tion that there might be various loops/circuits involved in 
the maintenance of self-paced comfortable rhythmic move-
ments that are negatively correlated. The primary sensory 
motor network, as highlighted by the general model analy-
sis, might be responsible for the generation of the rhythmi-
cal movement, with an additional recruitment of the middle 
frontal areas when coordination between sides is required 
in the bimanual condition. Lewis and Miall (2003) argue 
that there are distinct brain structures involved in tasks 
depending on whether these are characterised more by 

automatic or more by cognitive control. Automatic con-
trol primarily draws on primary motor circuits, whereas 
cognitive control requires additional pre-frontal and pari-
etal areas. Subsequently, to control the neuromotor noise-
induced variability that is inherent to our system, we have 
to our disposition a cerebellar–frontal circuit for feedfor-
ward based automatic control as well as a more feedback-
based conscious control involving activation of the primary 
sensory cortex. The implication of each network during 
task execution may be dependent on the required monitor-
ing of movement execution in time and space. The overlap 
of networks seems evident during more complex move-
ments, to control movement following the logic of compu-
tational models optimally integrating feedback, with mini-
mal effort as well as minimal error (Guigon et al. 2007).

Our long-term goal is to capitalise on a better under-
standing of the neural correlates of rhythmical movement 
kinematics to better address motor recovery post stroke. 
Cerebral lesions change the structure and function of the 
brain not only by disabling cells, or destroying normal 
functional brain networks, but also by unmasking, sprout-
ing, and developing new networks (Buma et al. 2013). The 
whole functioning of the system may, therefore, change: 
relating healthy behaviour to that of an altered system may 
not be straightforward. When kinematics can indeed pro-
vide information about underlying functioning and organi-
sation of control, following the change in kinematics post 
stroke might contribute to understanding changes in brain 
activation post stroke. This knowledge might be used to 
target specific regions for non-invasive brain stimulation 
protocols, modulating connectivity and eventually enhanc-
ing recovery (e.g. Ludemann-Podubecka et al. 2015). How-
ever, the first immediate challenge will be to identify how 
(change in) kinematics over rehabilitation is related to post-
stroke neural plasticity and/or changes in activation pat-
terns, compared to a large group of healthy controls.

Albeit these promising results, one has to bear in mind 
that it concerned an explorative study with a limited num-
ber of participants, that, however, confirmed the interest of 
the applied method, i.e. the integration of movement regis-
tration within the fMRI can contribute to a better interpre-
tation and understanding of functional activations observed. 
It is known that the ageing brain operates differently com-
pared to the young brain: over-activation of the ipsilateral 
motor system as well as additional recruitment has been 
reported frequently. Its origin and functional impact are, 
however, still under debate. It could point to compensa-
tion to meet task demands in the face of age-induced neu-
robiological changes (cognitive as well as motor) (Calautti 
et al. 2001), but also result from changes in cerebral perfu-
sion during rest that are independent of the functional task 
demands (Riecker et al. 2006). Using a heterogeneous age 
group might thus have influenced the results. However, 
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for this simple motor task this was not confirmed. This 
could be related to the relatively small sample size or to 
the experimental design. We asked middle-aged people to 
perform a gross motor task, rather than a young or older 
age group to perform a fine motor task. As pointed out by 
Seidler et  al. (2010), it still needs to be clarified whether 
motor changes due to age develop gradually or show a 
rapid onset with older age, highlighting the importance of 
age mapping when comparing motor performance between 
different groups. Another limitation of our study is that 
we indeed observed an order effect, presumably resulting 
from the fixed-order setup. The order effect was marked 
by a more extended activation of the primary sensorimotor 
network during dominant right-sided movements, whereas 
normally no difference would have been expected when 
moving at a self-selected pace (Lutz et al. 2005). This order 
effect should be taken into consideration when comparing 
between groups and especially when addressing recovery 
over time. Nevertheless, the activated regions of interest 
were still comparable between all conditions. Therefore, 
we would like to argue that fixed-order effect is preferable 
over the effect of fatigue when moving two consecutive 
times with the paretic arm in a post-stroke population.

Conclusion

Self-paced rhythmic elbow flexion/extension was a suit-
able task to evaluate the neural correlates of motor con-
trol. The co-registration of movement kinematics and brain 
activity offered the opportunity to investigate human motor 
control in terms of brain–behaviour relationships from a 
different perspective. Our results highlighted the potential 
of this method to interpret functional MRI activations and 
to take a small step towards better understanding of the 
organisation of neural correlates during motor control.
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