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Abstract: The polymeric composite material with desirable features can be gained by selecting
suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters
can be modified according to the design requirements, such as chemical structure, degradation
kinetics, and biopolymer composites’ mechanical properties. The interfacial interactions between
the biopolymer and the nanofiller have substantial control over biopolymer composites’ mechanical
characteristics. This review focuses on different applications of biopolymeric composites in controlled
drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric
composite materials are required with advanced and multifunctional properties in the biomedical
field and regenerative medicines with a complete analysis of routine biomaterials with enhanced
biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug
delivery, and wound dressing have been mentioned. These results need to be reviewed for possible
development and analysis, which makes an essential study.

Keywords: biopolymers; composite materials; tissue engineering; regenerative materials;
wound dressing

1. Introduction

Recently, biopolymers have attained enormous attention with perspective multifunc-
tional and high-performance biocomposites having a low environmental impact with
unique properties like, abundantly available, renewable, eco-friendly, and lightweight.
Biopolymeric composites should substitute synthetic materials in optics, biochemistry,
and biomedical engineering with versatile applications, and investment and research on
these materials increase significantly. Biopolymers and biodegradable synthetic polymers
have attracted researchers’ enormous attention in recent years [1,2]. Such materials have
shown a significant role in synthesizing various biomaterials to serve diverse applications
in medical science. The ‘green’, sustainable, biodegradable, and ‘eco-friendly’ polymeric
composite materials with renewable and recyclable potential are desired in biomedical
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applications. Environmental protection is a motivating impulse behind such production of
polymeric composites [3]. As recycling approaches are very expensive, the environmental
factors related to continuous plastic-based pollution are causing serious global concerns.

Furthermore, the oil resources are limited and costly, thus adding to the recycling
problems. Biopolymeric composite materials will potentially resolve the environmental
sustainability-pollution conflicts and will decrease fossil fuel dependency [4,5]. Thus, the
emphasis was laid on biocompatible and biodegradable polymeric composite materials.

Production of durable, stronger, and lightweight multifunctional biopolymeric materials
is desired for biomedical applications. However, developing or choosing approaches to meet
the architectural design challenges requires a compromise between visions and objectives,
usually conflicting in novel biomaterials [6,7]. It can be further discussing as follows.

(i) Biopolymers: Types of polymers obtained from biological resources, such as living
organisms and plants. These are also known as biological macromolecules, biological
polymers, or biopolymers.

(ii) Derived biopolymers are polymers that are chemically modified, and their monomers
are derived from biopolymers as a starting material like polysaccharides, polypep-
tides, and other biopolymers.

2. Biopolymers

The polymers obtained from living resources or biological origin, including plants,
animals, or microorganisms, and their system biology processes are called natural polymers.
Carbohydrates, i.e., arabinoxylan, chitosan and starch, proteins, e.g., gelatin and keratin,
and polyhydroxyalkanoates (PHAs) such as poly-(3-hydroxybutyrate) [P(3HB)], are all
known as biopolymers [8]. Biopolymeric composite materials’ synthesis employs one
or more biopolymers to enhance structural and functional properties in the resulting
composites [9]. A biopolymer’s composition influences its functional properties, whereas
functional potential depends largely on the crystalline or amorphous materials’ behavior.
For example, cellulose is a structural polymer where its features are partly due to its
crystalline nature.

Nonetheless, physical, chemical, and biological action can turn them into useful mul-
tifunctional materials for several purposeful applications [10]. The chemically altered
biopolymers, e.g., thiolated arabinoxylan and cellulose acetate, were used in several po-
tential medical and a wide range of applications as shown in the Figure 1. Modified
polysaccharides have been extensively used in paint, cement, adhesives, cosmetics, antibac-
terial coating, medicines, and many other products [11,12].
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Chitosan is a well-known compound from the carbohydrate polysaccharide family.
It has gained popularity due to bio-sustainability, biodegradability, and compatibility in
various fields. It is easily produced from marine sources (lobsters, crabs, shrimp, etc.)
and can be used in different biopolymeric composite materials [13]. Among the carbohy-
drates, arabinoxylan is also a well-known bio-polymers with several potential medicinal
applications [14,15]. There are many problems to be considered, such as technical and
manufacturing issues before the widespread use of bio-sustainable polymers is possible. An
essential obstacle to the broader use of biopolymers in various sectors is their functional
characteristics that appear to be unfavorable compared with established petroleum-based
polymers. For example, their performance is lower than that of plastic materials since the
structural nature of a part of biopolymers with single bonds leads to lower mechanical
characteristics [16,17]. These deficiencies can be resolved in various ways, such as grafting,
mixing, blending, and reinforcing with other appropriate polymers and ceramics.

Biopolymer Types

Polymeric composites come from a wide range of sources, from common synthetic
materials (petroleum-based) including polystyrene to natural biopolymers like cellulose,
proteins, and microbial polyesters, which are important for biological structure and func-
tion [18,19]. A broader spectrum of these polymeric materials has been categorized as nat-
ural or synthetic according to their source’s nature, as presented in Figure 2. Biopolymers
or bio-based polymer composites can be classified into three main categories, depending
on their source.
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Category 2: Polymers obtained from standard chemical processing using renewable
biopolymer originated monomers such as polylactic acid (PLA), cellulose acetate (CA), etc.,
are produced through the fermentation of carbohydrate feedstock.

Category 3: Polymers acquired from microorganisms processing, e.g., mainly PHAs,
but bacterial cellulose is under development.

3. Bio-Composites

A composite is a generally recognized material composed of one to several different
materials or polymers with a marked difference in chemical or physical properties. Compos-
ites are used to produce customized properties through enhancing or imparting certain fea-
tures that cannot be demonstrated by particular homogeneous substances. When polymeric
composites contain specific biological phases, they are defined as bio-composites [20–22].
Biocomposite materials are synthesized from natural or bio-derived polymers, e.g., chi-
tosan, arabinoxylan, PHAs, or PLA. Efficient and sustainable bio-composites produced
from biopolymeric/natural materials and degradable inorganic fillers are called green
composite materials. They are the subject of attention because of environmental issues
and regulations [23,24]. Bio-based composite materials have currently been produced to
target issues in various sectors, like bio-based packaging, biomedical, pharmacy, textile,
paper, and others, etc. [25,26]. It started resolving the increasing environmental challenges
globally raised by unsustainable non-renewable petroleum resources. Due to growing
environmental awareness and regulatory agencies’ requirements, the production and uti-
lization of conventional synthetically manufactured polymers or composite structures
are more critically considered [27]. Biopolymers are quite stable materials obtained from
various natural resources. They are biodegradable and can be easily recycled, commercially
and ecologically viable, and therefore labelled as bio-sustainable products. Environmental
factors and microbial decomposition help them degrade to a favorable environment after
disposal [25]. The composites of biopolymers, which are biodegradable as well as biocom-
patible, are termed as “green biocomposites”. Different green biocomposites are reported
with numerous inorganic fillers, which includes titania, silica and alumina, etc. [28,29].
Bio-plastic developments delivered a range of feasible and environment friendly products
to perform on market already lead by the petroleum based synthetic materials [25].

4. Biomedical Applications of Biopolymeric Composite Material

The biopolymers like arabinoxylan, chitosan, guar gum, and xyloglucan have potential
benefits over synthetic polymers. These provide a fundamental variety of alternatives in
biomedical science for efficient polymeric biomaterials and composite materials. Polysac-
charides are potential candidates to give multi-functional, biocompatible, mechanically
stable, sustainable, and biodegradable materials. Henceforth, they are emerging as ideal
candidates for synthesizing novel composite materials, offering therapeutic efficacy and
controlled drug release pertinent for several biomedical applications, and wound remedial
and tissue engineering [30]. The polysaccharide-based biopolymeric composites can be
employed to fabricate numerous biomaterials like films, fibres, hydrogel, and scaffolds
with multifunctional approaches in biomedical engineering.

4.1. Drug Delivery

Composites based on polysaccharides, including arabinoxylan, chitosan, and xy-
loglucan have exhibited an innovative potential as carriers to deliver therapeutic agents,
including genes, biomolecules, and biological drugs, as shown in Figure 2. These are used
as drug carriers for cancer treatment, cartilage repair, and vascular grafts with excellent
biocompatibility, low cytotoxicity, non-antigenicity, process-ability, reversible charging, and
releasing mechanisms. Emulsification, gel formation, foaming, and moisture absorption
capacities are other assets that enhance their drug delivery application [31–33]. Due to their
unique mechanical and crosslinking characteristics, desirable biodegradation in different
media, and on the targeted sites, these polymeric materials have also been recognized
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as efficient controlled drug delivery systems [34]. Such biomaterials can be synthesized
directly or are incorporated with multifunctional characteristics to engineer specific and
targeted sites on resulting nanocarriers. Some reported biomaterials varieties are based on
chitosan, guar gum, and arabinoxylan, etc., and have been used efficiently as hydrogels,
films, tubes, microspheres, and microneedles [35].

Controlled drug delivery aims to administer therapeutic agents at a steady speed and
maintain the effective therapeutic window at the targeted site, usually in blood. It offers
economic and desirable therapeutic results that decrease or remove dose-related adverse
side effects and toxicity complications and increase patient recovery and comfort. It is
believed that the most desirable drug features from biomaterial systems are controlled
degradation and sustainable release after accumulation at the targeted site [36]. This
controlled release of embedded drugs or any therapeutic agents can be regulated mostly
by a trigger such as a temperature, pH, and concentration of ions [30]. In general, the
difference between the extracellular matrix’s pH for healthy tissues is 7.4, and in cancer
tissues, it is 6.5. Consequently, pH-sensitive polymeric medicines have been efficiently
developed for targeted cancer drug delivery [37,38].

The targeted drug delivery system usually needs to activate the cellular sites for a con-
trolled release of therapeutic payloads. Accordingly, a customized drug delivery approach
needs to optimize precursors’ synthesis or functionalization, composite manufacturing con-
ditions, and drug encapsulation strategy to fit well with the desired release kinetics [39,40].
Henceforth, all parameters such as size, shape, surface morphology, bioavailability, and
biodegradability should be suitable and site-specific to deliver drugs or other nutrients
at the targeted site with a controlled rate and dosage [41–44]. The biomimetic polymeric
nanoparticles were synthesized with different sizes and achieved an effective loading
of therapeutic agents. Such precise nano drug-carriers helped for molecular imaging of
inflamed sites and resolved potential inflammations and immune responses [45,46].

4.2. Tissue Engineering

Tissue engineering involves the synthesis of biomaterial scaffolds to treat or regenerate
defective tissue, as illustrated in Figure 3. It requires polymeric composite materials with
the required composition, desired engineering properties, and adequate physicochemical
behavior to support biological tissue growth [47]. After being listed as a subfield of
biomaterials, it has grown in depth and significance like an advanced field of its own. Since
tissue engineering addresses various applications, the effect is generally associated with
applications that replace, repair, or reconstruct part or whole tissue (i.e., bone, cartilage,
blood vessels, bladder, skin, muscle, etc.) [48,49]. The tissues concerned often require that
certain architectural, morphological, and mechanical properties work properly. Tissue
engineering term has also been used to incorporate complex biochemical pathways via cells
within the artificially generated protection and support system (e.g., skin, hip replacement,
etc.). A schematic diagram has been presented of the role of different biomaterials in tissue
engineering in Figure 3.

Tissue engineering was, therefore classified into two types:
Bone tissue engineering.
Skin tissue engineering.
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4.2.1. Bone Tissue Engineering

Bone tissue engineering (BTE) is a capable technique that aims at 3D bone scaffolding,
containing viable cells and bioactive molecules [50]. BTE focuses on the skeletal structure’s
perception, bone dynamics for tissue regeneration as it improves clinical abilities to treat
disturbing skeletal and segmental abnormalities [51]. In other cases, the modern science
of bone biochemistry and its development is necessary if bone tissue is to be effectively
regenerated or restored. A bone may serve a wide multifunctional range that leads to
physiological and endocrine stimulation.

Bones constitute the basis of our physical locomotion.
Bones support our load-bearing skeleton and our internal organs with safety.
The bones retain the necessary biological elements for hematopoiesis.
The bones adsorb highly toxic metals due to a porous matrix.
Bones retain vital electrolytes homeostasis by storing calcium and phosphate ions.
The bone undergoes a continuous resorption and reconstruction process that under-

goes the exchange of chemicals and structural remodelling due to internal intermediaries
and external mechanical standards. Bone was historically and most accurately named the
ultimate intelligent material because of its scarce regenerative adaptability. Functional bone
tissue engineering includes the fusion of the newly healed bone with the adjacent host
bone and, most significantly, the native bone functions [52–54]. The bone is an extremely
complex tissue due to functional and architectural diversity. The bone extracellular matrix
(ECM) particularly consists of both an organic non-mineralized matrix and an inorganic
mineralized component. The nanocomposite structure is important for the compressive
strength needed and thigh bone fracture resistance and load-bearing applications [55,56]. In
either case, cellular mesenchymal condensation occurs firstly that acts mostly as a platform
for osteogenesis, and mesenchymal progenitor cells, extracellular matrix development
is necessary. These cells differentiate in osteoblasts and ultimately build portions of the
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mandible, clavicle, and several other cranial bones. Furthermore, endochondral bone
formation forms a substantial portion of bones. This technique includes the first differenti-
ation of mesenchymal progenitors into the chondrocytes responsible for the deposition of a
cartilage template that is later mineralized and replaced by bone [57–59].

Various engineering methodologies could include adequate extracellular matrix
molecules or adherent ligands that stimulate stem cells and mediate earlier to regen-
erate bone tissues. Bone tissue engineering should be aimed at fabricating scaffolds
to promote angiogenesis that incorporates growth factors and has the porous structure
needed for vascular growth [60,61]. Tissue engineering of these scaffolds with micro and
nano-meter surface morphology is essential for cellular adhesion, proliferation, and dif-
ferentiation [62,63]. More broadly, the development of polymeric scaffolds can enhance
osteogenesis that encourages the remodelling of tissues. Effective bone regeneration needs
to support the function of bone tissue.

Subsequently, bone tissue therapies in hospitals need a more definitive strategy, such as
using in-vitro scaffold regeneration machines to restore bone functions in vivo. 3D printing
or additive manufacturing (AM) has been frequently used in different industries, including
construction, design and development, biomechanical, and tissue engineering [64,65]. The
key advantage of 3D printing is the opportunity to produce complicated shapes, as it can
produce parts of different sizes from micro to macro and allow fast prototyping. Producing
products via 3D printing has reduced the additional costs, and personalized products can
be printed in small quantities [66]. The most common materials involved in 3D printing
are polymers, metals, ceramics, and concrete [65].

Nonetheless, poly(lactic) acid (PLA) is among the synthetic polymers used primarily
for 3D scaffold printing [67]. It is necessary to choose the right biopolymer to have the
desired tissue engineering features, and the scaffold may work properly after implanta-
tion [61]. Some ideal composite biomaterials based on biopolymers have been reported as
a better option for the potential tissue engineering system (Table 1).

Table 1. Polymeric composite materials in tissue engineering.

Sr. No Polymers Salient Features References

1. Chitosan Biodegradable, biocompatible, antibacterial, cytocompatible, bioactive [68–71]
2. Gelatin Bioactive, biocompatible, hemocompatible, cell adherence, anti-thrombogenic [72–75]
3. Arabinoxylan Biocompatible, antibacterial, cell adherence, bioactive, cell proliferation [14,76,77]
4. Collagen Biodegradable, fibrous, biodegradable, cell proliferation [70,78–80]
5. Xyloglucan Cell proliferation, biodegradable, cell differentiation, biocompatible [81,82]
6. Fibrinogen Biocompatible, hemocompatibility, cell proliferation, biodegradable, cytocompatible [83–86]
7. Hyaluronic acid Bioactive, cell adherence, cell proliferation, cell differentiation, biocompatible [87–90]
8. Beta-glucan Biocompatible, bioactive, biodegradable, antibacterial, mechanical [91–93]

4.2.2. Skin Tissue Engineering

The skin is considered one of the most sensitive organs due to its multi-functional
roles, such as acting as a protecting enclosure for internal organs’ safety, regulating the
body’s temperature, and acting as a sense organ [93,94]. Normal skin consists of three
components known as epidermis, dermis, and hypodermis.

The outmost waterproof layer is the epidermis, which acts as a defensive barricade
against pathogens and foreign materials, and plays a critical role in body temperature and
humidity regulation [95,96]. Keratinocytes make up more than 90% of most cells of the
epidermis. The majority of the epidermal cell population is dominated by Langerhans,
Melanocytes, and Merkel cells [97]. Dermis makes up about 90% of the skin’s weight and
forms the skin’s base [95,98]. It is a soft tissue composed of extracellular matrix (ECM),
many types of cells, glands, and hair follicles. The dermis layer is well-vascularized
by blood vessels and contains nerve endings. Fibroblasts are the largest dermal cells,
which contain collagen and elastin, and provide mechanical strength and elasticity to
the skin [99,100]. The hypodermis is a deeper level of elastic fibrous tissue with mucous
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properties, skin cells that store fat, blood vessels, and nerves [101,102]. Traumas such as
physical piercing, poisoning, fire, disease, or surgery damage this main organ and lead
to the vital organs at risk of infection, injury, or dehydration. Skin replacement tissue
engineering provides a potential basis for better care in the fight against chronic and acute
skin wounds [103,104]. However, as the mechanical and physiological parameters of active
skin concerns, the skin tissue engineering necessitates having a cell base and simulated
extracellular matrix (ECM) to communicate with the surrounding tissue [105]. There are
currently no major skin prototypes that accurately reproduce the structure, composition,
organic consistency, or visual atmosphere of natural skin. Skin alternatives may have
important features as easy to use and specific to the type or the position of the wound.
These biomaterials have adequate aquatic fluidity and special adherents towards host
sites [106,107]. They have sufficient biochemical and mechanical properties, have controlled
deprivation, are disinfected, non-toxic and non-antigenic, and have negligible inflammatory
effects. They can also join the congregation with minimal harm and angiogenesis pain
while still at operating costs. The ultimate goal of tissue engineering is to attain the
maximum of these requirements to prepare smart skin replacements [97,108–110]. Earlier
skin replacements faced failure, contamination, and defects, which led to the restricted
use of autographs and allografts. Recently, synthesized skin substitutes have developed
with the multifunctional properties. Henceforth, the extension of an imitated skin provides
relief for patients with burns and other skin-related disorders [111–113]. These studies
provide a summary of the improvements and potential alternative materials for skin care
and treatment to regenerate targeted tissues.

Autologous keratinocytes are formed and grown in interconnected layers of the
epithelium, and these are substituted for those with large skin deficiencies. Approximately,
after more than 140 replications, we can isolate clonogenic keratinocytes or holoclones
from the skin and gradually increase culture. In many studies related to tissue engineering,
polymeric materials have multifunctional properties to support stem-cell growth and
differentiation. These studies have been proved multifunctional properties of polymeric
material to grow stem cells based on their abilities to regenerate various skin lines [114,115].
The stem cells embedded in epidermal layers promote the repair and regeneration of the
epidermis. The growth of epidermal stem cells in allogeneic dermis or fibrin has proved
suitable for quick growth and regeneration processes [116]. Growing epidermal stem
cells as autologous sheets to cover the major epithelial area, in cases such as burns, take
only more than a few weeks [103,117]. In this way, mounting stem cells on a polymeric
material from a minor skin biopsy reduces the time required to label outsized epithelial
layers. Besides, fibrin or allogeneic dermis epidermal stem cells maintain their wound
healing ability [118,119]. Somehow, such epidermal stem cell implants lack adequate
skin regeneration. Efforts to integrate the sophisticated epidermal parts such as hair
follicles, sweat glands, and sebaceous glands could not meet success, which indicates
that multifaceted connexions of epithelial and mesenchymal layers are important for the
generation of additions [120,121]. Furthermore, the polymeric composite materials do not
reinstate the novel skin’s electronic properties or visual structure. Changes in stem cell
biology and skin morphogenesis are necessary for extending skin developments, delivering
the usual usefulness and aesthetics of healthy skin [122].

4.3. Wounds Healing

Wounds are an irregular skin puncture, breakage, or deformity of the skin due to
thermal/physical damage or chronic disease [123]. Depending on the healing technique,
the wounds may be listed as chronic or acute wounds. Chronic wounds are mainly tissue
lesions that appear to settle completely, typically within 8 to 12 weeks. Acute injuries
continue to reappear and still have a recovery time of more than 12 weeks [124–126].
Different neural aspects can lead to impaired wound healing of a wound or an inability to
heal properly. Examples of chronic wounds include bedsores (ischemic or venous) and leg
ulcers [127,128]. Skin layers and contaminated sites are used as a basis for wound gradation,
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and surface wounds involve only the epidermal skin surface. The word “partial-thickness
wound” refers to injuries affecting the epidermis, deep epidermis layer, muscles, soft tissue,
and follicles. Besides the epidermis and the dermal surface, wounds of maximum thickness
are associated with subcutaneous fat or deep tissue [129–131].

The physiological regeneration of wounds includes coordinated cooperation between
different biological systems. It comprises a cascade of regulated activities to heal a wound
completely. Hysteresis and blood clotting begins as a lesion, occurs in any part of the body,
and the main objective of such processes is to prevent instant exsanguinations. This lesion
is also a secondary long-term target and a matrix for adhesion to invading cells [132,133].
Homeostasis and the quantity of fibrin produced at the injury site are dependent on
a properly regulated balance of the endothelial cells, thrombocytes, coagulation, and
fibrinolysis. Vascularization is caused by the neurological reflex system in impaired vessels,
thereby blocking blood flow for several minutes. Homeostatic behaviors and proliferation
and differentiation cause the waterfall of coagulation [134,135]. Platelets bind to the
extracellular matrix when blood spills, inducing the clotting factor’s release: fibronectin,
fibrin, vitronectin, and thrombospondin. Clotting retains homeostasis and a matrix for
migrating cells in corresponding to homeostatic and inflammatory procedures [136–138].

Many biopolymers, including fibrous proteins and various polysaccharides, are com-
monly engaged in wound care and treatment. These biocompatible, biodegradable poly-
meric matrixes maintain an atmosphere analogous to the extracellular environment and
speed up the usually slow wound healing process [15,139,140]. The biopolymeric matrix
offers an excellent micro-environment for cell adhesion, proliferation, cell migration, and
differentiation. Three-dimensional crosslinked polymeric networks can maintain enough
moisture and oxygen-based on wound treatment materials made from biopolymers at
the wound site. The wound healing dressings promote regeneration, prevention, and
protection of the wound, especially from severe disease-causing pathogens. It is important
for repairing and regenerating the dermal and epidermal tissues [141]. These wound
healing materials are recognized as hydrogels that can be packed with spatially and tempo-
rally regulated cells, medicines, and peptides for localized therapeutic delivery [142,143].
Biopolymeric based potential biomaterial has been summarized in Table 2.

Table 2. Biopolymeric materials as a potential biomaterial in wound healing.

Sr. No Polymers Salient Features References

1. Arabinoxylan/guar
gum/gelatin/collagen

antibacterial, biocompatible, biodegradable, bioactive,
sustained drug release, cell proliferation [15,144–147]

2. Beta-glucan/chitosan biocompatible, antibacterial, cell proliferation, bioactive,
bioactive molecule release, adherence [148–154]

3. Alginate/Fibrinogen/
Hyaluronic acid/xyloglucan

Fibrous protein, biocompatible, biodegradable, fibrous,
antibacterial, cell adherence, cell proliferation [155–163]

4. Bacterial cellulose/pectin/carrageenan antibacterial, cell adherence, cell differentiation,
biocompatible, bioactive, cytocompatible [164–169]

5. Fucoidan/Silk sericin/keratin anti-coagulant, anti-inflammatory, anti-viral, anti-tumor,
anti-thrombic [170–176]

6. Bovine serum/agar/
Acetobacter xylinum

cell proliferation, cell adherence, biocompatible,
bioactive, antibacterial, cytocompatible [164,177–182]

Hydrogels were utilized in biomedical research and clinical applications, including tissue
engineering, regenerative medicine, cancer treatment, infectious diseases, controlled drug
delivery, and peptide delivery [183,184]. The loading and subsequent release of bioactive
molecules into hydrogels can be managed by regulating the crosslinking rate, which results
in many pharmacokinetics control options for developing optimum hydrogel-releasing ther-
apeutics agents or bioactive molecules [185–188]. Hydrogels can progressively elucidate
chemotherapeutic drugs in local settings, which can help to discharge therapeutic agents



Molecules 2021, 26, 619 10 of 19

systemically. The high moisture content of hydrogels and the physicochemical and biological
similarities with the native extracellular atmosphere make them principally biocompatible and
practicable for substantial therapeutic applications [189,190]. Hydrogels conform to the shape
of the application site, making the formulation of loaded hydrogels much more clinically
feasible in biomedical applications. While poly (ethylene glycol) (PEG) use in hydrogels
was considered to be extremely biocompatible, e.g., PEG hydrogels, PEG-based hydrogels
improve fibroblast growth rates [191,192]. PEG’s high systemic biocompatibility and use
of ECM-derived biomaterials improve cellular growth distribution. As a result, PEG-based
crosslinked hydrogels evolve as multifunctional materials for wound care technology with
favorable loaded materials like cells, drugs, and peptides [193–195].

5. Advanced Functional Biomaterials

A better understanding of the sequential, structural, and functional characteristics of natu-
ral polymers plays a substantial role in designing and synthesizing multifunctional polymeric
materials. These advanced artificial biomaterials have abilities of self-assembly and stimuli
response under certain conditions to promote cell interaction and proliferation [196–198].
The complexity of post-transcriptional alterations restricted the synthesis of advanced and
multifunctional protein biomaterials utilizing bacterial resources, and the paradox of tar-
get genes being inserted into the sequences. Other modifications were designed to control
spatial and temporal releases correctly. Advances in gene therapy and DNA manipula-
tion methods have enabled structural, and de novo design developments for protein-based
biomaterials [199–201]. These allowed the development of polymer composites of nano-size
with considerable physicochemical and biochemical properties. These characteristics can be
linked to essential design modules from a modular field of composite polymeric materials
such as collagen, elastin, silk, and resilin [202–204]. The structure of such synthesized bioma-
terials is associated with great versatility, such as cell-binding sites and enzymatic domains,
due to the presence of multi-functional domains on protein structure.

Recent developments in genetic engineering have promised the design and synthesis
of advanced biomaterials based on artificial proteins. These biomaterials have unique
performance compared to their native counterparts, such as enhancing the self-assembly
into the fibrous structures [205,206]. Different cloning pathways, such as yeast, bacteria,
plant, and mammalian cells have already been studied to express native and synthetic
protein-based biopolymers [141]. These biopolymers imitate proteins’ primary modular
structure having distinct physicochemical and biological characterizations [207–209]. Es-
cherichia coli (E. coli) is widely used to manufacture protein biopolymers such as silk,
elastin, resilience, and other biomimetic proteins [144].

6. Conclusions and Future Directions

This review article aims to address the possible biopolymers, biocomposite materi-
als, and potential applications in drug release, tissue engineering, wound healing, and
advanced functional biomaterial. Previously, petroleum-based synthetic polymers were
considered the best biomaterials in tissue engineering and regenerative medicines. Still,
due to depletion in resources, biodegradability, eco-friendly and environmental sustainabil-
ity make scientists and research to replace them with other biopolymers. The biopolymers
are the best substitutes for synthetic polymers obtained from petroleum with considerable
renewable, biodegradable, environmental, and eco-friendly properties. The biopolymers
don’t support mechanical properties like high tensile strength, impact strength, flexu-
ral strength, thermal stability, etc. However, their ceramic composites display sufficient
mechanical strength to support load-bearing applications. Still, further attention, develop-
ments, and improvements are necessary. The traditional blending techniques have been
adopted to tailor the microstructural properties of biocomposite by adding reinforcements.
Sometimes, their structural properties are also enhanced by blending them with synthetic
polymers (PVA, PMMA, etc.). Different fillers have been recently introduced into the
biopolymers to prepare highly functional composites for the biomedical industry.
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Study in this field has grown dramatically in recent decades, which has been con-
firmed by the resulting rise in the number of newly published materials. In many industries,
including packaging, vehicles, building, electronics, and most significantly, biopolymer
composites find countless daily applications in medicine. The widely used biochemi-
cal recipes for biopolymer composites synthesis include injecting, extrusion, and in situ
synthesis. The introduction of graphene and its derivatives as fillers into biopolymers
strengthened their mechanical properties to obtain desired biomaterials, such as tensile,
effect, flexural, and other structural properties. The metallic nanoparticles also have
played a vital role as fillers to synthesize biocomposite to enable several opportunities
to explore their innovative properties in medical applications. Mechanical behavior and
poor dispersion are the major problems that limit the use of biopolymers to synthesize
biocomposites. The fillers form agglomerates with a biopolymer matrix, resulting in poor
interfacial bonding resulting in poor mechanical properties with poor structural unifor-
mity. Such composites result in many other odd parameters, including high-temperature
sensitivity, moisture sensitivity, low impact strength, and shelf life, etc. Future directions
lead towards new biomaterial to address the stated factors and fit well with the economic
viability, recycling processes and being eco-friendly.
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