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Since publishing our earlier report describing a strategy for the treatment of central nervous system (CNS) diseases by inhibiting
the cell cycle and without disrupting neurogenesis (Liu et al. 2010), we now update and extend this strategy to applications in
the treatment of cancers as well. Here, we put forth the concept of “aberrant cell cycle diseases” to include both cancer and CNS
diseases, the two unrelated disease types on the surface, by focusing on a common mechanism in each aberrant cell cycle reentry.
In this paper, we also summarize the pharmacological approaches that interfere with classical cell cycle molecules and mitogenic
pathways to block the cell cycle of tumor cells (in treatment of cancer) as well as to block the cell cycle of neurons (in treatment
of CNS diseases). Since cell cycle inhibition can also block proliferation of neural progenitor cells (NPCs) and thus impair brain
neurogenesis leading to cognitive deficits, we propose that future strategies aimed at cell cycle inhibition in treatment of aberrant
cell cycle diseases (i.e., cancers or CNS diseases) should be designed with consideration of the important side effects on normal
neurogenesis and cognition.

1. Introduction

The cell cycle is an irreversible, ordered set of events that
normally leads to cellular division [1–5]. The release of cells
from a quiescent state (G0) results in their entry into the
first gap phase (G1), during which the cells prepare for DNA
replication in the synthetic phase (S). This is followed by the
second gap phase (G2) and mitosis phase (M). After the cell
has split into its two daughter cells, the new cells enter either
G1 or G0. Tumors usually originate from adult tissues, in
which the majority of cells are in the G0 quiescent phase [4].
Mature neurons normally maintain themselves in G0 resting
phase. These facts suggest that the cells that go on to form
tumors and mature neurons share a common G0 state of
quiescence.

Since cell cycle is irreversible, this raises a possibility that
irreversible cell cycle reentry mediates the irreversible neu-
ronal death that mirrors the irreversible progression of some
central nervous system (CNS) diseases, such as Alzheimer’s

disease (AD). If this is true, it will partially explain why AD is
incurable once even early AD symptoms occur, for the early
AD symptoms may indicate that the neurons have reentered
the cell cycle that ends up leading to neuronal death and
AD progression. Thus, the best strategy in treatment of CNS
diseases is to prevent cell cycle re-entry at the early stage
before neurons leave the G0 phase at all, since even the mere
entrance into the initial cell cycle may lead to unavoidable
neuronal death.

Since re-entry into the cell cycle by tumor cells or neu-
rons has been associated with many tumor or CNS diseases
and linked to uncontrolled cell proliferation (in cancer)
or neuronal death (in CNS diseases), cell cycle inhibition
strategies are of interest in the treatment of both tumor
and CNS diseases. For instance, the cell cycle inhibitors,
such as cyclin-dependent kinase (CDK) inhibitors, have been
widely studied as cancer therapeutics. They have been used
to inhibit growth of several types of tumor cells in numerous
preclinical studies, both in vitro and in vivo [6–12]. Several
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cell cycle inhibitors have advanced to human clinical trials for
evaluation as a treatment for a broad range of solid tumors
and hematological malignancies such as chronic lymphocytic
leukemia (CLL) [13–17]. Though no clinical trials of the
cell cycle inhibitors are reported in the treatment of CNS
diseases, preclinical experiments demonstrate that the cell
cycle inhibitors improve behavioral outcomes and increase
neuronal survival in a series of CNS disease models [18–
33].

Cell cycle inhibition kills tumor cells (in treatment of
cancer) or protects mature neurons from death (in treatment
of CNS diseases), whereas this can also block proliferation
of neural progenitor cells (NPCs) and thus impair brain
neurogenesis leading to cognitive deficits in the patients
of cancer and CNS diseases [1]. Since the presence of
cognitive deficits is a major factor markedly affecting quality
of life of these patients, the cell cycle inhibition strategy in
treatment of cancer and CNS diseases should consider the
consequences on other cell types that can be affected, such as
NPCs.

As a way to describe the two seemingly different disease
types (i.e., cancer and CNS diseases) that share the common
mechanism of cell cycle re-entry, we propose a broader term
of “aberrant cell cycle diseases”—one which includes not
only cancers but also CNS diseases. A detailed description
of how the cell cycle re-entry, at least in part, underlies
cancers and CNS diseases follows before we discuss the
pharmacological approaches that have been examined in
therapeutic treatment of the two disease types.

2. Aberrant Cell Cycle Diseases:
Cancers and CNS Diseases

Cancers and CNS diseases are two major threats to human
health. Epidemiological studies show that patients with CNS
disease, such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD), and multiple sclerosis
(MS), have a significantly lower risk of most cancers [34–
38]. The reverse correlations also hold true: cancer survivors
have a significantly lower risk of developing some of these
CNS diseases. However, there are exceptions: Parkinson’s
patients have an increased risk for melanoma [39–44],
autism patients have an increased risk for breast cancer
[45], and Fragile X Syndrome patients have increased risk
for lip cancer [46]. No matter what associations underlie
certain cancers and CNS diseases, these correlative studies
have raised an interesting question: what associated processes
or mechanisms do dying neurons and growing tumor cells
have in common?

Aberrant cell cycle is the hallmark of many tumor cells in
cancers [47–49] and is also observed in postmortem and/or
animal studies of dying neurons in a series of CNS diseases,
such as AD, PD, stroke, epilepsy, cerebral hypoxia-ischemia,
amyotrophic lateral sclerosis (ALS), traumatic brain injury
(TBI), among others [18–33, 50–64]. Although tumor cells
undergo uncontrolled proliferation, many tumors originate
from adult tissues in which the majority of cells are in
the G0 quiescent phase [4]. Similarly, mature neurons stay

in G0 quiescent phase in normal physiological conditions,
but do reenter the cell cycle irregularly (and die) in certain
pathological conditions.

Thus, the cells that go on to form tumors and healthy
neurons share a common G0 state of quiescence. However,
if tumor cells re-enter the cell cycle, they survive and often
proliferate, whereas mature neurons will die. Therefore,
cell cycle inhibition can be applied not only to kill tumor
cells (in treatment of cancer), but also to protect neurons
from death (in treatment of CNS diseases). This is strongly
supported by the findings that mutation of PARK2, a tumor
suppressor gene, results not only in neuronal death in
Parkinson’s disease, but also in tumor cell proliferation in
glioblastoma and other human cancer [65]. Consistently,
cell cycle inhibition mot only promotes the death of naive
PC12 (pheochromocytoma) tumor cells, but also prevents
the death of nerve growth factor- (NGF-) differentiated PC12
neuronal cells [66, 67].

3. Cell Cycle and “Expanded Cell Cycle”

Classically, the proteins and regulators of the cell cycle
include CDKs, cyclins, CDK inhibitors, and CDK substrates.
However, the cell cycle inhibition strategies that target
on these molecules lack specificity for their target tumor
cells or dying neurons and thus interfere the normal
biological processes performed by other cell types, since
the core cell-cycle-associated molecules are often highly
conserved throughout eukaryotes, thus we proposed an
“expanded cell cycle” to include not only the core cell
cycle molecules mentioned above, but also the mitogenic
molecules and the signaling pathways that interact with
them. Under specific environmental and/or pathological
conditions, such as exposure of tobacco smoke, benzene,
ultraviolet B radiation, and/or enhancement of mitogenic
molecules (i.e., thrombin, growth factors, amyloid beta, etc.),
activation of specific pathways to mediate abnormal cell
cycle re-entry may arise and thus trigger tumorigenesis of
normal cells and/or death of neurons. It is always impossible
to prove exactly what caused a cancer or CNS disease
in any individual, because most of these diseases have
multivariate causes. However, the various causes seem to
result in a common outcome—cell cycle re-entry, mediated
by several common mitogenic pathways. The main mitogenic
pathways include (1) FAK/Src/Ras/Raf/MEK1, 2/ERK1, 2
→ cell cycle re-entry [68–72]; (2) Ras/Rac1/MEK3, 6/P38
→ cell cycle re-entry [73, 74]; (3) PLC/IP3/PKC/JNK →
cell cycle re-entry [75, 76]; (4) PI3K/Akt/mTOR/Tau →
cell cycle re-entry [60, 77, 78]; (5) JAK/STAT → cell cycle
re-entry [79, 80]. In addition, many molecules, including
ROS, PGE2, NO, and Ca2+, can directly or indirectly
participate in the main mitogenic signaling pathways [81–
86]. The idea of an “expanded cell cycle” provides a
wider view encompassing a broad range of molecules
representing potential targets and thus approaches that
can serve as treatments for cancer and CNS diseases—
all sharing the common outcome of cell cycle inhibi-
tion.
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Table 1: Pharmacological approaches interfering with mitogenic molecules and signaling pathways of the “expanded cell cycle” in treatments
of cancer and CNS diseases.

Treatments

Targets Cancers CNS diseases

Agents Stages Agents Stages

CDK
inhibitors

Flavopiridol,
Indisulam,
AZD5438
SNS-032

Bryostatin-1
Seliciclib

PD 0332991
SCH 727965

UCN-01,
Roscovitine,

AT7519

Clinical trials in a broad range of solid
tumors and chronic lymphocytic leukemia

(CLL) [13–16].

Flavopiridol
Olomoucine
Roscovitine

Quinazolines

Experimental trials in AD [18–22], PD [21],
stroke [23, 24], TBI [25, 26], SCI [27, 28],

excitotoxic stress [29–32], optic nerve
transaction [33].

Antioxidants Isoliquiritigenin Experimental trials in prostate cancer [124].

Edaravone
NXY-059

Coenzyme
Q10

Vitamin E
Melatonin

Trolox
SOD
NAC
PBN

Clinical use in stroke in Asia [125, 126],
Clinical trials in stroke [126], AD

[127–129], ALS [130–132].
Experimental trials in ALS [133], PD [134],

SCI [135].

i/eNOS
inhibitors

L-NAME
AMT
NPA

Experimental trials in prostate cancer [136].
L-NAME

AMT
NPA

Experimental trials in ICH [137], SCI [135].

Cox-2
inhibitors

Celecoxib
Rofecoxib

NS-398

Clinical trials in bladder cancer [138], lung
cancer [139, 140], head and neck cancer
[141], pancreatic cancer [142], prostate

cancer [143], breast cancer [144], colorectal
cancer [145].

Experimental trials in pancreatic cancer
[146], prostate cancer [147], esophageal

cancer [148], colon cancer [149].

Celecoxib
Rofecoxib

NS-398

Clinical trials in AD [150, 151].
Experimental trials in ICH [137].

Ca2+ channel
blockers

KYS05090 Experimental trials in cancers [152]. Flunarizine Clinical trials in stroke [153].

Glutamatergic
modulators

MK-801
Experimental trials in breast cancer [154],

brain tumors [155].

Riluzole
Ceftriaxone
Talampanel

MK-801
NBQX

Clinical trials in ALS [156].
Experimental trials in TBI [157, 158], SCI

[159], ICH [160], stroke [161].

NMDA-
receptor
modulators

AP5 Memantine
Experimental trials in breast cancer [154],

gastric cancer [162].
Memantine

Clinical use in AD [163–166].
Clinical trials in ALS [156].

Off-label use in psychiatric disorders [167].
Experimental trials in TBI [168], ICH [169],

stroke [170],

Thrombin
inhibitors

Heparin Experimental trials in lung cancer [171].
Heparin
Hirudin

Experimental trials in ischemic stroke [172],
ICH [118, 173, 174].

Thrombin
receptor-1
antagonist

RWJ-58259
SCH-79797

Experimental trials in colon cancer [175]. BMS-200261
Experimental trials in stroke [176]; PD

[177].

Ras inhibitors
Lovastatin

FTS

Clinical trials in neurofibroma [178], head
and neck cancer [179].

Experimental trials in neurofibroma [180],
liver cancer [181], ovarian cancer [182],

breast cancer [183], prostate cancer [184],
lung cancer [185].

Lovastatin
Exoenzyme

Clinical trials in acute ischemic stroke
[186, 187].

Experimental trials in motor neuron
disorders [188, 189].
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Table 1: Continued.

Treatments

Targets Cancers CNS diseases

Agents Stages Agents Stages

Src Inhibitors

KX-01
Dasatinib

PP1
PP2

Saracatinib

Clinical trials in breast cancer [190–192].
Experimental trials in breast cancer [193],

lung cancer [194, 195], cervical cancer
[196], renal cancer [197], prostate cancer

[198].

PP1
PP2

Experimental trials in ICH [91, 199], AD
[70].

JAK/Stat
Inhibitors

EGCG
WP-1034

Experimental trials in prostate cancer [200],
breast cancer [201], lung cancer [202],
pancreatic cancer [203], acute myeloid

leukemia [204].

EGCG
Experimental trials in AD, PD, HIV

associated Dementia, multiple sclerosis
(MS), ALS, or Pick’s Disease [79].

GSK-3β
inhibitors

Lithium
SB 415286
SB 216763

AR-A014418

Experimental trials in colon cancer [205],
neuroblastoma [206].

L803-mt
Lithium

Kenpaullone
Indirubin
SB 216763
SB 415286

Experimental trials in AD [207–212], PD
[213], brain injury [214].

Clinical trials in ALS [156, 215].

PI3K
inhibitors

NVP-BEZ235
GSK2126458

Experimental trials in breast cancer [216]. LY 294002 Experimental trials in AD [217], PD [218].

Akt Inhibitors

Perifosine
MK-2206
RX-0201

PBI-05204
GSK2141795

Clinical trials in advanced cancer [219, 220]. LY 294002 Experimental trials in AD [217], PD [218].

m-TOR
Everolimus

Temsirolimus

Clinical use in pancreatic cancer [221], renal
cancer [221].

Clinical trials in epithelial ovarian
cancer/primary peritoneal cancer [222],
Endometrial Cancer [223], glioblastoma

[224], breast cancer [225], neuroendocrine
tumours [226], lung cancer [227], bladder

cancer [228], renal cancer [229, 230].

Rapamycin
Experimental trials in AD [231], PD [232],

TBI [233, 234], SCI [235, 236], stroke [237].

Tau inhibitor SG410 Experimental trials in pancreas cancer [238]. TRx-0014 Clinical use in AD [239, 240].

ERK1/2 kinase
pathway

PD98059
Experimental trials in prostate cancer [241],

lung cancer [242].
PD98059 Experimental trials in ICH [72, 92].

P38 kinase
pathway

SB203580 Experimental trials in colon cancer [243].
SB203580
SB239063

Experimental trials in ICH [92], PD [244],
stroke [245].

JNK kinase
pathway

SP600125
Experimental trials in cancer cells

[246, 247].

CEP-1347
Colostrinin
SP600125

Experimental trials in ICH [72, 92], AD
[248, 249], stroke [250], PD [248, 250].

4-Amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP1), 4-Amino-5-(4-chlorophenyl)-7(t-butyl)pyrazol(3,4-d)pyramide (PP2), 2-
Amino-5,6-dihydro-6-methyl-4H-1,3-thiazine hydrochloride (AMT), 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo [f]quinoxaline-2,3-dione (NBQX), Dl-
2-amino-5-phosphonovaleric acid (AP5), Epigallocatechin-3-gallate (EGCG), Farnesylthiosalicylic acid (FTS), Methylthioinnium chloride (TRx-0014),
5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK 801), N-acytyl-L-cysteine (NAC), N(G)-nitro-l-arginine methyl ester (l-NAME),
N(omega)-propyl-l-arginine (NPA), Phenyl-N-tert-butylnitrone (PBN), Superoxide dismutase (SOD).

4. Pharmacological Approaches Interfering
with the “Expanded Cell Cycle” in Treatment
of Aberrant Cell Cycle Diseases

In theory any part of the “expanded cell cycle” could
act as a potential target for drug discovery. For example,
thrombin activation is substantially increased in cancers [87–
89] and CNS diseases (i.e., AD, stroke). Thrombin may
then go on to activate Src kinases [90, 91]. Src kinases will

activate MAPK which will activate CDK4/cyclinD complexes
and promote cell cycle re-entry [71, 91, 92]. Thus, these
molecules (thrombin, Src kinases, and MAPK), while not
considered traditional components of the cell cycle, would
all be considered part of the “expanded cell cycle.” Similarly,
other protein kinases (including JAK, Akt, PKC, JNK, ERK,
GSK-3β.) are also important molecules in the mitogenic
pathways leading to neuronal cell cycle re-entry. Most targets
mentioned above have been examined in cancer therapies



The Scientific World Journal 5

as well as in CNS diseases. Pharmacological approaches
based on those targets include traditional cell cycle inhibitors
(CDK inhibitors), antioxidants, NMDA-receptor modula-
tors, i/eNOS inhibitors, COX-2 inhibitors, protein kinase
inhibitors, and others (Table 1).

5. Cognitive Side Effects of Clinic Therapies for
Aberrant Cell Cycle Diseases

In treatment of peripheral or brain cancers, surgical removal
of the tumor is recommended whenever possible. Anticancer
medications (chemotherapy, CT) may be prescribed, as well
as radiation therapy (RT). CT- or RT is cytotoxic, not
only slowing down or killing rapidly dividing cells and
producing many different types of DNA damage [93], but
detrimentally leading to damage of normal tissue, especially
of fast-growing healthy cells, including neural progenitor
cells (NPCs), and also red and white blood cells [94, 95].
Recent reports show that CT results in cognitive side effects
in extracranial cancer (i.e., breast cancer, prostate, etc.)
patients [96–98], and CT or RT has also been associated with
neurogenesis impairment and long-term cognitive deficits
in brain cancer patients [99–105]. The main idea that is
thought to contribute to the CT or RT-induced cognitive
decline is that these treatments block proliferation of NPCs
in the hippocampal and periventricular zones, which cannot
be repopulated as healthy cells die. This leads to cognitive
decline, since the NPCs help maintain neurogenesis [106–
109], repair damage from brain injury [105, 109–118], and
are important in cognition [119–121].

Besides the CT and RT mentioned above in treatment
of cancers, some pharmacological approaches that interfere
with classical cell cycle molecules or mitogenic pathways
have been examined in cancer and CNS disease therapies
(Table 1). Therapies directed at any component inhibiting
the cell cycle must be as specific as possible considering cell
cycle re-entry contributes to the proliferation of tumor cells,
the death of mature neurons, and the genesis of NPCs in
adult brain. Therefore, any therapeutics that prevent tumor
growth and/or neuronal death by blocking cell cycle re-
entry may have limited benefit because they may impair
neurogenesis and thus lead to cognitive side effects. This may
provide at least a partial explanation for the questionable
efficacy of some currently approved drugs, such as the
NMDA receptor modulator Memantine, in the clinical
treatment of AD [122], since NMDA receptor inhibition has
been shown to block progenitor cell proliferation and lead to
impaired neurogenesis [123].

The cognitive side effects may be explained by the fact
that current cell cycle inhibition strategies are not cell
specific and also block the proliferation of important brain
progenitor cells, thus impairing adult brain neurogenesis. If
drugs that block the cell cycle are used to kill tumor cells
(in treatment of cancer) and/or help protect neurons (in
treatment of CNS diseases), it is likely that compounds would
need to directly (or indirectly) block tumor and neuronal
cell cycle re-entry and yet not affect the ongoing process
of neurogenesis. This will only be possible if the signaling

mechanisms are different in NPCs that divide in the adult
brain, versus tumor cells and neurons that re-enter the cell
cycle irregularly.

6. Conclusions

Cancer and CNS diseases, two seemingly different disease
types, at least in part share the common molecular pathology
of cell cycle re-entry. With this knowledge in mind, novel
insights into cell cycle inhibition strategies to be used in
treatment of the “aberrant cell cycle diseases” may be made.
Future studies aimed at better understanding the respective
cell cycle pathways of tumor cells, neurons, and NPCs are
probably necessary before choosing the best drug targets for
treating certain “aberrant cell cycle diseases” so as to consider
the most effective benefits to the patient without causing
indirect harm in related, but different systems.
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[33] K. Lefèvre, P. G. H. Clarke, E. E. Danthe, and V. Castagné,
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targeting glutamate excitotoxicity in Alzheimer’s disease and
other dementias,” American Journal of Alzheimer’s Disease
and other Dementias, vol. 20, no. 2, pp. 77–85, 2005.

[165] D. M. Robinson and G. M. Keating, “Memantine: a review
of its use in Alzheimer’s disease,” Drugs, vol. 66, no. 11, pp.
1515–1534, 2006.



The Scientific World Journal 11

[166] A. Iraqi and T. L. Hughes, “Nightmares and memantine: a
case report and review of literature,” Journal of the American
Medical Directors Association, vol. 10, no. 1, pp. 77–78, 2009.

[167] K. Zdanys and R. R. Tampi, “A systematic review of off-
label uses of memantine for psychiatric disorders,” Progress
in Neuro-Psychopharmacology and Biological Psychiatry, vol.
32, no. 6, pp. 1362–1374, 2008.

[168] V. L. Raghavendra Rao, A. Dogan, K. G. Todd, K. K. Bowen,
and R. J. Dempsey, “Neuroprotection by memantine, a non-
competitive NMDA receptor antagonist after traumatic brain
injury in rats,” Brain Research, vol. 911, no. 1, pp. 96–100,
2001.

[169] S.-T. Lee, K. Chu, K.-H. Jung et al., “Memantine reduces
hematoma expansion in experimental intracerebral hem-
orrhage, resulting in functional improvement,” Journal of
Cerebral Blood Flow and Metabolism, vol. 26, no. 4, pp. 536–
544, 2006.

[170] C. S. Babu and M. Ramanathan, “Pre-ischemic treat-
ment with memantine reversed the neurochemical and
behavioural parameters but not energy metabolites in middle
cerebral artery occluded rats,” Pharmacology Biochemistry
and Behavior, vol. 92, no. 3, pp. 424–432, 2009.

[171] L. Yu, H. G. Garg, B. Li, R. J. Linhardt, and C. A.
Hales, “Antitumor effect of butanoylated heparin with low
anticoagulant activity on lung cancer growth in mice and
rats,” Current Cancer Drug Targets, vol. 10, no. 2, pp. 229–
241, 2010.

[172] R. Mikulı́k, M. Dufek, D. Goldemund, and M. Reif, “A pilot
study on systemic thrombolysis followed by low molecular
weight heparin in ischemic stroke,” European Journal of Neu-
rology, vol. 13, no. 10, pp. 1106–1111, 2006.

[173] Z. Sun, Z. Zhao, S. Zhao et al., “Recombinant hirudin treat-
ment modulates aquaporin-4 and aquaporin-9 expression
after intracerebral hemorrhage in vivo,” Molecular Biology
Reports, vol. 36, no. 5, pp. 1119–1127, 2009.

[174] M. Xue, M. D. Hollenberg, and V. W. Yong, “Combination
of thrombin and matrix metalloproteinase-9 exacerbates
neurotoxicity in cell culture and intracerebral hemorrhage
in mice,” Journal of Neuroscience, vol. 26, no. 40, pp. 10281–
10291, 2006.

[175] T. Goerge, A. Barg, E. M. Schnaeker et al., “Tumor-derived
matrix metalloproteinase-1 targets endothelial proteinase-
activated receptor 1 promoting endothelial cell activation,”
Cancer Research, vol. 66, no. 15, pp. 7766–7774, 2006.

[176] C. E. Junge, T. Sugawara, G. Mannaioni et al., “The contri-
bution of protease-activated receptor 1 to neuronal damage
caused by transient focal cerebral ischemia,” Proceedings of
the National Academy of Sciences of the United States of
America, vol. 100, no. 22, pp. 13019–13024, 2003.

[177] C. E. Hamill, W. M. Caudle, J. R. Richardson et al., “Exacer-
bation of dopaminergic terminal damage in a mouse model
of Parkinson’s disease by the G-protein-coupled receptor
protease-activated receptor 1,” Molecular Pharmacology, vol.
72, no. 3, pp. 653–664, 2007.

[178] M. T. Acosta, P. G. Kardel, K. S. Walsh, K. N. Rosenbaum,
G. A. Gioia, and R. J. Packer, “Lovastatin as treatment for
neurocognitive deficits in neurofibromatosis type 1: phase I
study,” Pediatric Neurology, vol. 45, no. 4, pp. 241–245, 2011.

[179] J. J. Knox, L. L. Siu, E. Chen et al., “A Phase I trial
of prolonged administration of lovastatin in patients with
recurrent or metastatic squamous cell carcinoma of the head
and neck or of the cervix,” European Journal of Cancer, vol.
41, no. 4, pp. 523–530, 2005.

[180] B. Barkan, S. Starinsky, E. Friedman, R. Stein, and Y. Kloog,
“The Ras inhibitor farnesylthiosalicylic acid as a poten-
tial therapy for neurofibromatosis type 1,” Clinical Cancer
Research, vol. 12, no. 18, pp. 5533–5542, 2006.

[181] L. Björkhem-Bergman, J. Acimovic, U. B. Torndal, P. Parini,
and L. C. Eriksson, “Lovastatin prevents carcinogenesis
in a rat model for liver cancer. Effects of ubiquinone
supplementation,” Anticancer Research, vol. 30, no. 4, pp.
1105–1112, 2010.

[182] A. Martirosyan, J. W. Clendening, C. A. Goard, and L.
Z. Penn, “Lovastatin induces apoptosis of ovarian cancer
cells and synergizes with doxorubicin: potential therapeutic
relevance,” BMC Cancer, vol. 10, article 103, 2010.

[183] J. Klawitter, T. Shokati, V. Moll, U. Christians, and J.
Klawitter, “Effects of lovastatin on breast cancer cells: a
proteo-metabonomic study,” Breast Cancer Research, vol. 12,
no. 2, article R16, 2010.

[184] J. Lee, I. Lee, C. Park, and W. K. Kang, “Lovastatin-induced
RhoA modulation and its effect on senescence in prostate
cancer cells,” Biochemical and Biophysical Research Commu-
nications, vol. 339, no. 3, pp. 748–754, 2006.

[185] I. H. Park, J. Y. Kim, J. I. Jung, and J. Y. Han, “Lovas-
tatin overcomes gefitinib resistance in human non-small cell
lung cancer cells with K-Ras mutations,” Investigational New
Drugs, vol. 28, no. 6, pp. 791–799, 2010.

[186] M. S. V. Elkind, R. L. Sacco, R. B. Macarthur et al., “The Neu-
roprotection with Statin Therapy for Acute Recovery Trial
(NeuSTART): an adaptive design phase I dose-escalation
study of high-dose lovastatin in acute ischemic stroke,”
International Journal of Stroke, vol. 3, no. 3, pp. 210–218,
2008.

[187] M. S. V. Elkind, R. L. Sacco, R. B. MacArthur et al., “High-
dose lovastatin for acute ischemic stroke: results of the phase
I dose escalation Neuroprotection with Statin Therapy for
Acute Recovery Trial (NeuSTART),” Cerebrovascular Diseases,
vol. 28, no. 3, pp. 266–275, 2009.

[188] I. V. Smirnova, B. A. Citron, P. M. Arnold, and B. W. Fes-
toff, “Neuroprotective signal transduction in model motor
neurons exposed to thrombin: G-protein modulation effects
on neurite outgrowth, Ca2+ mobilization, and apoptosis,”
Journal of Neurobiology, vol. 48, no. 2, pp. 87–100, 2001.

[189] D. D. Cunningham, “Thrombin induces apoptosis in cul-
tured neurons and astrocytes via a pathway requiring tyro-
sine kinase and RhoA activities,” Journal of Neuroscience, vol.
17, no. 14, pp. 5316–5326, 1997.

[190] C. I. Herold, V. Chadaram, B. L. Peterson et al., “Phase II
trial of dasatinib in patients with metastatic breast cancer
using real-time pharmacodynamic tissue biomarkers of Src
inhibition to escalate dosing,” Clinical Cancer Research, vol.
17, no. 18, pp. 6061–6070, 2011.

[191] A. Gucalp, J. A. Sparano, J. Caravelli et al., “Phase II
trial of saracatinib (AZD0530), an oral SRC-inhibitor for
the treatment of patients with hormone receptor-negative
metastatic breast cancer,” Clinical Breast Cancer, vol. 11, no.
5, pp. 306–311, 2011.

[192] M. Anbalagan, L. Carrier, S. Glodowski, D. Hangauer, B.
Shan, and B. G. Rowan, “KX-01, a novel Src kinase inhibitor
directed toward the peptide substrate site, synergizes with
tamoxifen in estrogen receptor alpha positive breast cancer,”
Breast Cancer Research and Treatment. In press.

[193] B. Pohorelic, R. Singh, S. Parkin et al., “Role of Src in breast
cancer cell migration and invasion in a breast cell/bone-
derived cell microenvironment,” Breast Cancer Research and
Treatment. In press.



12 The Scientific World Journal

[194] P. Ceppi, I. Rapa, M. Lo Iacono et al., “Expression and
pharmacological inhibition of thymidylate synthase and Src
kinase in nonsmall cell lung cancer,” International Journal of
Cancer. In press.

[195] G. W. Krystal, C. S. DeBerry, D. Linnekin, and J. Litz, “Lck
associates with and is activated by kit in a small cell lung
cancer cell line: inhibition of SCF-mediated growth by the
Src family kinase inhibitor PP1,” Cancer Research, vol. 58, no.
20, pp. 4660–4666, 1998.

[196] L. Kong, Z. Deng, H. Shen, and Y. Zhang, “Src family kinase
inhibitor PP2 efficiently inhibits cervical cancer cell pro-
liferation through down-regulating phospho-Src-Y416 and
phospho-EGFR-Y1173,” Molecular and Cellular Biochemistry,
vol. 348, no. 1-2, pp. 11–19, 2011.

[197] E. Fujimoto, H. Sato, Y. Nagashima et al., “A Src family
inhibitor (PP1) potentiates tumor-suppressive effect of con-
nexin 32 gene in renal cancer cells,” Life Sciences, vol. 76, no.
23, pp. 2711–2720, 2005.

[198] L. Li, C. H. Ren, S. A. Tahir, C. Ren, and T. C. Thompson,
“Caveolin-1 maintains activated Akt in prostate cancer cells
through scaffolding domain binding site interactions with
and inhibition of serine/threonine protein phosphatases PP1
and PP2A,” Molecular and Cellular Biology, vol. 23, no. 24, pp.
9389–9404, 2003.

[199] T. D. Ardizzone, X. Zhan, B. P. Ander, and F. R. Sharp, “Src
kinase inhibition improves acute outcomes after experimen-
tal intracerebral hemorrhage,” Stroke, vol. 38, no. 5, pp. 1621–
1625, 2007.

[200] I. A. Siddiqui, M. Asim, B. B. Hafeez, V. M. Adhami, R. S.
Tarapore, and H. Mukhtar, “Green tea polyphenol EGCG
blunts androgen receptor function in prostate cancer,” FASEB
Journal, vol. 25, no. 4, pp. 1198–1207, 2011.

[201] T. Sen, A. Dutta, and A. Chatterjee, “Epigallocatechin-3-
gallate (EGCG) downregulates gelatinase-B (MMP-9) by in-
volvement of FAK/ERK/NFκB and AP-1 in the human breast
cancer cell line MDA-MB-231,” Anti-Cancer Drugs, vol. 21,
no. 6, pp. 632–644, 2010.

[202] S. A. Milligan, P. Burke, D. T. Coleman et al., “The green tea
polyphenol EGCG potentiates the antiproliferative activity
of c-Met and epidermal growth factor receptor inhibitors in
non-small cell lung cancer cells,” Clinical Cancer Research,
vol. 15, no. 15, pp. 4885–4894, 2009.

[203] S. Shankar, S. Ganapathy, S. R. Hingorani, and R. K.
Srivastava, “EGCG inhibits growth, invasion, angiogenesis
and metastasis of pancreatic cancer,” Frontiers in Bioscience,
vol. 13, no. 2, pp. 440–452, 2008.

[204] S. Faderl, A. Ferrajoli, D. Harris, Q. Van, W. Priebe, and
Z. Estrov, “WP-1034, a novel JAK-STAT inhibitor, with
proapoptotic and antileukemic activity in acute myeloid
leukemia (AML),” Anticancer Research, vol. 25, no. 3 B, pp.
1841–1850, 2005.

[205] A. Shakoori, W. Mai, K. Miyashita et al., “Inhibition of GSK-
3β activity attenuates proliferation of human colon cancer
cells in rodents,” Cancer Science, vol. 98, no. 9, pp. 1388–1393,
2007.

[206] J. G. Pizarro, J. Folch, J. L. Esparza, J. Jordan, M. Pallàs, and
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