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Deep behavioural representation learning
reveals risk profiles for malignant
ventricular arrhythmias
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Maarten Z. H. Kolk 1,2, Diana My Frodi 3, Joss Langford 4,5, Tariq O. Andersen6,
Peter Karl Jacobsen 3, Niels Risum3, Hanno L. Tan1,7, Jesper Hastrup Svendsen 3,8,
Reinoud E. Knops1,2, Søren Zöga Diederichsen 3 & Fleur V. Y. Tjong 1,2

We aimed to identify and characterise behavioural profiles in patients at high risk of SCD, by using
deep representation learning of day-to-day behavioural recordings. We present a pipeline that
employed unsupervised clustering on low-dimensional representations of behavioural time-series
data learned by a convolutional residual variational neural network (ResNet-VAE). Data from the
prospective, observational SafeHeart study conducted at two large tertiary university centers in the
Netherlands andDenmarkwere used. Patients received an implantable cardioverter-defibrillator (ICD)
betweenMay 2021 and September 2022 andwore wearable devices using accelerometer technology
during 180 consecutive days. A total of 272 patients (mean age of 63.1 ± 10.2 years, 81%male) were
eligible with a total sampling of 37,478 days of behavioural data (138 ± 47 days per patient). Deep
representation learning identified five distinct behavioural profiles: Cluster A (n = 46) had very low
physical activity levels and a disturbed sleep pattern. Cluster B (n = 70) had high activity levels, mainly
at light-to-moderate intensity. Cluster C (n = 63) exhibited a high-intensity activity profile. Cluster D
(n = 51) showed above-average sleep efficiency. Cluster E (n = 42) had frequent waking episodes and
poor sleep. Annual risks of malignant ventricular arrhythmias ranged from 30.4% in Cluster A to 9.8%
and 9.5% for Clusters D-E, respectively. Compared to low-risk profiles (D-E), Cluster A demonstrated
a three-to-four fold increased risk of malignant ventricular arrhythmias adjusted for clinical covariates
(adjusted HR 3.63, 95% CI 1.54–8.53, p < 0.001). These behavioural profiles may guide more
personalised approaches to ventricular arrhythmia and SCD prevention.

Malignant ventricular arrhythmias are amain cause of sudden cardiac death
(SCD)1. In individuals at increased risk of SCD, patterns in physical beha-
viour (such as physical activity levels, sedentary behaviours, sleep beha-
viour) have emerged as potential prognostic indicators for ventricular
arrhythmia onset, heart failure progression, and patient-reported
outcomes2–5. Wearable accelerometers provide a means for continuous
measurement of these day-to-day physical behaviours in free-living
environments6. Identifying patterns or clusters within behavioural time-

series data requires dimensionality reduction, as traditional clustering
algorithms are unable to effectively process the granularity of such complex
datasets. The process of dimensionality reduction, for instance reducing
data to summary measures, may lead to the loss of intricate, non-linear
associations in the data. Alternatively, deep neural networks are capable of
learning low-dimensional latent representations from these complex data-
sets, while preserving the richness and intrinsic information present in the
data7,8. Unsupervised machine learning algorithms can then operate on
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these latent space representations to categorise similar samples into one
cluster9,10.

In this study, we aimed to identify and characterise behavioural
profiles through deep representation learning in patients at risk of
malignant ventricular arrhythmias (Fig. 1). Patients with an
implantable cardioverter-defibrillator (ICD) were followed for six
consecutive months using a wearable accelerometer to continuously
monitor physical behaviour. A deep neural network was trained to
learn a compressed representation from the behavioural time-series

data while preserving the relevant information. We hypothesised that
through the clustering of these deep behavioural representations, we
would be able to identify clinically meaningful behavioural profiles.
These profiles were evaluated for their clinical relevance and asso-
ciation with the risk of ventricular arrhythmia.

Results
A total of 303 participants were enroled in SafeHeart, of which 272
met the eligibility criteria for this study (21 patients did not wear the

Fig. 1 | Workflow of the study. The workflow of the study is illustrated, that
includes recruitment, data collection through a wearable device and data processing
to identify behavioural profiles. a Recruitment of 303 patients from two interna-
tional sites, who wore a wearable accelerometer for 180 consecutive days, during
which behavioural metrics were recorded. b A convolutional residual variational

autoencoder learned the latent behavioural representations. The models was pro-
vided with time-series data for each subject that consisted of 27 variables measured
at 180 timepoints. c Unsupervised clustering using a k-means algorithm of the
behavioural representations identified distinct behavioural profiles.
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GENEActiv wearable accelerometer, 10 patients did not meet the
required minimum of 30 days of behavioural data). A total of
37,478 days of wearable data were collected (mean 138 ± 47 days per
patient). Table 1 shows the clinical characteristics of the patient
cohort. Patients had a mean age of 63.1 ± 10.4 years and 80.9% were
male, 133 (48.9%) patients had ischaemic heart disease as cause of
heart failure, 147 (54.0%) had heart failure with reduced ejection
fraction (HFrEF), and 187 (68.8%) had a secondary prevention ICD
indication. Fifty (18.4%) patients received cardiac resynchronisation
therapy (CRT), the majority of patients used a β-blocker (80.5%). All
patients completed one-year of follow-up, during which 46 (16.9%)
patients received appropriate ICD therapy for a malignant ventricular
arrhythmia, five (1.8%) patients received inappropriate ICD therapy
and four (1.4%) patients died.

Characteristics of the identified behavioural profiles
Five behavioural profiles were identified: A (n = 46), B (n = 70), C
(n = 63), D (n = 51) and E (n = 42). Mean values for behavioural metrics
across the clusters are displayed in Table 2, Supplementary Fig. 4 pro-
vides a granular representation of behaviours during the 180-day
monitoring period. Figure 2 shows the individual behavioural metrics
for each profile, relative to the cohort averages. In summary, Clusters B
and C were characterised by active profiles with high daily steps counts
(15353 ± 4062 & 13577 ± 4130 steps). The volume of activity
(2921 ± 1410 gs) in Cluster B was accumulated over a longer period
(370 ± 76 min) and at a lower average intensity (123 ± 17 mg), while the
volume of activity (2527 ± 810 gs) in Cluster C was linked to a greater
number of faster walking steps (3689 ± 2100 steps) at higher cadences
(92 ± 10 steps/min) and intensities (132 ± 22 gs). Clusters D and E had
less active profiles with fewer daily steps (9971 ± 3103 & 9291 ±
3378 steps). Cluster D had the longest inactive bout durations and fewest

number per day (0.72 ± 0.25 mins and 632 ± 110). The behavioural
patterns of Cluster E were more fragmented with shorter active bouts
(0.43 ± 0.12 min) andmore inactive bouts (863 ± 135). Cluster A had the
highest inactive duration (835 ± 110 min), the lowest activity intensity
(103 ± 33 mg) and least number of steps (6246 ± 2406 steps). In the sleep
domain, Cluster A was characterised by the shortest total sleep duration
(281 ± 86 min), the longest average duration of wake after sleep onset
interruptions (6.8 ± 2.1 min) and the longest sleep onset latency
(10.8 ± 5.1 min). The nocturnal patterns of Cluster E were fragmented,
similar to the day, with the lowest sleep efficiency (51.5 ± 8.6%), most
wake after sleep onset interruptions (32 ± 8) and shortest maximum
sleep bout lengths (42 ± 10 min). Cluster D had the long sleep interval
and total sleep durations (611 ± 122 and 369 ± 75 min) with longest
maximum sleep bout lengths (57 ± 11 min). The sleep profiles of Clus-
ters B and Cwere unexceptional other than Cluster B having the shortest
sleep interval duration (507 ± 89 min).

Cluster characterisation
SHAP values were computed to represent the most important beha-
vioural markers that characterised each behavioural profile. Figure 3a
shows the variables with highest feature importance across behavioural
profiles. The duration spent in moderate activity, the amount of slow
steps and the number of sleep events were the behavioural markers that
differentiated most between clusters. Figure 3b–f illustrates the top
behavioural features that predict membership of each of the clusters.
Clusters C and E were predicted by a combination of sleep behaviours
and movement behaviours, while the other clusters were pre-
dominantly predicted by movement behaviours alone. No statistically
significant differences were observed between clusters in terms of
medication usage and medical history, apart from hypertension
(p = 0.037) (Table 1).

Table 1 | Baseline characteristics in the total patient cohort and across behavioural profiles

Cohort
average (n = 272)

Cluster
A (n = 46)

Cluster
B (n = 70)

Cluster
C (n = 63)

Cluster
D (n = 51)

Cluster
E (n = 42)

p

Age, years (SD) 63.1 (10.4) 62.8 (11.1) 61.9 (10.0) 63.7 (9.6) 64.7 (9.3) 62.7 (12.7) 0.640

Male, yes (%) 220 (80.9) 38 (82.6) 55 (78.6) 51 (81.0) 41 (80.4) 35 (83.3) 0.973

Secondary prevention ICD
indication, n (%)

187 (68.8) 32 (69.6) 46 (65.7) 43 (68.3) 40 (78.4) 26 (61.9) 0.484

Body mass index, kg/m2 (SD) 28.2 (6.2) 29.2 (10.3) 27.4 (5.3) 27.9 (4.0) 28.8 (5.0) 28.0 (5.4) 0.598

CRT, n (%) 50 (18.4) 9 (19.6) 15 (21.4) 10 (15.9) 8 (15.7) 8 (19.0) 0.910

Heart disease, n (%)

ICM 133 (48.9) 21 (45.7) 29 (41.4) 31 (49.2) 28 (54.9) 24 (57.1) 0.457

DCM 45 (16.5) 7 (15.2) 13 (18.6) 14 (22.2) 5 (9.8) 6 (14.3) 0.467

HCM 11 (4.0) 0 (0) 5 (7.1) 3 (4.8) 1 (2.0) 2 (4.8) 0.357

Cardiovascular history, n (%)

Myocardial infarction 101 (37.1) 20 (43.5) 21 (30.0) 24 (38.1) 21 (41.2) 15 (35.7) 0.603

Heart failure (HFrEF) 147 (54.0) 24 (52.2) 39 (55.7) 33 (52.4) 26 (51.0) 25 (59.5) 0.923

Diabetes mellitus 45 (16.5) 5 (10.9) 13 (18.6) 11 (17.5) 10 (19.6) 6 (14.3) 0.769

Hypertension 136 (50.0) 19 (41.3) 36 (51.4) 27 (42.9) 35 (68.6) 19 (45.2) 0.037

Atrial fibrillation 95 (34.9) 13 (28.3) 23 (32.9) 22 (34.9) 23 (45.1) 14 (33.3) 0.493

Medication, n (%)

ACE inhibitor 110 (40.4) 14 (30.4) 22 (31.4) 31 (49.2) 25 (49.0) 18 (42.9) 0.094

Angiotensin receptor locker 66 (24.3) 10 (21.7) 19 (27.1) 14 (22.2) 13 (25.5) 10 (23.8) 0.956

Loop diuretics 90 (33.1) 17 (37.0) 20 (28.6) 20 (31.7) 15 (29.4) 18 (42.9) 0.536

β-blocker 219 (80.5) 33 (71.7) 57 (81.4) 51 (81.0) 43 (84.3) 35 (83.3) 0.560

Lipid lowering drugs 174 (64.0) 26 (56.5) 49 (70.0) 39 (61.9) 34 (66.7) 26 (61.9) 0.633

ACE Angiotensin-Converting Enzyme,CRTCardiac Resynchronisation Therapy, ICM Ischaemic cardiomyopathy, DCM Dilated cardiomyopathy,HCMHypertrophic cardiomyopathy,HFrEF heart failure
with reduced ejection fraction.
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Patient-reported outcomes across behavioural profiles
A total of 239 patients filled out questionnaires at the study baseline (non-
response rates for subsequent clusters A-E were 11.4%, 15.6%, 12.7%, 9.5%,
and 15.2%, respectively). Median scores for the EQ-5D-5L and KCCQ
domains are provided in Supplementary Table 2. In particular, Cluster A
reportedphysical limitations,ClusterC reportedhigh self-efficacy butworse
social limitations, Cluster D highest disease-specific quality of life, and
Cluster E reported highest burden of symptoms (Supplementary Fig. 5).
Differences in patient-reported outcomes between clusters were not statis-
tically significant.

Incidence of the outcomes of interest across behavioural profile
Figure 4a shows the risk ofmalignant ventricular arrhythmias treated by the
ICDacross the clusters during one-year follow-up. Event rates for clustersA
until E were respectively 30.4%, 17.1%, 17.5%, 9.8% and 9.5% (log-rank
p value 0.06). As displayed in Fig. 4b, the risk of malignant ventricular
arrhythmiaswas significantly higher inClusterA (unadjustedHR2.26, 95%
CI 1.20–4.23, p = 0.01), which remained after adjusting for clinical covari-
ates (adjusted HR 2.30, 95% CI 1.21–4.36, p = 0.01). Also, the risk of

malignant ventricular arrhythmias in the low-risk behavioural profiles
(Cluster D-E) was significantly lower compared to the other clusters
(unadjusted HR 0.45, 95% CI 0.22–0.94, p = 0.03). Inappropriate ICD
therapy was delivered in three patients in Cluster A (4.3%), two patients in
Cluster B (2.9%), and one patient in Cluster C (1.6%). In total four patients
died during follow-up, of which two in Cluster D (3.9%), one in Cluster A
(2.2%) andone inClusterC (1.6%).A significant difference in the composite
endpoint between clusters was observed (log-rank p value 0.04) (Fig. 4c).
Unadjusted and adjusted hazard ratios for the respective clusters for the
composite endpoint are displayed in Table 3. In Supplementary Fig. 6, ROC
curves of logistic regression models predicting cases of malignant ven-
tricular arrhythmias and the composite endpoint are presented. Regression
models that included cluster membership within their feature set demon-
strated superior performance, compared to models that excluded this
variable.

Discussion
In this study, we demonstrated deep representation learning of complex
day-to-day movement and sleep behaviours to enable the identification

Table 2 | Mean values of each behavioural metric collected over a 180-day period in the total patient cohort and across
behavioural profiles

Cohort
average (n = 272)

Cluster
A (n = 46)

Cluster B (n = 70) Cluster C (n = 63) Cluster
D (n = 51)

Cluster
E (n = 42)

p

Movement behaviour,
mean (SD)

Mean cadence (step/min) 54.3 (4.7) 53.0 (4.8) 54.0 (3.6) 57.9 (4.8) 52.6 (4.7) 52.8 (3.2) <0.001

Cadence 95p (step/min) 80.4 (12.3) 75.7 (13.0) 78.6 (10.0) 91.6 (9.8) 77.4 (10.5) 75.7 (10.7) <0.001

Fast steps (count) 1976.6 (1818.9) 847.5 (1115.8) 2141.6 (1650.5) 3689.2 (2099.6) 1313.4 (886.0) 1174.6 (1049.8) <0.001

Slow steps (count) 5233.2 (3209.5) 1805.6 (884.1) 8061.9 (3088.4) 5749.1 (2757.2) 4477.7 (2152.9) 4416.1 (2320.6) <0.001

Total steps (count) 11456.4 (4825.3) 6246.3 (2406.4) 15352.8 (4061.7) 13577.3 (4130.1) 9971.3 (3102.5) 9290.8 (3377.5) <0.001

Activity volume (gs) 2215.2 (1596.7) 1550.3 (2984.1) 2920.5 (1410.4) 2527.4 (810.4) 1836.4 (586.7) 1759.9 (655.9) <0.001

Vigorous activity (min) 3.0 (18.1) 5.3 (35.0) 3.1 (20.5) 4.2 (7.1) 0.78 (2.2) 1.05 (1.7) 0.694

Moderate activity (min) 129.5 (74.1) 46.1 (23.6) 187.6 (69.9) 154.3 (61.5) 113.2 (52.1) 106.7 (54.9) <0.001

Light activity (min) 150.9 (43.7) 134.9 (45.8) 179.1 (42.0) 148.2 (37.6) 143.9 (40.4) 134.1 (35.1) <0.001

Active duration (min) 283.4 (94.4) 186.3 (62.0) 369.8 (76.2) 306.6 (72.3) 257.9 (67.7) 241.8 (68.4) <0.001

Inactive duration (min) 718.2 (113.5) 835.4 (110.4) 670.6 (90.7) 692.5 (96.6) 667.2 (89.1) 769.4 (88.8) <0.001

M6 intensity (g) 228.9 (78.8) 165.6 (54.5) 243.2 (53.8) 290.5 (96.2) 203.0 (49.0) 213.5 (65.1) <0.001

Active intensity (g) 118.6 (22.9) 103.4 (32.6) 122.6 (17.3) 131.5 (21.6) 112.9 (13.7) 115.9 (15.9) <0.001

Active event duration (min) 0.62 (0.21) 0.60 (0.29) 0.74 (0.18) 0.64 (0.16) 0.64 (0.15) 0.43 (0.12) <0.001

Active event (count) 215.6 (53.56) 159.8 (45.5) 245.3 (38.8) 229.4 (41.3) 194.6 (51.3) 231.7 (47.7) <0.001

Inactive event
duration (min)

0.64 (0.13) 0.6 (0.05) 0.61 (0.06) 0.62 (0.05) 0.72 (0.25) 0.61 (0.06) <0.001

Inactive events (count) 758.5 (153.5) 887.3 (148.7) 726.1 (122.6) 733.2 (116.6) 631.6 (109.6) 863.4 (134.8) <0.001

Sleep behaviour, mean (SD)

Sleep onset latency (min) 7.6 (4.7) 10.8 (5.1) 6.7 (3.2) 6.7 (3.5) 8.9 (6.9) 5.6 (2.3) <0.001

Sleep interval
duration (min)

549.9 (107.7) 541.4 (105.4) 506.9 (89.1) 531.3 (83.5) 610.7 (122.2) 585.5 (112.9) <0.001

Total sleep duration (min) 313.0 (77.3) 280.8 (86.2) 294.2 (62.) 322.9 (62.0) 368.5 (74.6) 297.2 (78.9) <0.001

Sleep efficiency (%) 56.7 (8.9) 52.5 (11.2) 57.7 (7.1) 59.9 (6.8) 59.5 (8.2) 51.5 (8.6) <0.001

WASO (count) 23.7 (7.2) 21.0 (7.1) 21.9 (5.2) 21.8 (4.9) 24.0 (6.0) 32.1 (8.2) <0.001

WASO duration (min) 5.7 (1.9) 6.8 (2.1) 5.7 (1.6) 5.2 (1.3) 5.6 (2.4) 5.5 (1.9) <0.001

Time first WASO (min) 9.6 (5.4) 9.9 (3.5) 10.3 (7.2) 9.5 (4.0) 10.1 (7.0) 7.3 (2.3) 0.052

Longest sleep period (min) 50.2 (11.8) 49.9 (12.9) 49.4 (11.3) 51.7 (10.4) 56.6 (10.8) 42.1 (9.7) <0.001

Naps duration (min) 11.9 (11.5) 7.7 (4.6) 9.5 (4.7) 13.1 (5.9) 16.4 (21.5) 13.1 (12.0) 0.001

Sleep events (count) 107.3 (25.1) 106.7 (18.7) 98.3 (21.1) 97.7 (18.0) 108.1 (20.3) 136.2 (29.9) <0.001

minminutes, M6most active 6minutes, SD standard deviation,WASO wake up after sleep onset.
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of clinically relevant behavioural profiles. These profiles were associated
with an annual risk of malignant ventricular arrhythmias ranging from
30.4% to 9.5%. Our research extends prior work, bringing forth two
novelties. First, while prior studies have evaluated physical behavioural
metrics over monitoring intervals up to 14 days3, we identified distinct
behavioural profiles derived from continuous accelerometer

measurements spanning six months. Second, earlier studies have mainly
focused on individual metrics for activity or sleep, despite these 24-hour
rest-activity behaviours being highly interrelated. In the present work,
we took amore holistic approach to physical behaviour bymodelling the
interplay between various concurrent behavioural mechanisms and
their potential implications for clinical events.

Fig. 2 | Average values for physical behaviour measurements across the beha-
vioural profiles. The average values for the behavioural measurements for each
behavioural profile are displayed. a The bar charts displayed on the left depict the
average values for the metrics that reflect movement behaviour across behavioural

profiles, relative to the cohort average. b Bar charts depicted on the right display the
average values for the metrics that reflect sleep behaviours across the behavioural
profiles. All values were scaled using z-scores.
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Despite considerable variations in clinical trajectories among
patients with an ICD, current follow-up strategies remain one-size-
fits-all. Advances in wearable technologies have removed barriers for
the continuous measurement of behavioural patterns, which could
make wearables suitable as screening tools to identify individuals at-
risk of disease progression. Several studies have shown that con-
tinuous activity measurements could indicate a decline in functional
status, progression of heart failure, or onset of atrial fibrillation, each
potentially increasing the risk of ventricular arrhythmia onset3,4,11,12.
However, physical activity is also a modifiable risk factors that may
reduce ventricular arrhythmia risk by alteration of autonomic tone,
mitigation of the catecholamine release observed during exercise and
an increase of resting parasympathetic tone13. Recent analyses of data
from the UK Biobank have demonstrated a reduction in the risk of
ventricular arrhythmia amongst physically active individuals14,15.
With data from this prospective study, we demonstrated that an
active behavioural profile does not necessarily reduce the risk of
ventricular arrhythmia, which highlights the importance of con-
sidering various behaviours simultaneously. In particular, Clusters B
and C had annual event rates of ~17% despite their daily time spent

physically active being substantially higher compared to the other
profiles. In contrast, Clusters D and E were half as likely to experi-
ence the outcome of interest, despite having less active profiles. This
indeed suggests that interplays between various behaviours, such as
intermittent sedentary behaviour with isolated bouts of physical
exertion, rather than isolated measurements of activity character-
istics, may explain differences in risk of ventricular arrhythmia onset.
Furthermore, the absence of significant associations between patient-
reported outcomes (e.g. symptom severity and physical limitations)
and behavioural profiles might indicate that these are phenotypic in
their origin rather than representing more transient behavioural
patterns.

Our findings support the notion that abnormalities in 24-hour rest-
activity patterns modulate the risk of ventricular arrhythmia onset. Circa-
dian rhythm disruption has been associated with increased risk of atrial
fibrillation onset16 and heart failure17 in previous studies. We observed an
annual risk of ventricular arrhythmia exceeding 30% in the behavioural
profile characterised by sedentary behaviour, a lack of high-intensity
activity, and disturbed sleep behaviour. Adjusted for clinical covariates, this
profile was associated with a three-to-four fold risk of experiencing a

Fig. 3 | Characterisation of the behavioural profiles through Shapley values
obtained from a trained machine learning model. A trained machine learning
classifier (extreme gradient boosting) was used to predict membership of a profile
based on daily behavioural measurements. a The bar chart represents the impor-
tance of features used by the extreme gradient boostingmodel to predict each profile.
Horizontal bars represent the average contribution of a behavioural metric for the

predicted profile. The features are ranked based on the summed importance of that
feature to predict each profile. b–f The SHAP summary plot is displayed for each
behavioural profile. The features are ranked by the mean absolute SHAP value. A
positive SHAPvalue suggests a positive contribution,while a negative value indicates
a negative contribution. Themodel predictedmembership of the behavioural profile
based on the daily measurements with an AUROC of 0.99.

https://doi.org/10.1038/s41746-024-01247-w Article

npj Digital Medicine |           (2024) 7:250 6

www.nature.com/npjdigitalmed


Fig. 4 | Comparative results of the outcomes of interest for patients stratified by
the behavioural profiles. Time-to-event analyses according to the behavioural
profiles are presented. aKaplan-Meier curves formalignant ventricular arrhythmias
treated by the ICD, and b hazard ratios and 95% confidence intervals obtained from
the Cox proportional-hazards model. c Kaplan-Meier curves for the composite

endpoint of all ICD therapy and mortality, and d hazard ratios and 95% confidence
intervals. The prevalence of the outcome is displayed as a percentage, represented by
the blue and green circles. Distributions of times to events were compared with the
log-rank test.

Table 3 | Associations of the five behavioural profiles with malignant ventricular arrhythmias treated by the ICD, and the
composite of all ICD therapies and mortality

Malignant ventricular arrhythmia Composite endpoint

Unadjusted HR (95% CI) p Adjusted HR (95% CI)a p Unadjusted HR (95% CI) p Adjusted HR (95% CI)a p

Cluster A 2.26 (1.20–4.23) 0.01 2.30 (1.21–4.36) 0.01 2.38 (1.32–4.30) <0.001 2.46 (1.35–4.49) <0.001

Cluster B 1.04 (0.54–2.00) 0.91 1.13 (0.58–2.20) 0.72 0.90 (0.47–1.71) 0.44 0.99 (0.51–1.90) 0.97

Cluster C 1.03 (0.52–2.03) 0.93 1.03 (0.52–2.02) 0.94 1.01 (0.53–1.92) 0.98 1.00 (0.53–1.92) 0.99

Cluster D 0.52 (0.21–1.32) 0.17 0.53 (0.20–1.35) 0.18 0.69 (0.31–1.53) 0.36 0.66 (0.29–1.49) 0.32

Cluster E 0.50 (0.18–1.39) 0.18 0.43 (0.15–1.22) 0.11 0.44 (0.16–1.22) 0.12 0.39 (0.14–1.09) 0.07

CI confidence interval, HR hazard ratio.
aAdjusted for age, sex, indication for ICD implantation, and presence of atrial fibrillation, heart failure and cardiac resynchronisation therapy.
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ventricular arrhythmia compared to the low-risk profiles. While these
findings should be validated in larger cohorts, they emphasise the impor-
tance of comprehensive modelling of physical behaviour. The use of
wearable devices for behavioural profiling holds promise for follow-up
strategies tailored to an individual patient.

Clustering of deep learning-derived latent representations comes with
the limitation of interpretability, as the latent representations are inferred
from the underlying data and are not directly explainable (black box). To
provide transparency, we characterised clusters by assessment of feature
importance of a trained machine learning classifier that predicts cluster
memberships based on day-to-day behavioural metrics18. A second lim-
itation to our study is the use of processed output from the accelerometer,
instead of the underlying raw accelerometry output. Some of these metrics
are created through application of specific thresholds that rely on the cali-
bration studies, but pose a challenge when comparing metrics among dif-
ferent studies or populations19. Third, from our findings, it remains
uncertain whether the behavioural profiles can be generalised to other
populations, such as heart failure patients who do not satisfy the criteria for
an ICD, and thus warrant future research. Fourth, despite cluster mem-
bership showing significant associations with the outcome of interest after
adjusting for clinical covariates, there is a risk of residual confounding. For
instance, high-risk behavioural profile (Cluster A) was characterised by
higher proportion of patients with a prior myocardial infarctions; however,
these patients did not receive prescriptions for β-blockers, lipid-lowering
drugs, or ACE inhibitors. This could point towards a potential under-
treatment of these patients. This study was entirely decentralised in its
design, with patient recruitment, informed consent, and study procedures
conductedwithoutphysical contactbetween the study staff andparticipants.
Consequently, information from imaging modalities (e.g., LVEF) and
electrocardiography at the time of enrolment was not available. Future
studies exploring the interplay between these clinical patient characteristics,
and behavioural profiles are warranted.

Deep representation learning of physical behavioural patterns identi-
fies distinct behavioural profiles with significant differences in their risk of
malignant ventricular arrhythmia and death. Behavioural profiling using
objective and real-timemeasurements obtained fromwearable devicesmay
enable clinicians to adjust and optimise treatment and prevention strategies
to an individual patient. Interpretability of clustered latent representations
and relatively small sample sizes prompt the need for further investigation
into the mechanisms underlying their influence on ventricular arrhythmia
risk and SCD.

Methods
Ethics
The study was approved by the Institutional Review Boards of the
AmsterdamUniversityMedical Center (date 09-04-2021, approval number
2020/248) andCopenhagenUniversityHospital Rigshospitalet (date 19-04-
2021, approval number H-20081068). All participants provided informed
consent prior to their enrolment. The study was conducted in accordance
with the Declaration of Helsinki.

Study design and setting
This is an analysis of the international SafeHeart study, a prospective,
observational study conducted at two tertiary academic centers in Europe
(AmsterdamUniversity Medical Center, the Netherlands and Copenhagen
University Hospital Rigshospitalet, Denmark). The purpose of this study
was to develop a personalised model to predict ICD therapy for malignant
ventricular arrhythmia20. Data used to create the predictionmodel included
recordings from a wearable accelerometry recording device. Patient inclu-
sion was conducted through telephone-based procedures between May
2021 and September 2022, the enrolment date was defined as the day when
the wearable device was delivered to the patient. Throughout the study,
participants had the option to withdraw from the study at any stage, either
partially (bydiscontinuing the use of thewearable device) or completely.We
adhered to the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) reporting guidelines for observational studies21.
The study was registered at the National Trial Registration in the Nether-
lands (Trial NL9218; https://www.onderzoekmetmensen.nl/en).

Participants
Participants qualified for enrolment in the SafeHeart study if they fulfilled
the following conditions: i) received an ICD with or without cardiac
resynchronisation therapy (CRT-D) in the five years leading up to enrol-
ment, ii) experienced appropriate or inappropriate ICD therapy (high
voltage shock therapy or anti-tachycardia pacing (ATP)) or demonstrated
evidence of ventricular arrhythmias within eight years prior to enrolment,
iii) engaged in a remote ICDmonitoringprogramme, and iv)were at least 18
years old. Exclusion criteria were severe physical disability, end-stage heart
failure, and a life expectancy of less than one year. The study protocol with
the entire list of inclusion and exclusion criteria has been published
previously20.

Physical behaviour measurements
Accelerometer-based wearable devices allow for continuous and objective
quantification of daily physical behaviour by the recording of body move-
ment along reference axes and signal analysis (e.g., intensity, frequency, and
volume of activity and postural changes). In this study, various behavioural
metrics were collected including daily activity and inactivity durations,
duration of activity and inactivity episodes, activity intensity, activity
volume, step count (total, slow and fast), cadence, sleep duration, sleep
efficiency, wake up after sleep onset (WASO), nap duration and sleep onset
latency. A complete overview of the collected metrics and their definitions
are displayed in Supplementary Table 1. To collect these metrics, partici-
pants wore the GENEActiv Original 1.1 accelerometer (Activinsights Ltd,
Cambridgeshire, United Kingdom) on the wrist for 6months. Devices were
returned (for data extraction) and replaced biweekly or every 4 weeks.
Continuous raw data were recorded at 50Hz or 20 Hz and converted into
daily summaries22,23. Patients were eligible for this study if they had at least
30 days of wearable data.

Outcome of interest
The prospective collection of the outcomes of interest occurred at both sites
from enrolment in the study onwards. These outcomes were: i) any
malignant ventricular arrhythmia defined as an episode of sustained ven-
tricular tachycardia or ventricular fibrillation, treated by the ICD through a
shock and/or ATP; ii) a composite endpoint comprising all ICD therapies
and death. ICD therapies encompassed those for malignant ventricular
arrhythmias, in addition to those in response to rhythms other than sus-
tained ventricular tachycardia or ventricular fibrillation (e.g. atrial fibrilla-
tion, sinus tachycardia).

Patient reported outcome measures
Two patient reported outcome measures (PROMs), the EuroQoL
5-Dimensions 5-Levels (EQ-5D-5L) and Kansas City Cardiomyopathy
Questionnaire (KCCQ), were used in the SafeHeart study24,25. Both PROMs
were filled out by participants at study enrolment. The EQ-5D-5L assesses
health across five domains, yielding a utility score ranging from−0.590 to
1.000. Meanwhile, the KCCQ, designed for heart failure patients, provided
scores on a scale of 0 to 100, subdivided into the domains symptom burden,
physical limitation, social limitation, quality of life and self-efficacy.

Deep representation learning of physical behaviour data
We derived deep representations from the day-to-day behavioural
time-series collected during the first six months of the study (Fig. 1a).
Specifically, we used a β-variational autoencoder (VAE) that encodes
input data through a probabilistic approach (mapping data into a
probability distribution) and decodes from this distribution back into
reconstructed data (Fig. 1b)26,27. Supplementary Fig. 1 presents a
schematic overview of the VAE architecture. The inputs were long-
itudinal trajectories of 27 behavioural metrics over 180 days, resulting
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in an input dimension of 272 × 27 × 180. Missing values of beha-
vioural metrics were linearly interpolated and normalised. Our
trained VAE reconstructed the behavioural time-series with a Pear-
son Correlation Coefficient of 0.988 ± 0.0379, a root mean square
error (RMSE) of 0.031 ± 0.026 and a percentage root-mean-square
difference (PRD) of 10.553 ± 0.038. Supplementary Fig. 2 depicts an
example of the trends in behavioural measurements along with the
reconstructed trend derived from 32 latent variables. The VAE
models were developed using PyTorch (version 2.0.5) in Python
(version 3.6.7).

We then applied an unsupervised machine learning algorithm to
cluster these representations (Fig. 1c). The k-means algorithm aims to
minimise the within-cluster variance, making data points within the same
cluster as similar aspossible anddatapoints indifferent clusters as dissimilar
as possible. The appropriate number of clusters was assessed using within-
cluster variation (inertia), silhouette scores, and Davies-Bouldin index
(Supplementary Fig. 3). Considering that the k-means algorithm operates
stochastically, and initialisation of the model may affect the decision of the
optimal k, we averaged the results over multiple iterations to reduce the
impact of randomness28. We evaluated cluster stability by computing the
Jaccard index across 100 bootstrapped samples29. Clustering was performed
using the scitkit-learn library (version 1.3.0)30.

Cluster characterisation through cluster membership prediction
We aimed to characterise the identified clusters using SHapley Addi-
tive exPlanations (SHAP) values31. SHAP values are widely used to
determine the contribution of particular features to the predicted
outcome.We derived SHAP values from a supervisedmachine learning
classifier (eXtreme Gradient Boosting), which was trained to predict
cluster membership from daily behavioural values (48,960 days)32.
Subsequent ranking of these SHAP values provides insight into
behavioural metrics that contribute positively (or negatively) to cluster
membership. We assessed the performance of these classifications
using the receiver operating characteristic curve (ROC).

Statistical analysis
Continuous variables were presented by the median, mean, inter-
quartile range, and standard deviation. Categorical socio-
demographic and clinical variables were presented as frequencies
(percentages) and compared using the χ2 test. T-tests were used for
pairwise comparisons, analysis of variance (ANOVA) for assessing
differences among multiple groups with normally distributed data.
The Mann–Whitney U test was used for non-normally distributed
variables, and the Kruskal-Wallis test for comparisons involving
more than two groups with non-normally distributed data. The risk
of the outcomes of interest during follow-up was estimated using
the Kaplan–Meier method; log-rank tests were used to compare
survival between clusters. Cox Proportional Hazard models were
used to assess the association between behavioural profiles and the
risk of outcomes of interest. The model included the clinical cov-
ariates age, sex, indication for ICD implantation, presence of atrial
fibrillation, heart failure, and type of ICD. Schoenfeld residuals
were used to check the proportional hazards assumption. A two-
sided p value < 0.05 was considered significant. The prognostic
significance of the behavioural profiles for the outcomes of interest
was assessed through logistic regression models. Two models were
constructed for each outcome of interest: the first model included
clinical patient information (medical history and medication status)
along with cluster membership as input features, while the second
model excluded cluster membership. Prediction accuracy was
assessed through stratified k-fold cross-validation, and quantified
using the area under the receiver operating characteristic
curve (AUROC).

Data availability
Data sharing requests will be considered upon a reasonable request. For
access, please email the corresponding author.

Code availability
Code scripts are available at: https://github.com/DeepRiskAUMC/Deep-
representation-clustering.
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