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The beneficial roles of omega-3 fatty acids (ω3-FAs) on obesity, type 2 diabetes, and other
metabolic diseases are well known. Most of these effects can be explained by their anti-
inflammatory effects triggered through their receptor, free fatty acid receptor 4 (FFAR4)
activation. Although the whole mechanism of action is not fully described yet, it has been
shown that stimulation of ω3-FA to FFAR4 is followed by receptor phosphorylation. This
makes FFAR4 to be capable of interacting with β-arrestin-2, which in turn, results in asso-
ciation of β-arrestin-2 withTAB1.This stealing of an important partaker of the inflammatory
cascade leads to interruption of the pathway, resulting in reduced inflammation. Besides
this regulation of the anti-inflammatory response, FFAR4 signaling also has been shown
to regulate glucose homeostasis, adiposity, gastrointestinal peptide secretion, and taste
preference. In this review, we summarize the current knowledge about the interaction of
ω3-FAs with FFAR4 and the consequent opportunities for the application of ω3-FAs and
possible FFAR4 targets.
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INTRODUCTION
Free fatty acids (FFAs) serve both as a source of energy and as
signaling molecules that regulate energy homeostasis and other
physiological processes (1, 2). Previous studies proposed that lipo-
toxic stress from long-chain saturated FFAs is a major cause of JNK
activation and therefore insulin resistance in obesity (3, 4). It has
also been reported that long-chain saturated FFAs, but not polyun-
saturated FFAs, induce inflammatory responses in macrophages
(5). Among polyunsaturated FFAs, omega-3 fatty acids (ω3-FAs)
have been recognized for their beneficial effects on human health
(6). These beneficial effects were found in inflammatory diseases,
cardiovascular diseases, and hepatic lipid metabolism, as well as
glucose homeostasis and insulin sensitivity (7–10). However, the
detailed mechanisms underlying the beneficial effects of ω3-FAs
have not been completely defined to date.

It is known that the ω3-FAs, such as α-linolenic acid (α-
LA), docosahexaenoic acid (DHA), and eicosapentaeonic acid
(EPA) are endogenous ligands for the free fatty acid receptor 4
(FFAR4) (11–13). FFAR4, also known as G protein-coupled recep-
tor 120 (GPR120), is a seven transmembrane receptor and was first
reported as an orphan GPCR in 2003 (14). FFAR4 exists as two
splice variants in humans (15, 16), but only the shorter variant has
been found in rodents and cynomolgus monkeys (17). Consistent
with the pleiotropic effects of ω3-FAs, FFAR4 has been implicated
in diverse processes including anti-inflammation, insulin sensiti-
zation, release of gut peptides, and alteration of food preference
(12, 13, 18–21). The wide range of processes that can be positively
influenced by FFAR4 makes this receptor of potential importance
in the prevention and treatment of metabolic diseases.

MECHANISMS
Consistent with roles in diverse processes, FFAR4 is expressed
ubiquitously including lungs, colon, small intestine, brain, thy-
mus, adipose tissue, taste buds, skeletal muscle, heart, and liver

(12, 18, 21, 22). However, the expression pattern differs between
species and also depends on the method of detection (23). Further-
more, the expression in skeletal muscle, heart, and adipose tissue
is upregulated by a high fat diet (HFD) (18, 19, 22). Despite the
variation of expression, FFAR4 seems to transduce ω3-FA signal-
ing always through one of two pathways that involve either Gαq or
β-arrestin-2 (12, 13) (Figure 1). FFAR4 coupling to Gαq induces
a rise in intracellular Ca2+ (12, 21) without affecting the level of
cyclic AMP (12). Alternatively, FFAR4 can respond to ω3-FAs by
recruiting cytosolic β-arrestin-2 to the plasma membrane, leading
to internalization of the FFAR4/β-arrestin-2 complex (13). After
internalization, β-arrestin-2 then directly associates with TGF-β
activated kinase 1 (TAK1) binding protein (TAB1), which is an
adaptor molecule for the pro-inflammatory kinase TAK1 (24).
In this way, β-arrestin-2 sequesters TAB1 from TAK1, leading to
inactivation of TAK1 and abrogation of signaling to the inflamma-
tory key-players IKKβ/NFκB and MKK4/JNK/AP1 (13). Besides
blocking the inflammatory pathway via the TAB1/TAK1 complex,
FFAR4 activation by DHA also stimulates cytosolic phospholi-
pase A2 (cPLA2) and prostaglandin-endoperoxide synthase 2, also
known as COX-2 (25). This leads to increased production of
prostaglandin E2 (PGE2), which in turn, inhibits NFκB signal-
ing through the prostaglandin E receptor 4 and therefore reduces
inflammation in macrophages as well (25).

After activation by ligands, GPCRs are phosphorylated to pro-
vide binding opportunities for certain G proteins and arrestins (26,
27). Investigating the human short isoform of FFAR4, Sánchez-
Reyes et al. (28) found that DHA and α-LA induce phosphoryla-
tion of FFAR4 by protein kinase C (PKC), leading to increase of
intracellular Ca2+ concentration. However, recent studies of the
long isoform of FFAR4 by Burns et al. (29) showed that basal as
well as heterologous FFAR4 phosphorylation is mediated by PKC,
while DHA-induced phosphorylation is accomplished by GPCR
kinase 6 (GRK6). Interestingly, mutation of the FFAR4 C-terminal
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FIGURE 1 | Free fatty acid receptor 4 functions as an ω3-FA receptor/
sensor to mediate broad anti-inflammatory and insulin sensitization
effects.

phosphorylation sites leads to enhanced Gαq/11 signaling while
impairing β-arrestin-2 recruitment to the cell membrane. How-
ever, Burns et al. (15) also found that the human short and long
isoforms differ in their basal levels of phosphorylation, raising the
possibility that the short isoform is more constitutively active. In
the activated state though, both isoforms show comparable extent
of phosphorylation. While the long isoform is proposed by Wat-
son et al. to bind with greater affinity to β-arrestin-2 (16), a partial
loss of function is proposed for the long isoform by Hirasawa et al.
(12) and Moore et al. (17).

TISSUE-SPECIFIC FUNCTIONS
Due to the divergence of the reported functions, FFAR4 shows
tissue-specific activities, which needs to be taken into account
particularly for the development of pharmaceutical intervention.
Therefore, a tissue-specific knockout (KO) mouse would be of
high interest to discover precisely where certain effects of FFAR4
impact. This is critical for the development of agents that target
inflammation, insulin resistance, and as a result, type 2 diabetes.
However, no conditional FFAR4 KO mouse is available to date
and mouse models cannot be used to investigate the function of
the long isoform of FFAR4, which is unique to humans. Given
the known differential phosphorylation of the two isoforms (15),
their functions and regulation likely differ, which will have to be
addressed in human tissues and cell lines.

ADIPOGENESIS
Free fatty acid receptor 4 expression is undetectable in
preadipocytes (18, 30) but increases during adipogenic differenti-
ation (18, 30), and becomes highly abundant in mature adipocytes
and adipose tissue (13, 18, 19). The expression in adipose tissue
is further increased by diet-induced obesity in mice and humans
(18, 19). Conversely, knockdown of FFAR4 using siRNA reduces
the expression of adipogenic markers and therefore impairs the
accumulation of lipids in 3T3-L1 adipocytes (18). Although these
findings suggest a pro-adipogenic function of FFAR4, FFAR4-
deficient mice are actually more prone to diet-induced obesity

than wild type littermates (19), consistent with an anti-obesity
function of FFAR4.

It should be mentioned that discordant phenotypes of FFAR4
KO mice have been reported using two different mouse models.
Thus, the body weight of FFAR4 KO mice is either increased (19)
or unaffected (31) on HFD, and the insulin sensitivity is either
decreased (31) or unaffected (19) on chow diet between wild type
and KO mice (13, 32). Being all on the same C57BL/6 background,
the mice seem to be either the N or the sub-lines, which might
explain the varying findings. However, all models consistently
establish the key site of FFAR4 action to be the adipose tissue,
where ω3-FAs clearly exert FFAR4-dependent anti-diabetic effects
in adipocytes and macrophages (13, 18, 19).

INFLAMMATION
Omega-3 FAs have tissue-specific as well as systemic anti-
inflammatory effects (33). FFAR4 is key to these benefits in adipose
tissue macrophages, which abundantly express this receptor. Fur-
thermore, FFAR4 expression in macrophages is induced upon
obesity. It was shown that its activation by ω3-FAs in mice fed
with HFD supplemented with ω3-FAs leads to the suppression
of macrophage infiltration into adipose tissue (13). Addition-
ally, ω3-FAs shift the distribution of macrophages in favor of
the anti-inflammatory M2 macrophages at the expense of the
pro-inflammatory M1 macrophages (13). In the brain, intrac-
erebroventricularly injection of either ω3- or ω9-FAs induces
FFAR4/β-arrestin-2 coupling followed by the release of TAK1
from TAB1, leading to attenuation of the inflammatory pathway
(34). Additionally, Wellhauser et al. showed the anti-inflammatory
effects of FFAR4 activation in immortalized hypothalamic neu-
rons (35). This is of importance as on HFD that hypothala-
mus becomes inflamed and fails to regulate energy homeostasis
through regulating glucose handling, feeding, and therefore, body
weight.

Finally, FFAR4 activation also leads to improvement of non-
alcoholic fatty liver disease (NAFLD) in children (36). In more
detail, Nobili et al. detected FFAR4 expression in hepatocytes, liver
macrophages, and liver progenitor cells. DHA treatment of chil-
dren suffering from NAFLD increased the FFAR4 expression in
hepatocytes and reduced nuclear NFκB translocation in hepato-
cytes and liver macrophages, as well as reduced hepatic progenitor
cell activation and the number of inflamed macrophages in the
liver (36). Accordingly, ω3-FAs also protect liver from ischemic
reperfusion injury (IRI), a complication of liver surgery. Treat-
ment with Omegaven®, a pharmaceutical ω3 formulation, reduces
NFκB and JNK response and shifts the macrophage population
from M1 to M2 (37).

INSULIN SIGNALING
Besides the food intake and digestive influences of FFAR4 acti-
vation by ω3-FAs, increased gut glucagon-like peptide 1 (GLP-
1) secretion increases pancreatic insulin secretion, leading to
enhanced glucose uptake in skeletal and cardiac muscle (38, 39).
Whether FFAR4/ω3-FAs play a cell-autonomous role in muscle,
the major site of insulin-stimulated glucose uptake and systemic
insulin action (40, 41), has yet to be investigated in detail, as
Cornall et al. (22) found FFAR4 expression increased in skeletal
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and cardiac muscle of rats on HFD, while no expression was
detected in L6 myocytes (13). Nevertheless, it has been shown
that FFAR4 activation by ω3-FAs leads to insulin sensitization
in vivo and also alleviates glucose intolerance in diet-induced obese
mice (13, 19). Although the anti-inflammatory effects of ω3-FAs
require FFAR4 coupling to β-arrestin-2, the hypoglycemic effect
of insulin requires Gαq signaling that leads to translocation of
the glucose transporter GLUT4 (13). Conversely, FFAR4 KO mice
show reduced phosphorylation of IRβ and IRS-1 in white adipose
tissue and of IRS-1 and -2 in liver, which are all important regula-
tors for glucose uptake (19). Not surprisingly, these mice develop
hyperglycemia, glucose intolerance, and insulin resistance when
challenged with a HFD (19).

GASTROINTESTINAL REGULATION
Gastrointestinal peptides are known to regulate food intake,energy
metabolism, and body weight (42–47). Activation of FFAR4 by
ω3-FAs has been shown to either reduce or induce the secretion
of several gastrointestinal peptides. For example, FFAR4 activation
decreases the secretion of ghrelin, an endogenous growth hormone
secretagogue that stimulates hunger (48, 49). Additionally, FFAR4
was shown to induce the secretion of GLP-1 and cholecystokinin
(CCK) (12, 20, 21). GLP-1 is an insulinotropic, anorectic peptide
that reduces gastric emptying and motility (43, 44). CCK is sim-
ilar to GLP-1 in that it inhibits gastric motility, but in addition
it inhibits gastric secretion while promoting pancreatic secretion
and gallbladder contraction (50). It was shown by Stone et al. that
FFAR4 activation leads to decreased somatostatin secretion (51),
which in turn, can increase insulin and glucagon secretion as well
as gastric emptying. This is in sharp contrast to the recent find-
ing by Suckow et al. of increased glucagon secretion in FFAR4 KO
mice (32).

Unfortunately, some of these findings are contradictory.
Although several groups demonstrated FFAR4 expression in islets
(52–54), there is no consensus on the site of action, like influencing
secretion of GLP-1, glucagon, or somatostatin, and even the cell
type in which it is expressed most, is contradictory (21, 32, 51).

TASTE PREFERENCES
Free fatty acid receptor 4 is abundantly expressed in several types
of taste bud cells (55–57) and therefore can be activated directly
by dietary ω3-FAs. Although detailed investigation is needed, it
seems that FFAR4 might dictate spontaneous preference for spe-
cific dietary fats (31) that are abundant in energy-dense foods
(58). However, Ozdener et al. (57) found that CD36 is the primary
receptor for fat taste, while FFAR4 senses excess supply of FAs as
in HFD.

SYNTHETIC LIGANDS OF FFAR4
Like FFAR4, FFAR1 (a.k.a. GPR40) is a receptor for long-chain
ω3-FAs. Although the two receptors share endogenous as well as
several synthetic agonists (11), like the PPARγ derivate GW9508
(59, 60), a few ligands are known to be partly or more selective for
FFAR4 than FFAR1, namely grifolic acid, NCG21, GSK137647A,
and TUG-891 (61–64). However, the relatively low efficacy of
these known synthetic agonists in several measured outputs
raises questions whether these can be therapeutically relevant
molecules.

PERSPECTIVE
Solving the mechanism of FFAR4/ω3-FAs might lead to a more
directed and therefore more potent way of fish oil supplemen-
tation. But besides that, the understanding of the mechanism
hopefully will lead to the development of a more FFAR4-specific,
high affinity agonist. The direct activation of FFAR4 itself is
of special interest, as FFAR4 is a “druggable” GPCR. Unfortu-
nately, to date, there are no FFAR4-specific agonists that spare
other GPCRs like FFAR1, which leads to off-target effects. It
might be possible to develop an FFAR4 agonist that is tissue-
, pathway-, or isoform-specific and therefore provides anti-
inflammatory/insulin-sensitizing effects. Taken together, finding
of an FFAR4-specific agonist will be a new therapeutic approach
for the treatment of both metabolic and inflammatory diseases.
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