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Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed

to harness T cell specificity and function to fight diseases. Based on the evidence

that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely

relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating

tumor-specific T cells. Although effective in a subset of cases, in the first ACT

clinical trials several patients experienced disease progression, in some cases after

temporary disease control. This evidence prompted researchers to improve ACT

products by taking advantage of the continuously evolving gene engineering field

and by improving manufacturing protocols, to enable the generation of effective and

long-term persisting tumor-specific T cell products. Despite recent advances, several

challenges, including prioritization of antigen targets, identification, and optimization of

tumor-specific T cell receptors, in the development of tools enabling T cells to counteract

the immunosuppressive tumor microenvironment, still need to be faced. This review aims

at summarizing the major achievements, hurdles and possible solutions designed to

improve the ACT efficacy and safety profile in the context of liquid and solid tumors.

Keywords: TCR - T cell receptor, genetic engineering, cancer immunotherapy, adoptive T cell immunotherapy,

cancer immunoediting

INTRODUCTION

Adoptive T cell therapy for cancer (ACT) is a branch of cancer immunotherapy that relies on
the ability to redirect T cell specificity to selectively target tumor antigens. ACT stemmed from
two remarkable clinical observations: (i) The magnitude of T cells infiltrating tumor masses often
correlates with response to treatment (1) and (ii) Allogeneic donor T cells infused in the context of
hematopoietic stem cell transplantation promote clinical response in hematological malignancies
(2). Initially, ACT solely relied on tumor-specific T cells isolated from the tumor masses and
expanded in vitro (3). This approach was limited to resectable tumors from which enough
T cells could be harvested and expanded. The development of gene engineering technologies
dramatically changed the landscape of the ACT field, rapidly making this treatment accessible
to an unprecedented number of patients and tumor types. By inserting an exogeneous T cell
receptor (TCR) into cells, T cells specificity could be precisely redirected toward selected tumor
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antigens (Figure 1). This new opportunity shifted the research
focus and raised some novel questions: the main issue was no
more how to harvest a sufficient number of tumor-specific T cells
from each single patient, but how to isolate and harness high-
avidity tumor-specific TCRs, and how to proficiently generate
and expand the most fit engineered T cells. The flexibility of the
genetic modification tools offered the chance to insert and/or
remove different genes in T cells and to permanently express, in
the therapeutic products, entirely synthetic molecules. A striking
deliverable produced by these efforts is represented by T cells
expressing Chimeric Antigen Receptors (CARs), that generated
astonishing clinical results against blood malignancies (4–9).

The outcomes of the first ACT clinical trials contributed
to further elucidate the complex interplay between the
immunosuppressive tumor microenvironment and the cellular
players of immunity. Results suggested that modulation of ex
vivo T cell expansion protocols and additional engineering
of the T cell genome could be used to tweak T cell qualities,
improving persistence and functionality of the therapeutic
products. Several strategies were proposed to improve
engineered T cell persistence, homing ability to the tumor
site, capacity to recognize and eliminate tumor cells, and
represent today’s intense research lines. The possibility to
modulate TCR affinity and T cell costimulatory and inhibitory
signal pathways opens up novel therapeutic scenarios. The
following review has the scope to summarize the cornerstones

FIGURE 1 | Overview of the TCR adoptive T cell therapy. Tumor-reactive lymphocytes can be isolated from either the tumor mass (tumor-infiltrating lymphocytes, TILs)

or from the T cell pool circulating in patients’ peripheral blood. T cells can be expanded in vitro and then re-infused back into the patient such as in TILs therapy. Else,

the tumor-reactive T cell Receptor (TCR) genes can be isolated, sequenced, and transferred into acceptor T cells via vectors to redirect T cell specificities against

tumor epitopes.

and the most relevant hurdles and efforts currently pursued to
improve ACT.

FROM ALLOGENEIC STEM CELL
TRANSPLANTATION TO ADOPTIVE T CELL
THERAPY

Allogeneic Hematopoietic Stem cell transplantation (Allo-
HSCT) is a therapeutic modality relying on the infusion
of hematopoietic stem and progenitor cells, harvested from
a healthy donor, to a patient previously conditioned with
high-doses chemo-radiotherapy. Although initially developed to
regenerate the bone marrow of patients with genetic diseases or
with hematological malignancies requiring strong myeloablative
chemotherapy (10, 11), Allo-HSCT proved able to control
malignant cells largely through an immunological mechanism,
as delineated by two major observations. Firstly, T-lymphocyte
depleted grafts had a decreased efficacy in eradicating malignant
diseases, suggesting that the donor to host immune response,
and in particular the activity of allogeneic T cells, had per se
an effect in abating the risk of relapse after transplant (2, 12,
13). Secondly, the infusion of circulating mature lymphocytes
harvested from the donor (donor lymphocyte infusion, DLI) (14)
correlated with the anti-leukemic effect (graft vs. leukemia, GvL)
in a dose-dependent fashion (15). The efficacy of Allo-HSCT
and DLI in restoring a state of disease remission represents one
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of the first compelling evidences of the potential of adoptive T
cell therapy. Unfortunately, the benefits of allogeneic transplant
and DLI against cancer are counterbalanced by toxicities,
mainly due to the presence of a heterogeneous TCR repertoire
with unknown specificities in the infused T cell population.
Indeed, it’s been calculated that ∼10% of the T cell repertoire
circulating in healthy donors is alloreactive (16). The most
common manifestation of such toxicities is graft vs. host disease
(GvHD), an immune reaction against the host’s healthy tissues,
occurring with varying degrees of severity but potentially fatal.
The efforts to reduce toxicity while preserving the efficacy of
DLI, and to export this therapeutic opportunity beyond the
HSCT context, were the driving forces in promoting innovative
ACT approaches.

The first ACT strategies tested with autologous T lymphocytes
were based on the isolation of T cells infiltrating primary
lesions resected from patients with melanoma (tumor-infiltrating
lymphocytes, TILs), followed by their in vitro expansion with
high-doses of interleukin-2 (IL-2) (17). The infusion of these
cellular products, composed of an oligoclonal T cell repertoire
incorporating CD4+ and CD8+ T cells, mediated potent anti-
tumor responses with no toxicities in cell types other than
melanocytes (3, 18, 19). The Objective Response Rate (ORR)
observed was 41% across various clinical trials for patients with
metastatic melanoma (20). Based on these encouraging results,
the approach was widened and offered to patients affected by
other solid tumors with variable outcomes, promising in some
settings [e.g., sarcoma (21), cervical and ovarian cancer (22, 23)]
but rather modest in others [e.g., renal (24), metastatic renal
(25) and, colorectal (26, 27) cancer, Table 1]. The inconsistent
efficacy of TILs may be linked to various causes: (i) the technical
difficulties in isolating T cells from immune-cold tumors (44); (ii)
the poor reactivity of the screened T cells, especially in tumors
characterized by a low mutational burden (45, 46), and (iii) the
overall low frequency of tumor-specific T cells infiltrating cancer
lesions when compared to bystander T cells (47, 48). The high
success rate of TILs therapy in melanoma can be in fact explained
by the melanoma cells high tumor mutational burden, resulting
in a heightened immunogenicity and a consequent enrichment of
tumor-specific T lymphocytes (49).

To expand the beneficial effect of TILs while overcoming
the hurdles intrinsically associated with this therapy, the use of
circulating T cells, harvested from patients and stimulated in
vitro with immunogenic cancer epitopes, was proposed. This
approach promotes the selective expansion of the tumor-specific
T cell fraction, in numbers sufficient to enable their re-infusion
to patients, resulting in clinical benefits (50, 51). Nonetheless,
the use of TILs and circulating T cells lead to the generation
of a T cell population for which the affinity and functionality
of the TCR could not be predicted a priori and whose ability
to effectively induce clinical responses was tightly linked to the
expansion potential of harvested cells.

Gene editing and gene transfer technologies greatly boosted
the ACT field, allowing modification of the T cell genome and
redirection of T lymphocytes specificities by inserting highly
functional, tumor-specific TCRs (52) into patients’ T cells, that
could be subsequently expanded in vitro. In the 90s the discovery

that the Fab region of an antibody could be efficiently fused
to the CD3 zeta chain and to other costimulatory intracellular
domains to create Chimeric Antigen Receptors (CARs), further
revolutionized the T cell-based immunotherapy field. CARs are
able to activate T cells upon binding to a surface receptor
expressed by the target tumor cell (53) and their use proved
instrumental in widening the therapeutic window of blood tumor
treatment in otherwise poor survivors (4–9), thus confirming
TCR-engineered T cells as a new therapeutic.

MAKING TUMOR SPECIFIC T CELLS:
FROM TCR GENE TRANSFER TO TCR
GENE EDITING

The ability of T cells to respond to a wide spectrum of foreign
antigens relies on the high variety of TCRs, heterodimeric
glycoproteins composed of one α and one β chain associated to
the CD3 complex (54), able to specifically interact with antigenic
peptides bound to human leukocyte antigen (HLA) restriction
elements (55). A series of genetic rearrangements in the α and
β chain genes occur slightly differently in every single cell, thus
creating a heterogeneous TCR repertoire that can recognize a vast
epitope array. Hence, to fully characterize the T cell specificity it
is necessary to determine the rearranged α and β chain sequences.

In the 80s, the progression of genomics allowed the isolation
of TCR genes (56, 57) and the study in detail of their sequences.
The advent of next generation sequencing technologies rendered
feasible a comprehensive identification of tumor specific TCR
sequences that are today used to genetically engineer T
lymphocytes in adoptive T cell therapy studies.

Gene Transfer at the Service of ACT
Most TCR-based gene therapy approaches rely on the ex-vivo
transduction of T cells with viral vectors. The first vectors
used in gene therapy were adenoviruses (58), vectors endowed
with high cargo capacity (up to 30 kb) but unable to foster
transgene integration in the host genome. This feature reduced
the adenoviruses utility for ACT: since T cells robustly proliferate
upon antigen encounters, integration of the transferred TCR
genes in their genome is critical to the preservation of
transgenic specificity in T cell progeny. Furthermore, the
immunogenicity of adenoviral proteins, highlighted by the
high incidence of adenovirus-specific neutralizing antibodies in
humans, potentially leads to viral inactivation (59) or to life-
threatening inflammatory responses (60), thus limiting their
exploitation. Retroviral vectors (RV), instead, have been broadly
used because of their wide cell tropism (61, 62), good integration
capacity, and for the high and stable gene expression they
convey. Cell division is required for RV transduction, but this
limitation does not impact their use since T cells are highly
proliferating in vitro. RV have been widely used to deliver a
variety of molecules, including suicide genes (63–65), TCRs (28,
66), and CARs (53) in T lymphocytes. Lentiviral vectors (LV)
gained interest more recently, particularly for their efficiency
profile and their capacity for transducing dividing as well as
non-dividing cells, a feature particularly relevant for the genetic
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TABLE 1 | Overview of TCR-engineered T cell-based clinical trials.

Disease Epitope Antigen Antigen type HLA restriction Vector

(nuclease)

Number of

treated patients

ORR (%) Infusion toxicities References

Melanoma AAGIGILTV MART-1 TAA (tissue restricted) HLA-A*0201 Retrovirus 17 2 (12%) none (28)

Melanoma AAGIGILTV MART-1 TAA (tissue restricted) HLA-A*0201 Retrovirus 20 6 (30%) 14 (skin rash), 11 (uveitis),

10 (hearing loss)

(29)

Melanoma KTWGQYWQV gp100 TAA (tissue restricted) HLA-A*0201 Retrovirus 16 3 (19%) 15 (skin rash), 4 (uveitis), 5

(hearing loss)

(29)

Melanoma and synovial

sarcoma

SLLMWITQC NY-ESO-1 TAA (cancer/testis

antigen)

HLA-A*0201 Retrovirus 11 and 6 5 (45%) and 4

(67%)

none (30)

CRC metastatic and

synovial sarcoma

IMIGVLVGV CEA TAA (tissue-restricted) HLA-A*0201 Retrovirus 3 1 (33%) 3 (severe colitis) (31)

Melanoma EVDPIGHLY MAGE-A3 TAA (Cancer/testis

antigen)

HLA-A*01 Lentivirus 2 n.a. 2 (death due to cardiac

toxicity)

(32)

Metastatic melanoma,

sinovial sarcoma and

esophageal cancer

KVAELVHF MAGE-A3 TAA (Cancer/testis

antigen)

HLA-A*0201 Lentivirus 7, 1 and 1 5 (56%) 2 (death), 2 (CNS

symptoms)

(33)

Metastatic melanoma EAAGIGILTV MART-1 TAA (tissue restricted) HLA-A*0201 Retrovirus 13 9 (69%) 2 (skin rash), 2 (CRS) (34)

Esophageal cancer KVAELVHF MAGE-A4 TAA (cancer/testis

antigen)

HLA-A*2402 Retrovirus 10 0 (0%) None (35)

Multiple Myeloma SLLMWITQC NY-ESO-1 TAA (cancer/testis

antigen)

HLA-A*0201 Lentivirus 20 16 (80%) None (36)

Sarcoma plus myeloma SLLMWITQC NY-ESO-1 TAA (cancer/testis

antigen)

HLA-A*0201 Retrovirus 18 and 20 11 (61%) and 11

(55%)

None (37)

Leukemia CMTWNQMNL WT1 TAA (Transcription

Factor)

HLA-A*2402 Retrovirus 8 2 (25%) None (38)

Metastatic synovial

sarcoma

NY-ESO-1c259 NY-ESO-1 TAA (Cancer/testis

antigen)

HLA-A*0201 Lentivirus 12 6 (50%) 11 (BM suppression) (39)

Leukemia RMFPNAPYL WT1 TAA (Transcription

Factor)

HLA-A*0201 Lentivirus 12 12 (100%) 9 (GvHD) (40)

Synovial sarcoma,

osteosarcoma,

liposarcoma, peripheral

malignant nerve sheet

tumor

SLLMWITQC NY-ESO-1 TAA (Cancer/testis

antigen)

HLA-A*0201 Retrovirus 10 2 (20%) 1 (CRS) (41)

Myeloma/liposarcoma SLLMWITQC NY-ESO-1 TAA (Cancer/testis

antigen)

HLA-A*0201 Lentivirus 3 0 (0%) None (42)

(CRISPR-Cas9)

Synovial sarcoma SLLMWITQC NY-ESO-1 TAA (Cancer/testis

antigen)

HLA-A*0201 Lentivirus 30 9 (30%) n.a. (43)

BM, Bone Marrow; CEA, Carcino Embrionic Antigen; CNS, central nervous system; CRS, Cytokine Release Syndrome; gp100, glpycoprotein 100L; MAGE-A3/A4, Melanoma-Associated Antigen A3/A4; MART-1, Melanoma Antigen

Recognized by T cells 1; NY-ESO-1, New York Esophageal Squamous Cell Carcinoma-1; ORR, Overall Response Rate; TAA, Tumor-Associated Antigen; GvHD, Graft vs. Host Disease; TCR, T cell Receptor; WT1, Wilms Tumor 1.
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manipulation of stem cells (67). The safety profile of RV and LV is
guaranteed by a vector design ensuring replication incompetence
(68, 69) and has been proven in human trials (70–72). Adeno-
Associate Viruses (AAV) (73) have been widely used in cancer
gene therapy and proven to be well-tolerated and safe. Still,
the need to synthesize the complementarity strand to promote
transgene integration represents a limitation. To circumvent the
process, both strands can be packaged as a single molecule to
pair and form a dsDNA as a self-complementary AAV vector
(scAAV). While this technological advancement allowed AAV to
be independent from host cell complementary strand synthesis
(74), it almost halved the vector packaging capacity. Nonetheless,
scAAV outperformed conventional AAVs in terms of efficacy in
preclinical models (75, 76).

Integrating viral vectors insert the genetic cassette semi-
randomly into the host genome, thus potentially leading to
unwanted insertions in exons, that leads to disruption of the gene
hit, or in enhancer regions, potentially altering gene regulation.
Theoretically, viral integrations in oncogene regulatory elements
or in tumor suppressor genes may contribute to oncogenic
transformation (77), a rare event that, most importantly,

has never been reported in engineered T cells. Nevertheless,
several strategies have been implemented to increase the safety
profile of integrating vectors. These include the elimination of
viral genes responsible for virulence (78), splitting packaging
genes into different plasmids (79), and the introduction of
inactivation switches in the vectors constructs (80). In addition,
chromatin insulator elements can be added to the flanking
regions of the insertion cassette, acting as physical barriers
to hamper the interactions between viral enhancers and other
regulatory elements (81). To increase the safety profile of viral-
mediated gene delivery, it is nowadays possible to instruct
viral vectors to integrate into specific “safe harbors,” genomic
regions distant from transcribed genes, enhancers, regulatory
RNA, or microRNA regions to minimize the risk of perturbing
gene expressions (82, 83). Identified safe harbors are either
housekeeping genes, e.g., AAVS1 (84, 85) and ROSA26 (86),
or specific loci not affecting gene expression and identified by
mapping the viral vectors integration sites (87).

In addition to viral vectors, a variety of non-viral gene
transfer methods have been explored to transfer transgenes into
T cells (Figure 2). Transposons are mobile elements composed

FIGURE 2 | The landscape of gene delivery methods. The genetic transfer of an exogeneous T cell receptor (TCR) into a donor T cell can be obtained with different

vectors, the most widely used being viral vectors, mRNA, and transposons systems. Strengths and weaknesses are listed for each technology.
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of a transposase gene flanked by inverted terminal repeats
(ITRs) (88). For the purpose of gene therapy, two plasmids
are transfected together, one encoding for the transposase and
the other one containing the expression cassette flanked by
ITRs; upon entry, the transposase integrates the gene of interest
in the genome. The so-called “Sleeping Beauty” transposon
system gained the widest application, being able to transfer up
to 6 kilobases into mammalian cells (89). This system may
be considered as efficient as viral gene transfer, at least in
vitro, if the transposon/transposase ratio is tightly controlled
(90) to avoid the formation of functionally inactive transposase
oligomers (91). In general, transient expression of the transposase
is usually preferred, and ensured by mRNA electroporation (92).
Transposons have an acceptable production cost and a low
immunogenicity potential. Nonetheless, gene transfer efficiency
varies according to the target cell and is sensitive to the size
of the expression cassette. In the ACT field, transposons have
been efficiently utilized to express functional CARs (9, 93–95)
and TCRs (96–98) but their exploitation in clinical practice is
still limited.

Messenger RNA-based gene transfer, usually achieved by
mRNA electroporation or by enclosing the mRNA into
lipid nanoparticles (99), is devoid of insertional mutagenesis
risk. However, mRNA can convey only transient transgene
expression and in vitro transcribed mRNAs could trigger cellular
inflammatory reactions, whose incidence can be mitigated by
introducing base modifications in the synthetic RNA (100). In
ACT studies, CAR-T cells have been generated using mRNA gene
transfer; still, multiple administrations of the engineered T cells
were necessary to mediate tumor regression. Of interest, in a
phase I clinical trial, CAR-T cells targeting mesothelin generated
upon mRNA electroporation and administered to patients with
advanced cancers proved safe and mediated anti-tumor activity
despite transient persistence (101).

TCR Gene Transfer
In 1986, a murine exogenous α and β TCR gene pair was
successfully transferred into another cytotoxic T cell, endowing
the recipient cell with a new TCR specificity (52). The efficacy of
the TCR gene transfer was tested in immortalized T cells, where
the cDNA of a MART-1-specific TCR isolated from melanoma
TILs was stably expressed (102) and, shortly after, on primary
human T cells, granting recipient T cells cytolytic activities
specifically toward their target epitope. The encouraging safety
and efficacy pre-clinical results observed by targeting MART-1
(103, 104), the murine MDM2 oncoprotein (105) and the EBV-
associated LMP protein (106), prompted the approval of TCR
gene transfer in human clinical trials. In the context of metastatic
melanoma, TCR-transferred T cells successfully induced tumor
regression in two out of 15 patients and persisted in vivo for at
least 2 months after infusion (28). The safety profile of TCR-
transferred T cells specific for MART-1 or gp100 was similar to
that of TILs, with on-target off-tumor toxicities toward skin and
eye melanocytes (107). Thanks to these seminal results, the TCR
transfer clinical application was widened to other relevant targets,
such as the New York esophageal squamous cell carcinoma (NY-
ESO)-1, expressed in Melanoma and Synovial Sarcoma (30, 43)

and the carcinoembryonic antigen (CEA), expressed in colorectal
cancer (31).

The broader use of TCR transfer, however, underlined some
of the limitations of this new technology. Firstly, endogenous and
exogenous TCRs competed for assembly with the CD3 subunits
(108), thus resulting in suboptimal surface expression of the
transferred receptor. Secondly, α and β chains from exogenous
and endogenous TCRs could mis-pair, further diluting the
expression of the correctly paired tumor-specific receptor and
introducing new specificities, potentially leading to unwanted
toxic reactivities (109). TCR mispairing has been described in
vitro by using human cells (109) and was associated to immune-
mediated toxicities in murine models (110). So far, no events
potentially associated to TCR mispairings have been reported
in clinical trials. Nonetheless, to address this safety issue and
to increase the expression level of the exogenous TCR, several
strategies have been proposed: (i) the replacement of the human
TCR constant region, essential for pairing, with a murine-derived
sequence (111), (ii) the introduction of cysteine residues to
stabilize proper pairing of the TCR chains via disulphide bonds
(112, 113), (iii) the generation of a human TCR incorporating the
CD3ζ chain (114), (iv) the swapping of TCR constant domains
between the α and β chains (115), and (v) the incorporation in
the vector cassette of small interfering RNA sequences able to
reduce the expression of the endogenous TCR genes (116). To
overcome the limitations of TCR gene transfer, nascent genome
editing technology has been exploited to develop the TCR gene
editing approach (117).

Genome Editing in the Service of ACT
The use of artificiallymodified nucleases enables the disruption of
the genes encoding α and β chains of the endogenous TCR, thus
completely and permanently avoiding the risk of TCRmispairing
and the mutual dilution effect resulting from the expression
of four TCR chains in a single cell. Artificial nucleases bind
DNA in selected genomic regions, in which they mediate a DNA
double-stranded break (DSB), either repaired by the high-fidelity
homologous direct repair (HDR) system or by the mutagenic
non-homologous end joining repair machinery (NHEJ). HDR
uses a DNA template, usually the sister allele, to correct the break
and restore gene function, while NHEJ introduces or erases a
variable number of nucleotides upon repair, with the chance of
creating premature stop codons and frameshift mutations. Both
repair mechanisms can be exploited for gene therapy purposes,
with different aims: HDR is suitable for gene correction when an
exogenous donor DNA template is delivered with the nuclease
(118), while NHEJ is preferred if a gene has to be disrupted (119).

The zinc fingers nucleases (ZFNs), among the first efficient
gene editing tools developed, are large multimeric molecules,
each monomer targeting a 3-4 DNA base pair sequence, linked to
the FokI endonuclease (120). While the multimers confer ZFNs
specificity, that can be increased even by elongating the length
of the multimers, the endonuclease mediates DNA cleavage. This
gene editing tool supported the first genome editing clinical
applications (121) and the first TCR gene editing approach.
In fact, ZFN-mediated disruption of the endogenous TCR has
been combined with LV gene transfer to efficiently generate
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WT1-specific TCR-edited T cells that outperformed TCR gene
transferred T cells in safety, specificity, and efficacy in vitro and
in vivo (117). Despite these encouraging results, the first protocol
reported required 40 days of manufacturing to be completed
and multiple manipulation steps. To improve feasibility, a single-
editing strategy, based on the sole disruption of the TCR α chain
gene was proposed resulting in optimal expression of a NY-ESO-
1-specific TCR and efficient tumor rejection in animal models, in
the absence of adverse events (122).

An alternative to the ZFNs system is represented by
transcription activator-like effector nucleases (TALENs), small
(33–35 amino acids) transcription factors fused with an
endonuclease domain (123). TALENs specificity is modified
by mutating the two hyper-variable residues that bind the
DNA helix. The nucleotide sequence recognized by TALENs is
fairly short, increasing the likelihood of off-target binding sites
throughout the genome and potentially leading to unwanted
DNA breaks. To overcome this limitation, the DNA binding
regions can be elongated by multiplying the hyper-variable
residues, hence increasing TALENs specificity at the expense of
a more complicated protein design. In the ACT context, TALENs
have been proficiently used to disrupt endogenous TCR genes in
preclinical models and in clinical trials (124, 125).

Meganucleases represent alternative genome editing tools
originating from naturally occurring endonucleases that directly
bind DNA (126). Meganucleases present some advantages, such
as the generation of a 3′overhang at the cleavage site that
favors HDR when compared with 5′overhang, and their overall
small size, suitable for several delivery methods (127). Still, the
difficulty in separating the endonuclease cleavage domains from
the DNA binding site limits the number of DNA sequences that
can be targeted. To circumvent this obstacle, chimeric proteins
have been generated by fusing meganucleases with ZFNs and/or
TALENs DNA binding domains, at the expense of increased
manufacturing complexity (128, 129).

The introduction of the CRISPR/Cas9 nucleases, bacterial
proteins adapted to excise phage DNA fragments (130),
completely revolutionized the genome editing field. While
ZFNs and TALENs recognize the target DNA sequence via
protein-DNA interaction, the CRISPR/Cas9 system relies on a
short RNA sequence (single guide RNA, sgRNA). The RNA
interacts with the Cas9, conferring the binding specificity
and guiding the nuclease activity (131). The CRISPR/Cas9
platform is highly efficient and versatile, since the specific DNA
binding is entirely mediated by the sgRNA, short enough to
be easily synthetized in vitro but long enough to ensure high
specificity. Compared to the previously developed nucleases, the
CRISPR/Cas9 system provides three major advantages: (i) rapid
and relatively inexpensive manufacturing, (ii) the possibility
of multiplex genome engineering obtained by simultaneously
targeting several genes, and (iii) compliance with several delivery
systems adapted to different cell types (132).

Multiplex genome engineering is a remarkable feature of
CRISPR/Cas9, not easily achieved with other nucleases. The
possibility of disrupting genes in a single step streamlined
different editing procedures (133) and had a direct impact
on ACT manufacturing processes, where the synchronous

disruption of the α and β TCR chains (42, 134) can sensibly
decrease the in vitro manipulation time. In addition, a template
strand can be delivered together with the CRISPR/Cas9 system,
allowing the integration of the genetic material exactly at the
cleavage site (135).

Different tools can be employed to deliver CRISPR/Cas9
complexes into cells. Plasmid delivery has been used (136), but
with suboptimal efficiency and with an increased risk of plasmid
integration in the host genome. Furthermore, the expression
of the Cas9 protein is retained for a fairly long amount of
time, increasing the likelihood of adverse immune responses
or off-target gene editing. An alternative approach depends on
delivering the sgRNA together with the in vitro transcribed
Cas9 mRNA (137), ensuring transient Cas9 expression but
posing the risk of decreased cleavage efficiency. Lastly, the native
Cas9 protein can be pre-assembled in vitro with sgRNA in
a ribonucleoprotein complex and then electroporated into the
target cells (138). This transfer method overcomes the need for
transcription/translation and the risk of intracellular degradation
of the free sgRNA (139), thus improving safety and reducing
off-target mutagenesis risks.

As for ZFNs (140–142) and TALENs (143, 144), a side effect
of the CRISPR/Cas9 system is the risk of editing off-target genes.
The nuclease activity can potentially cause DNA strand breaks
in other genomic regions, knocking-down unwanted genes or
promoting genome translocations (145, 146). Off-target editing
can also affect the RNA transcriptome, with toxic consequences
for the cell (147). Three methods have been employed to
minimize off-targets while increasing on-target activity when
using CRISPR/Cas9: (i) the use of modified sgRNAs with higher
specificity for the target site, (ii) the titration of the sgRNA and
Cas9 ratio (148), and (iii) the introduction of a single point
mutation in the Cas9 (149). Furthermore, additional enzymes
have been incorporated in the system to mediate base editing
without affecting the transcriptome (150).

Several techniques have recently been optimized to map
off-target cleavage sites. Mutation detection assays using T7
endonuclease followed by deep sequencing of the resulting
amplicons have been initially used, but their sensitivity is
limited, especially when dealing with large deletions (151). The
tendency of integrase-defective lentiviral vectors to incorporate
into DSBs can be exploited to barcode regions of Cas9 activity
(152). BLESS [direct in situ Breaks Labeling, Enrichment on
Streptavidin and next-generation Sequencing (153)] can map
double-strand breaks by using biotinylated linkers that are
incorporated at the DSB site; the biotinylated DNA regions
are then purified and the captured DNA fragments sequenced.
One of the most sensitive off-target detection assay is GUIDE-
seq (genome-wide, unbiased identification of DSBs enabled
by sequencing), where short phosphorylated double-stranded
oligo-deoxynucleotides are incorporated into DSBs to detect
Cas9 cleavage sites (154). More rarely, nucleases can cause
chromosomal translocation that can be detected using high-
throughput, genome-wide translocation sequencing (HTGTS)
methods (155), chromatin immunoprecipitation sequencing
(ChIP-seq) (156), and digenome-seq or the recently proposed
CIRCLE-Seq (157).
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All described genome editing technologies have been
employed for the modification of either hematopoietic stem
cells or T cells. As summarized in Figure 3, genome editing
has been exploited with several purposes in the ACT field: to
completely redirect T cell specificity (42, 117, 124, 158–160),
to avoid the risk of GvHD or fratricide effects mediated by
CAR-T cells (161–165), to make adoptively transferred T cells
resistant to the immunosuppressive environment (42, 166–173)
or to lymphodepleting drugs (174, 175). The high efficiency
of gene editing and the overall flexibility of the CRISPR/Cas9
system makes it the most relevant tool to precisely and rapidly
edit high numbers of T cells to be used in ACT. Nonetheless,
issues remain to be addressed regarding the manufacturing, the
delivery, and the broad accessibility of genome editing products
to patients (176).

ANTIGEN IDENTIFICATION AND TCR
GENE HUNTING

Different Classes of Target Antigens
One of the major questions in today’s adoptive T cell gene
therapy is the choice of the target antigen. Theoretically, the
ideal candidate should be (i) expressed on tumor cells and not
on healthy tissues (to avoid toxicities), (ii) expressed on cancer
stem cells (to promote tumor eradication), (iii) associated with
the oncogenic process (to reduce the risks of tumor immune
evasion), (iv) able to elicit an immune response, and (v) efficiently
processed and presented in the context of a common HLA
allele (177). Unlike CAR-T cells, TCR-redirected T cells can
target antigens independently of their intracellular localization,
as soon as they are processed and presented by HLA molecules.
For the majority of cancer types, the ideal antigen is yet to be
identified, and the search is proving more difficult than expected,
particularly for those tumors with undefined clonal evolution and
not fully understood in terms of molecular pathogenesis.

The two major classes of antigens in the context of ACT are
tumor-associated antigens (TAAs) and neoantigens. TAAs are
epitopes originated from endogenous wild-type proteins whose
expression is increased in tumors and limited in magnitude or
in spatial expression in healthy tissues; neoantigens are instead
epitopes derived from somatic DNA alterations.

Different TAAs have been investigated for their potential
therapeutic relevance (178): cancer/testis antigens such as
melanoma-associated antigen (MAGE)-A3 (179, 180), MAGE-
A4 (35, 181), and New York esophageal squamous cell carcinoma
(NY-ESO)-1 (182); oncogenes/oncosuppressors such as WT1
(50) and p53 (183); tissue-restricted/differentiation antigens such
as MART-1 (28, 34), gp100 (29), or CEA (31). The toxicity
and safety profile of T cell therapies targeting TAAs seem to be
heterogeneous, depending on the chosen epitope. Several TAA-
specific TCRs showed important side effects: cardiovascular and
neurological toxicities [with MAGE-3 specific T cells (32, 33)],
undesired recognition of melanocytes (with MART-1 specific T
cells) (28), and severe transient colitis (with CEA specific T cells)
(31). TCR targeting NY-ESO-1, instead, conveyed no toxicities
but limited clinical response in a small cohort of patients affected

by melanoma and synovial sarcoma (30) and of sarcomas/nerve
sheet tumors (41). Its application appeared promising in various
pre-clinical tumor models, both in terms of efficacy and safety
[bladder (184), ovarian (185), esophageal (186) and prostate
cancers (187), multiple myeloma (188), medulloblastoma (189),
non-small cell lung carcinoma (190) mesenchymal tumors (191),
and breast cancer (192)] but clinical studies are needed to validate
these results. The expected good toxicity profile may reside in
the limited NY-ESO-1 expression in healthy tissues, essentially
restricted to the gonads, an immune-privileged site.

Focusing on neoantigens appears to be another efficient choice
for cancer immunotherapy (193). Neoantigens represent the
main target of autologous T cell responses in patients treated
with TILs (194). Since neoantigens peptides are not presented to
thymocytes, T cells specific for those epitopes are not deleted by
central tolerance mechanisms, thus the chance of retrieving high
affinity TCRs is enhanced. However, the clinical exploitation of
neoantigens in TCR-mediated ACT is hindered by their intrinsic
qualities: (i) neoantigen-forming mutations tend to differ among
patients, making difficult the development of a widely applicable
immunotherapeutic product, and (ii) neoantigen expression
might be heterogeneous across the tumor tissue. This is
particularly true for passenger mutations, random alterations
caused by genome instability and not homogeneously spread in
the tumor mass (45). In addition, the mutational rate is highly
variable in different tumors. In fact, the likelihood of identifying
neoantigens from tumors with a low mutational load is poor and
their relevance as therapeutic targets is limited (195). Despite
these limitations, initial reports highlighting the occurrence of
immunogenic neoantigens widely shared in tumor cells and
among patients are emerging (196). Additionally, thanks to their
broad expression in cancer cells and to their involvement in
oncogenesis, founder mutations may be considered promising
ACT candidate targets (197). However, epitopes arising from
founder mutations may be poorly immunogenic or differ among
patients, thus reducing their appeal.

Overall, the interest in neoantigens has increased in recent
years, and more than 100 clinical trials exploiting these
candidates are currently in progress. However, the ongoing
trials largely rely on in vivo peptide vaccination rather than on
engineered T cell infusions, further underlining the difficulties in
validating a proper target for adoptive T cell therapy (198).

A third possible choice of targets is represented by
Minor Histocompatibility antigens (MiHA), peptides derived
by polymorphic intracellular proteins, potentially overexpressed
by tumor cells. The most known examples are HA-1 and HB-
1 (199–201), expressed selectively by hematopoietic cells and
by different liquid cancers, thus constituting highly relevant
targets (202, 203). Since MiHA derive from coding regions
of polymorphic genomic sites, coupling HA-1-directed T cell
therapy with Allo-HSCT from a recipient not harboring the same
single nucleotide polymorphism (SNP) could provide a valuable
therapeutic strategy, able to spare the donor hematopoietic stem
cell population while eradicating cancer. So far, HA-1-specific
engineered T cells have been tested in vitro and in preclinical
models, showing an optimal efficacy and safety profile (204).
However, MiHA targeting requires specific combination of SNPs
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FIGURE 3 | Genome editing exploitation for adoptive T cell therapy. To eliminate the expression of T cell genes, meganucleases, transcription activator-like effector

nucleases (TALENs), and zinc-finger nucleases (ZFNs), the CRISPR/Cas9 system can be employed. A summary of the genes edited in the context of adoptive T cell

therapy (TCR- or CAR-T cell immunotherapies) is reported, together with the specific nuclease system used. CAR, chimeric antigen receptor; TCR, T cell receptor.
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and HLA allele between the donor and recipients, which reduces
the broad applicability of this approach.

A fourth source of antigens are proteins encoded by oncogenic
viruses. Being involved in tumorigenesis, viral epitopes are
shared uniformly by the tumor mass and, due to their nature
of foreign molecules, they’re potentially highly immunogenic.
Hereby, the isolation of high-avidity viral-specific T cells is
easier than with other antigen classes, making these targets
particularly appealing for ACT. Unfortunately, few tumors
have a clear viral pathogenesis, thus this antigen source is
currently mostly limited to some HPV and EBV-associated
malignancies (205, 206).

The Challenges in Selecting Tumor
Antigens and Tumor-Specific TCRs
Apart from choosing the antigen class of interest, tumor
screening for immunologically relevant epitopes is a particularly
laborious process. The most used and standardized strategy
relies on paired whole-exome sequencing or, alternatively, the
comparative RNA sequencing analysis of tumor and of healthy
tissues to determine differently expressed genes. Once the most
promising hits are identified, in silico assessment of HLA
presentation and binding (207) is required. In this regard,
prediction algorithms are still suboptimal (208), not always
accurate and they very often lead to false positive results (209).
Thus, extensive validation of the results is always required.
The analysis of the tumor ligandome can now be considered
a good alternative approach. This technology is based on mass
spectrometry typing of all the peptides eluted from the HLAs
of a specific tumor type or tumor cell line (210). Here too,
the amino-acidic sequences retrieved need to be validated for
their relevance in the tumor setting. Despite the great potential
of this methodology, some limitations still remain, namely the
high number of tumor cells needed, an endpoint is not always
attainable when using primary tumor samples, and the low
number of epitopes retrieved upon in silico and in vitro screening
(211, 212).

Finding the perfect immunogenic epitope is only half of the
issue, since the typing of epitope reactive TCRs may prove
challenging as well. To isolate a tumor-reactive T cell, a proper
source must be selected, the clone of interest must ideally harbor
a high avidity TCR and reach a significant level of frequency
and purity. These prerequisites are fundamental for the successful
retrieval of functional TCR αβ nucleotide sequences.

T cell isolation is particularly challenging especially for poorly
immunogenic tumors and for those in which the T cell infiltrate
is scant. Recent works showed that, in different cancers, tumor-
reactive TILs represent only a minimal fraction of the total T cell
subpopulation infiltrating the tumor (47) and that reinvigoration
of tumor immunity is associated with recruitment of new T
cell clones (213). These observation lead to the hypothesis that
selecting T cell clones on the basis of their abundance in the
tumormay bemisleading. In addition, the poor efficiency of the T
cell ex vivo expansion procedures may be taken in consideration
as a limiting factor in the retrieval of tumor-specific T cells,
especially when studying lymphocytes originated from tumors

characterized by a microenvironment known to blunt T cell
proliferation (214).

When tumor specific T cells are retrieved, the greatest
challenge of the TCR sequencing step is the correct pairing
of the cancer-specific α and β TCR chains for each T cell
clone. The initial approach for the identification of the TCR
repertoire was based on single cell cloning coupled with Sanger
sequencing (215, 216), which makes it difficult to estimate the
overall repertoire diversity. The field greatly benefited from
the introduction of high-throughput sequencing technologies
which enabled researchers to profile the diversity of millions
of TCR molecules in the analyzed samples. With this approach
a complete overview of the TCR sequences constituting the
repertoire of the sample is obtained (217–219). However, to
successfully characterize and select the TCR αβ pair of interest
among the numerous sequences retrieved, the specimen needs
to be enriched in anti-tumor specificities in order to obtain
an oligoclonal population. To this aim sequencing can be
preceded by enriching steps, such as co-culturing TILs with
tumor cells harvested ex vivo or performing serial stimulations
with professional antigen-presenting cells pulsed with the peptide
(or peptide library) of interest. In the latter case, an entire protein
sequence can be screened by epitope scanning (220).

An interesting approach that avoids the ex vivo enrichment
step is PAIRseq: the sample is split into parallel PCR runs, each
one tagged with a specific barcode, and then the results are
deconvoluted to identify proper TCR pairs (221). An evolution
of this laborious setting is perhaps single cell RNA sequencing,
where the use of a cell-specific oligo-DNA barcode allows
researchers to retrieve TCRs at single cell resolution (222).
The typical output of these systems is generally hundreds or
thousands of TCR pairs, questioning whether or not faster
sequencing translates to a more laborious validation phase.
Alternatively, recent advances in the proteogenomic field may
speed up the selection of tumor-specific TCRs. In fact, it is now
possible to combine single-cell resolution TCR sequencing with
barcoded multimers loaded with a specific HLA molecule and
with a selected tumor epitope (222). This approach is extremely
helpful in characterizing, in a single step, both the tumor specific
TCR sequence and its epitope specificity. This new technology
may greatly speed up the isolation of TCRs directly from human
samples, avoiding any enriching steps and jumping directly to the
functional validation of newly retrieved TCR sequences in vitro.

Another point of discussion is the choice of the ideal
specimen to be used for the isolation of tumor-reactive T cell
clones. Hunting for tumor-specific T cell receptors directly
from the tumor site in patients has historically been the most
straightforward choice (17) since anti-tumor reactivities can
be intuitively more abundant in the tumor mass. However,
the development of a tumor implies an escape from immune
surveillance, suggesting either that the infiltrating T cells present
at the tumor site were not efficient enough to eradicate
the disease, thus questioning their use, or that these highly
specific cells were blunted in their activity by the tumor
microenvironment (223). In the latter case, the anti-tumor
efficacy of the tumor-specific T lymphocytes assessed by in vitro
functional assays upon isolation may not be informative, but
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the TCR is worth isolating and employing in TCR transfer
approaches. Recent reports (224, 225) also demonstrated that the
exhaustion signature could be exploited, defining a T cell subset
enriched with neoantigen-specific T cells.

Since tumor-reactive T cells also circulate throughout the
body, patients’ peripheral blood and lymph nodes from tumor
patients are suitable sites to harvest these cells, and often the only
available sites for tumors that cannot be excised. Tumor-specific
T cells have been found in tumor-draining lymph nodes, and
efficiently used for ACT (226). Melanoma-specific T cells have
been enriched and expanded ex vivo starting from peripheral
blood (227). However, at least in some tumor types, the low
frequency of circulating tumor-reactive T cell clones (228) might
impair their retrieval.

Trading Toxicity With Efficacy
In the process of hunting for new TCR specificities, the aim is
to define the TCR sequences most efficiently mediating tumor
lytic functions. These highly promising TCRs can be collected
and used for off-the-shelf immunotherapeutic approaches readily
accessible for each candidate patient. The leading TCRs are
the ones with the highest binding affinity and avidity (229)
toward the HLA-peptide complex, the fastest association rate
and the slowest dissociation speed (230, 231). According to
this concept, isolated TCRs were screened for strong and fast
killing efficacy and themost suitable ones were further developed.
In addition, TCRs were modified in their complementary-
determining regions (CDRs) in vitro to artificially increase their
affinity for the target, thus overcoming the barrier of thymic
selection, that deletes thymocytes harboring autoreactive high
avidity TCRs. Several approaches have been recently exploited
with the ultimate aim of generating high affinity TCRs: (i)
mutations in complementarity determining regions by sequential
single amino acid substitutions (232–234), (ii) vaccination of
mice and consequent retrieval of peptide-reactive TCRs (235),
(iii) murine thymic selection to mutagenize one of the TCR
chains (236), (iv) transfer of the entire human TCR αβ gene
loci into mice to educate T cells against human self-antigens
(237, 238), and (v) DNA replication error-prone yeast cells to
modify the α and β chain variable regions (239). These techniques
have been particularly useful when dealing with TAAs, since
highly avid T cell clones recognizing these antigens in a specific
and efficient manner have been difficult to isolate.

The advantages of TCR affinity enhancement have been
demonstrated in vitro (240–242) and in clinical trials (30, 36, 37,
39). The opposite side of the coin, though, is the risk of enabling
engineered T cells to respond to tissues displaying low antigen
expression, fostering on- or off-target off-tumor toxicities (243).
A clinical trial with an artificially enhanced TCR directed against
MAGE-A3 proved highly efficient in eradicating tumor cells but
was also endowed with a remarkable off-target off-tumor cardiac
toxicity (32, 244), leading to the suspension of the trial. On the
same line, an artificially-enhanced TCR directed against CEAwas
associated with the occurrence of on-target off-tumor reactions
and strong systemic inflammation, underlining the limitation
of procedures aimed at enhancing TCR avidity when targeting
TAAs (31). As a matter of fact, it proved very challenging to

predict any possible cross-reactivity of engineered T cells against
human tissues. The most commonly used techniques, in vitro
testing and epitope alanine scanning, have been further refined
in recent years (241, 244) and extended to scan all the possible
amino acid substitutions in the target epitope (245). Nevertheless,
concerns about affinity enhancing techniques still persist. In
this context it might prove safe to introduce a kill switch in
engineered T cells, enabling their ablation if necessary (63, 246).
Otherwise, the conditioning regimen prior to T cell infusion
can be modulated, reducing therapy-induced tissue damage and
antigen spreading, two phenomena potentially fostering off-
target reactions.

In addition to the adverse events observed in clinical trials, the
modification of TCR affinity may also convey excessive activation
signals to T cells, that could lead to hypo-functionality and/or
premature T cell death. An extensive and continuous activation
is indeed detrimental for T cell function (247–249). Reports in
the context of TCR engineering are still scant (40) but new
insights from the field of CAR-T cell therapy have highlighted
this issue (250). Since TCRs is even more sensitive to antigen
density variations than CARs (251), it’s reasonable to suppose
that this mechanism could be relevant in the context of TCR
engineering. The picture might even be more complex with
TCRs, since costimulatory signals are more tightly involved in
the immunological synapse (252) than in CAR-T cells, a feature
that provides more flexibility but that requires greater attention
to signal tuning.

PERSISTENCE OF ADOPTIVELY
TRANSFERRED T CELLS AND CLINICAL
RESPONSES

Nowadays, it’s still unclear which variables impact long-
term persistence in adoptively transferred T cells the most.
This scientific question is particularly relevant because
T cell persistence is a fundamental requisite for durable
immunosurveillance. Whether immunosurveillance is required
for the maintenance of clinical remission is still a matter
of debate. However, reports indicate that the sustained and
prolonged in vivo expansion of engineered T cells correlates
with relapse-free survival and tumor control (39, 40). Several
measures have been implemented to foster ACT persistence,
including the use of preconditioning regimens and the choice of
manufacturing protocols able to enrich memory cells. The use of
a lymphodepleting conditioning regimen prior to ACT inhibits
host immune cells, including regulatory T cells (Tregs), and
favors the accumulation of homeostatic cytokines (253), critical
in sustaining engineered T cell engraftment and expansion
(254, 255).

The administration of low-doses IL-2 can also sustain
adoptively transferred T cell proliferation in vivo (17, 19) and has
been included in several ACT protocols. The use of IL-2, however,
conveys the risk of toxic reactions related to the activation of
bystander host cells. Furthermore, prolonged administration of
this cytokine was shown to preferentially expand Tregs (256).
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The cellular composition, in terms of subsets and
differentiation of the therapeutic product, has a direct impact on
efficacy. Long telomeres (257), CD27, and CD28 co-expression
(258) on TILs were associated to clinical responses in initial
ACT trials. With engineered T cell products, the co-infusion
of CD4 and CD8 cells fosters T cell persistence (8). In some
ACT applications, manufacturing includes a selection step to
enrich the product in CD8 central memory (TCM) lymphocytes
(259). The polyfunctionality of adoptively transferred engineered
T cells correlated with clinical responses in several clinical
trials, targeting NY-ESO-1 (36), MART-1 (29), and WT1 (38).
The relevance of the intrinsic qualities of the infused T cells
was further highlighted by the observation that even low

numbers (10
5
) of highly fit engineered T cells were sufficient

to mediate anti-tumor responses (260, 261). Based on these
observations and with the final aim of improving the fitness of
the infused T cell products, different T cell expansion protocols
have been developed and compared. T cell activation with
phytohaemagglutinin (PHA) was shown to promote T cell
expansion, but also T cell terminal differentiation (262), whereas
stimulation with an anti-CD3 monoclonal antibody coupled
with high doses of IL-2 reduced the TCR repertoire diversity and
enhanced apoptosis (263). The combination of TCR triggering
with co-stimulation, obtained thanks to the use of anti-CD3 and
anti-CD28 antibodies, followed by the culture of the T cells in
the presence of high-doses of IL-2, improved the fitness of the
cellular products (264).

Despite showing potent tumor killing abilities in vitro,
effector T cells were paradoxically less effective than early
differentiated T cells when transferred in tumor-bearing mice
(265). These results can be explained by the progressive model
of mature T lymphocyte differentiation (266). Upon antigen
encounter naïve T cells differentiate into stem cells memory T
cells (TSCM), TCM and subsequently in effector memory and
terminally differentiated cells, progressively losing proliferating
and persistence ability. Recent studies demonstrated that TSCM,
originating directly from naïve T cells (267, 268), are endowed
with stem cell-like properties and with the ability to persist for
decades in vivo (269, 270). The persistence capacity of TSCM

was confirmed in patients treated with genetically engineered T
cells, in the context of both malignant (271) and non-malignant
(272) diseases. In the attempt to preserve this early-differentiated
T cell subset, the in vitro protocol used for TILs expansion
was shortened (273) and the anti-CD3/anti-CD28 antibodies
were conjugated to cell-size beads (274) or nanomatrixes (275).
The cytokine cocktail used to sustain T cell expansion in vitro
also plays a major role in determining the fitness of cellular
products. The introduction of Interleukin-21 in the culture
medium promotes a TCM phenotype (276) while Interleukin-
7 and Interleukin-15 supplementation, in the absence of IL-2,
expands the TSCM pool (277, 278).

As already mentioned, the intrinsic T cell fitness has an
impact on the persistence and thus on the efficacy of the T cells
used in ACT. In CAR-T cell therapy trials, CAR-T cells isolated
from poor responders expressed genes associated with effector
memory differentiation and apoptosis, a glycolytic metabolism,

and hypo-functionality. Conversely, efficient anti-tumor activity
was associated with an early-memory differentiation signature,
expression of CD27, and absence of the exhaustion marker PD-1
(259, 279, 280). Similar observations were reported in TCR-based
studies. The transfer of a WT1-specific TCR into Epstein-Barr
virus-specific donor CD8T cells has been exploited to generate
functional, memory-like cellular products (281). Using this
manufacturing procedure, high levels of engraftment and long-
term persistence were observed in humans (40). Furthermore, in
an ACT trial with TCR engineered T cells, the extent of cytokine
release was associated with anti-tumor activity (107).

Once adoptively transferred, T cells interact with the host
immune system. Competition of infused and unmodified T cells
for proliferative signal accessibility may decrease cell survival.
Furthermore, engineered T cells may be recognized and rejected
by the host immune system, thus abrogating ACT efficacy. In the
autologous setting, rejection could be due to an immune response
against the transgene products, as observed in preclinical models
(282). An immune response against the murine-derived CD19
CAR was described before and after cell therapy. In the JULIET
study (283), the majority of treated patients showed detectable
levels of pre-existing anti-murine CD19-specific antibodies, that
further increased upon CAR-T cells infusion. Nonetheless, the
kinetics of engraftment was unmodified, and rejection barely
detected, questioning the relevance of thesemarkers in predicting
CAR-T cells persistence. T cell mediated immune responses
against Herpes Simplex Virus-derived Thymidine Kinase (TK)
epitopes were described in patients treated with TK-DLI, often
leading to the elimination of genetically engineered T cells
(284). The immunogenicity of TK could be overcome in
the HSCT context by infusing transduced T cells during the
immunosuppressive phase that follows transplantation (285). For
ACT applications that do not involve HSCT, the minimization of
transgene immunogenicity remains a desirable and relevant goal.

OVERCOMING BARRIERS TO T CELL
HOMING AT TUMOR SITE

The efficacy of ACT is strictly dependent on the ability of the
infused product to infiltrate neoplastic lesions. This is particularly
difficult in solid tumors, often characterized by a dense stromal
architecture, an abnormal vessel structure, and by alteration
of chemo-attractants that impinge T cell homing (286–288).
In recent years, different strategies have been developed to
counteract these factors and hence, increase the ability of T cells
tomigrate inside neoplastic lesions, where they can properly exert
their anti-tumor activity.

Interfering With Cancer Metabolism and
Chemokines to Increase ACT Infiltration
The connection between metabolism and oncogenesis is well-
documented. Metabolic reprogramming, a hallmark of cancer,
does not only impact on cancer cell survival and proliferation,
but also on the immunological microenvironment. The presence
of reactive nitrogen species (RNS), produced by several human
tumors, can induce nitration of different proteins present in
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the tumor microenvironment (TME) with consequences on
T cell functions (289). As an example, the nitration of the
CCL2 chemokine decreases its binding affinity for CCR2, thus
reducing T cell recruitment. In mouse models, preconditioning
of the tumor microenvironment with small molecules blocking
RNS production increased the CCL2-mediated recruitment of
adoptively transferred tumor-specific CD8T cells (290), making
it an interesting target for further therapeutic development.

Tumors can alter the fucosylation of T cell surface
glycoproteins (291), again impinging T cell homing at tumor
sites. The ex vivo glycoprotein fucosylation increases in vivo
migration and cytotoxic abilities of tumor-specific T cells in
leukemia, breast cancer, and melanoma models (292).

The CXCL12/CXCR4 is an additional relevant axis activated
by neoplastic cells and cancer-associated fibroblasts in several
human tumors. CXCR4 expression correlates with desmoplasia,
metastases formation, and immunosuppression (293–298). In
murine models of leukemia, melanoma and ovarian cancer,
CXCR4 inhibition, obtained with blocking antibodies or with
the CXCR4 antagonist AMD3100, increased the effector to Tregs

ratio at the tumor site and reduced tumor growth (298–301).
Stemming from these observations, several clinical trials are now
exploring the efficacy of CXCR4 blockade in solid tumors (302).

Exploiting Cancer Vasculature to Foster
ACT Infiltration
Tumor neo-angiogenesis involves the formation of a
disorganized network of irregular and leaky vessels, inefficient
in delivering oxygen, drugs, and immune cells to the neoplastic
microenvironment. This process is largely orchestrated by the
vascular-endothelial growth factor (VEGF) and results in tumor
growth promotion and altered inflammation (303). VEGF
inhibitors are currently used in the treatment of several cancers
(304) owing, in particular, to their ability to increase T cell tumor
homing (305–309). By promoting vessel maturation, VEGF
inhibitors positively impact on immunotherapy and ACT (310).
Vascular-targeting peptides represent additional effective tools
for the precise delivery of small molecules capable of inducing
tumor vessels normalization and increased T cells infiltration. In
mouse models, tumor-necrosis factor-targeted (TFN) delivery
to the tumor vasculature by linking the TNF protein with the
CNGRCG angiogenic vessel-homing peptide (NGR-TNF fusion
protein) enhanced the local production of immunomodulatory
cytokines, favoring the extravasation of immune cells and
improving ACT therapeutic activity (311). The fusion of the TNF
superfamily member LIGHT with a vascular targeting peptide
(LIGHT-VTP) (312, 313) and the specific delivery of IFN-γ and
TNF-α by the homing peptide TCP-1 (314) enhanced endothelial
permeability and T cell infiltration in mouse models. The cyclic
peptide iRGD (315) and the targeting of the vascular integrity
regulator VE-cadherin by CD5-2, a specific inhibitor, facilitated
T cell homing to the TME in tumor-bearing mice treated with
ACT (316).

Although only some of these therapies have been tested
in association with ACT, their effect in increasing T cell
migration into tumors strongly suggests that strategies aimed at

normalizing the neoplastic vasculature could potentially increase
ACT efficacy.

Enforcing Chemokine Receptor Expression
in T Cells
The interaction of specific chemokines and cytokines with their
receptors is a key determinant of immune cell migration, and
a mismatch between the chemokines secreted by neoplastic or
stromal cells and the receptors expressed by T lymphocytes
strongly limits T cell homing in tumors (317–320).

In recent years, attempts have been made to correct this
mismatch by engineering T cells with receptors for chemokines
or cytokines abundant in the TME, showing preliminary
encouraging results. In TRAMP mice with metastatic prostate
adenocarcinoma expressing high levels of CCL2, the expression
of CCR2 in SV40 Tag-specific CD8 lymphocytes increased
T cell homing to the tumor (321). In xenograft models,
T cell transduction with a RV encoding CX3CR1 enhanced
migration toward human cell lines expressing Fractalkine,
the CX3CL1 ligand, and inhibited tumor growth (322). In a
lymphoma murine model, adoptively transferred CD8T cells,
overexpressing CXCR4, were preferentially recruited by CXCL12
expressing cells in the bone marrow, to promote tumor control
(323). Anchoring IL-4 receptors to the membrane of adoptively
transferred T cells increased in vivo tumor homing, cytokine
secretion, and the killing of melanoma (324). Lentiviral T cell
transduction to express CXCR2 enhanced in vivo homing toward
human melanoma in xenograft models, by exploiting the high
IL-8/CXCL8 secretion levels (325).

Classical chemo-radiotherapy is also able to modulate T cell
recruitment at the tumor site, suggesting that its use with ACT
can have additive effects. In murine models, chemo-radiotherapy
has been shown to increase the local release of CCL5, CXCL9,
and CXCL11 in the TME, improving ACT-induced tumor
growth control (326). Treatment with doxorubicin in mouse
models bearing either murine or human melanoma induced
CXCL9 and CXCL10 expression by neoplastic cells and increased
the infiltration of adoptively transferred T lymphocytes. The
effect was further enhanced if ACT followed a combined
treatment with doxorubicin and IL-2 (327). Unfortunately, the
involved chemokine receptor pattern was not deeply investigated,
leaving undemonstrated a causal relation between the increased
chemokine secretion by tumor cells and the increased T
cell homing.

Overall, these studies prompt further investigation and
possible exploitation of chemokine receptors in the context of
ACT. Interestingly, a large analysis of 142 patients enrolled in
ACT trials revealed the association of genetically determined
alterations in chemokine receptors expression with response to
therapy (328), underlining the knowledge gap on the impact of
chemokines in ACT.

Generating Genetically Engineered T
Resident-Memory Cells
Among TILs, T resident-memory (TRM) cells are permanent
tissue-resident T cells able to mount an immune reaction; they’ve
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been proposed to be key determinants in the magnitude of anti-
tumor immune responses, and their presence in different human
cancers correlates with survival (329–336). It is tempting to
assume that the induction and/or manipulation of this T cell
subset might improve anti-tumor immunity and disease control.
Indeed, in murine models, the administration of anti-cancer
vaccines through routes that enhance the induction of TRM is
associated to tumor growth inhibition and, importantly, provides
protection also at distant sites (330, 337–339). In a melanoma
mouse model, ACT with T cells lacking RUNX3, a transcription
factor essential for TRM development, strongly reduced TILs
accumulation and treatment efficacy (340). These results suggest
that the association of ACT with strategies directed at promoting
tissue residency of the infused cells might be beneficial to improve
tumor control.

SURVIVING THE TUMOR
MICROENVIRONMENT (TME)

As already demonstrated in several disease contexts, a long-
lasting protective memory is a critical requirement for a
successful ACT. Despite improvement in manufacturing
protocols and fitness of the final cellular products, adoptively
transferred T cells have to face a harsh environment
while interacting with cancer cells (Figure 4). Different
immunosuppressive mechanisms act at the tumor site, with
the potential to reduce or even dampen the curative action of
ACT. If a T cell encounters the cognate antigen in an immune
active environment with plenty of additional co-stimuli, the
resultant immune reaction is most likely to be efficient in
clearing antigen-bearing cells. However, at the tumor site a
variety of signals make T cells chronically exposed to antigenic
stimulation in the absence of appropriate co-stimuli. Different
TME resident cells and tumor cells are responsible for this,
either by directly interacting with T cells or by releasing soluble
factors. As a consequence, T cell depletion, anergy, exhaustion,
and accumulation of Tregs (341–345) promote tumor immune
escape (214).

Checkpoint Blockade and ACT
Tumor-specific T cells infused to patients and chronically
exposed to tumor antigens often enter a dysfunctional state
defined as T cell exhaustion that hampers the anti-tumor
response and fosters tumor escape (346).

T cell exhaustion is a process of progressive and hierarchical
loss of effector functions (e.g., chemokines production and
cytolytic activities), resistance to activation through TCR
engagement, metabolic deregulation, and failure to acquire
an antigen-independent memory state (347). The sustained
co-expression of multiple inhibitory receptors (IRs) such as
PD-1, CTLA-4, LAG-3, Tim-3, 2B4, CD39, CD160, BTLA,
and TIGIT was identified as a hallmark of exhausted T
cells (TEX) (249) in solid and hematological tumors (e.g.,
melanoma, leukemia, breast, prostate, ovarian, renal, lung, and
hepatocellular carcinoma (348–358). Interestingly, the pattern of
inhibitory receptors expressed by TEX significantly varies among

different tumor types. This indicates that exhaustionmechanisms
are differentially shaped by various tumor microenvironments
(248) and suggests that ACT approaches need to be tailored
according to the specific features of each tumor.

Blocking the interactions between the IRs expressed by tumor-
reactive T cells and their cognate ligands leads to the reversal of
T cell exhaustion (359, 360). Monoclonal antibodies impeding
the PD-1/PD-L1 binding (361) and affecting the CTLA-4 axis
(362, 363) are able to restore tumor T cell recognition and tumor
regression in a relevant subset of terminally ill patients. Due to
their efficacy, the use of monoclonal antibodies in association
with ACT could greatly benefit T cell resistance toward the tumor
microenvironment. Although still exploratory, this combinatory
approach showed encouraging preclinical results in the context
of CAR-T cells (364).

The use of an immune checkpoint blockade is associated with
significant toxicity, indicating that the indiscriminate blockage
of inhibitory receptors on the entire T cell repertoire may
be deleterious. Indeed, immune-related adverse events (irAEs)
occurred in up to 80% of treated patients, and were life
threatening in a significant fraction of cases (365). irAEs mainly
occurred because potential autoreactive T cells were unleashed
and Tregs functionality was dampened (366). In order to maintain
the benefit of inhibitory receptor blockade while reducing
toxicities, it may be beneficial to counteract inhibitory axes
selectively on tumor-specific T cells. This is currently one of the
focuses in the T cell-based immunotherapy field. The increased
anti-tumor activity of CAR- and TCR-engineered T cells in which
an inhibitory receptor gene has been disrupted was shown in
different preclinical models (161, 166, 171, 367). Recently, the
results of the first-in-human phase I trial with PD-1 disrupted
TCR-edited autologous T cells in patients with refractory tumors
have been published, highlighting the feasibility and safety of
multiplex gene-editing in tumor-specific T cells (42).

T cell exhaustion can also be exploited for tumor-reactive T
cell isolation purposes. In fact, in the context of melanoma, it
was shown that PD-1 expressing TILs are enriched in melanoma-
specific T cells. These cells, despite being exhausted, could
be isolated and their function restored (224). In addition,
circulating PD-1 positive T cells showed to be enriched in
neoantigen-specificities (368) when compared to the PD-1
negative counterparts.

Counteracting Immune Suppressive Cells
Accumulating in TME
Besides T cell exhaustion, the presence of immunosuppressive
cell subpopulations or soluble cytokines may also dampen anti-
tumor T cells responses. In tumors, monocytes have been
described to preferentially polarize into M2-tumor associated
macrophages (M2-TAM) (369) or Tie-2-expressing monocytes
(TEM) (370). M2-TAM and TEM sustain tumor survival and
blunt immune reactions. Myeloid-derived suppressor cells (371)
and different components of the stroma have been implicated
as well in tumor progression, through different mechanisms:
(i) the expression of inhibitory receptor ligands (372), (ii) the
production of metabolites or soluble factors [e.g., indoleamine
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FIGURE 4 | The interplay between T cells and tumor microenvironment. When adoptively transferred T cells (either tumor-infiltrating lymphocytes, Chimeric Antigen

Receptor or T cell Receptor-redirected T cells) infiltrate the tumor, they interact with a complex environment, in which a combination of intracellular signals compete.

When inflammatory signals dominate, T cells can perform effector functions and potentially eradicate cancer cells; else, they may become exhausted, have limited

survival and fail in killing tumor cells. CAR, chimeric antigen receptor; TCR, T cell receptor.

2,3-dioxygenase (IDO) (373), Interleukin-1β and thymic-stromal
lymphopoietin (TSLP) (374, 375), and prostaglandin E2 (376)],
or (iii) alteration of pH and oxygen levels (377–380). Among the

soluble cytokines, the role of TGF-β gained particular attention.
TGF-β is released by neoplastic cells of different origins (381) and
its secretion is linked to common cancer genetic mutations (382).
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At the tumor site, TGF-β acts as a local immunosuppressor, thus
reducing the effect of immunotherapy on cancer cell growth. In
ACTmodels, the infusion of CD8T cells genetically manipulated
to resist TGF-β outperformed TGF-β sensitive cells in mediating
tumor control (383–387). Interestingly, in a recent clinical study
4 out of 8 patients with Hodgkin lymphoma treated with tumor-
specific T cells engineered to express a dominant negative form
of TGF-β receptor type II (388) experienced an objective clinical
response (389).

To help engineered T cells in counteracting the
immunosuppressive microenvironment, different strategies
are currently under scrutiny. CAR-T cells have been genetically
modified to secrete Interleukin-12 or Interleukin-18 (TRUCK
cells) upon CAR engagement (390). A deeper understanding of
the expression profile associated to functional CAR-T cells has
been now translated in new manipulation processes, involving
the overexpression of transcription factors, such as c-Jun (391),
or the deletion of inhibitory molecules such as REGNASE-
1 (392). These newly proposed strategies could lead to the
generation of T cell products endowed with early differentiated
phenotypes and enhanced anti-tumor functionality.

FINAL REMARKS

Adoptive T cell therapy represents a unique and innovative
therapeutic pillar for cancer treatment. T cells couple the ability
to circulate and home at different sites, to sense and respond
to the surrounding environment and to persist long-term, thus
providing immunosurveillance against residual malignant cells.
Each of these characteristics, intrinsic to T cell biology, is however
challenged by several immune escape mechanisms active in
cancer patients.

Table 1 summarizes the efficacy and toxicity profiles of TCR-
redirected T cells reported in clinical trials. Results demonstrate
the feasibility of the approach, indicating its therapeutic
potential, but also underline the challenges that TCR-based
ACT needs to face. Firstly, a suboptimal efficacy of TCR-based
studies has currently been observed in patients and no clinical
results have been published yet with engineered T cells targeting
neoantigens or MiHA. Both evidences underline the difficulty
in isolating high affinity tumor-specific TCRs that might be
exploited for treating a large number of patients. Secondly,
extensive in vitro and in vivo assays are necessary to lower the
incidence of adverse events and increase the safety profile of the
infused T cell products.

An interesting point of discussion is whether CAR-T cell
therapy should be preferred to TCR-based T cell therapy or vice
versa. The answer likely lies in the middle and might envisage the
alternated or even the combined use of TCR- and CAR-T cells
in different clinical settings, according to the antigenic profile
of each tumor type. Combinations could exploit the strength of
both strategies. Despite CAR-T cells can count on the extensive
level of knowledge acquired on cancer cell phenotypes, testable
targets remain few. It’s possible that this effect underlies the
intrinsic limitation of CAR-T cells, able to target surface proteins
but at present unable to recognize all the intracellular mutated

or overexpressed proteins in cancer cells. An engineered TCR,
instead, has the ability to virtually recognize every tumor antigen,
independently of intracellular localization, including mutated
molecules, intracytoplasmic proteins, and transcription factors.
Hence, finding suitable targets for TCR-engineered T cells is
theoretically easier. However, the HLA-restriction of TCR-based
immunotherapies needs to be taken into consideration.

In terms of efficacy, CAR-T cells showed optimal results
in the context of relapsed/refractory ALL. TCR therapy seems
promising in liquid tumors, but both CAR and TCR-engineered
T cell therapies showed less than satisfactory results in solid
tumors other than melanoma when compared to TILs therapy.

In terms of signaling, TCRs are sensitive to much smaller
epitope densities than CARs (393) and T cell activation is finely
tuned by the affinity and the avidity for the ligand itself. These
differences may prove important when dealing with low antigen
density and also in promoting immunological memory while
avoiding T cell exhaustion. Even if the precise role of the different
signals conveyed in the immunological synapse are still not
completely understood, TCR signaling might be more rewarding
in the ability to balance T cell activation, possibly solving the
limitation in T cell persistence and functionality reported in ACT
with CARs.

The possibility of genetically engineering T cells by redirecting
their specificity toward cancer by employing CARs or TCRs
has already produced relevant clinical results in patients
affected by selected tumor types. By combining T cell
therapy with alternative therapeutic approaches (i.e., checkpoint
blockades) and by implementing multiple genetic manipulation
(i.e., by genome editing) in T cells, the efficacy of cancer
immunotherapy is further increasing, and we might envisage
its successful extension to a larger range of tumor types. As
the field progresses, several challenges, including manufacturing
complexity, regulatory issues, and sustainability will need to be
faced, with the ultimate aim of offering this new therapeutic tool
to all patients who could benefit.
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