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Abstract: Both habitats and seasons can determine the dynamics of microbial communities, but the
relative importance of different habitats and seasonal changes in shaping the soil bacterial community
structures on a small spatial scale in permafrost areas remains controversial. In this study, we explored
the relative effect of four typical alpine meadow habitats (swamp wetland, swamp meadow, meadow
and mature meadow) versus seasons on soil bacterial communities based on samples from the
Qinghai-Tibetan Plateau in four months (March, May, July and September). The results showed that
habitats, rather than seasons explained more variation of soil bacterial composition and structure.
Environmental cofactors explained the greatest proportion of bacterial variation observed and can
help elucidate the driving force of seasonal changes and habitats on bacterial communities. Soil
temperature played the most important role in shaping bacterial beta diversities, followed by soil
total nitrogen and pH. A group of microbial biomarkers, used as indicators of different months, were
identified using random forest modeling, and for which relative abundance was shaped by different
environmental factors. Furthermore, seasonality in bacterial co-occurrence patterns was observed.
The data showed that co-occurrence relationships changed over months. The inter-taxa connections
in May and July were more pronounced than that in March and September. Bryobacter, a genus
of subgroup_22 affiliated to Acidobacteria, and Pseudonocardia belonging to Actinobacteria were
observed as the keystone taxa in different months in the network. These results demonstrate that the
bacterial community was clustered according to the seasonal mechanism, whereas the co-occurrence
relationships changed over months, which indicated complex bacterial dynamics in a permafrost
grassland on the eastern edge of Qinghai-Tibetan.

Keywords: Qinghai-Tibetan Plateau; permafrost habitats; bacterial communities; seasonal changes

1. Introduction

Soil bacteria inhabiting permafrost regions can adapt to low-temperature conditions,
and are a major contributor to maintaining ecosystem stability through litter decomposi-
tion and other basic ecological processes [1–3]. Both anthropogenic and natural factors
affect the microbial communities in permafrost. Soil temperature, moisture, organic matter
content and pH can influence the microbial community by directly regulating its physio-
logical activities [4,5], while vegetation characteristics [5], spatiotemporal conversion [6],
grazing intensity [7] and fertilizer management indirectly impact microbial communities
by influencing nutrients in the soil [8]. Studies have shown that bacterial community
structures vary among different habitats and months at small spatial scales due to changes
in environmental conditions and ecological interactions [6,9]. Quantifying the contribu-
tions of habitats and seasonal shifts is critical to unravel the driving factors in microbial
community dynamics.
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Numerous studies in permafrost regions have shown that microbial community
characteristics were regulated by habitats with different vegetation characteristics [10,11].
Vegetation types could largely influence the soil environment (e.g., pH, moisture and soil
organic matter) via different litter input [9,12–14]. These variations subsequently lead
to changes in soil carbon and nitrogen cycles, which eventually influence the rates of
microbial metabolic processes [15,16]. Furthermore, plant morphology and vegetation
cover can alter the transmission of UV-B to the soil surface, which may affect the soil
microbial community [11,17]. However, other studies proved the contradictory pattern,
indicating vegetation exerted little effect on soil microbial communities compared to other
variables [18,19]. Thus, the influence of habitats with different vegetation characteristics
on permafrost soil bacterial community structures on the Qinghai-Tibetan Plateau (QTP)
remains an important controversial issue.

It is also clear that seasonal shifts serve as a determining effect in soil microbial
dynamics, which derive from time-dependent factors such as soil moisture, temperature,
nutrient level and vegetation biomass [20,21]. For decades, especially in agricultural and
forest ecosystems, soil microbial communities have been observed to exhibit significant
seasonal changes [5,22]. However, some conclusions from the same research area are
contradictory [23]. Averill et al. [6] found equivalent community turnover in a soil microbial
community over large intra-annual temporal differences and thousands of kilometers in
space. In contrast, Zhang et al. [24] found that the time factor did not explain large-
scale soil microbial diversity. Although former studies have provided critical information
concerning temporal variability [25], the effect of seasonal shifts on the soil microbial
community structure is still unclear in permafrost grassland ecosystems. In addition, there
is little doubt that habitat effects and seasonal conversion may have a strong interaction
in changing soil communities. The majority of previous studies usually used samples
collected at a single point in time or sampling at the same location for multiple months.
Therefore, the relative importance of different habitats versus months in shaping the
dynamics of soil microbes remains to be discussed at small spatial scales.

The interactions between microorganisms are also important aspects of maintaining
the diversity of microbial communities [26]. The co-occurrence patterns presented by the
network could provide a reference in microbial ecology, regardless of the small amount
of information reflecting the actual interaction [27]. Given the difficulty in obtaining
microbial co-cultures, correlation-based network analysis serves as an alternative approach
to infer microbial interactions and identify key species in ecological processes [28]. Whether
microbial co-occurrence patterns vary with seasonal shifts remains unclear.

As the highest and largest plateau in the world, the altitude of QTP is 4000 m above
sea level and contains the largest permafrost area at lower latitudes [29]. Alpine meadows
are the dominant vegetation type of the QTP, accounting for about 50% of the available
grassland area, which is fragile with poor anti-interference ability and sensitive to climate
change [30]. At present, there have been substantial changes in vegetation structure along
short geographical distances due to natural (climate, soil and vegetation) as well as anthro-
pogenic (mass production and overgrazing) factors [31–33]. Consequently, we intended to
elucidate whether habitats with different vegetation characteristics have dissimilar soil mi-
crobial community structures, and whether they follow the same seasonal change. This will
aid in understanding the changes of microbial communities in responding to variations of
grassland ecosystems over a period of time. In this study, an Illumina MiSeq was used to se-
quence 16S rRNA for detecting soil bacterial communities in the active-layer of permafrost
from four typical alpine meadow habitats (wetland, swamp meadow, meadow, and mature
meadow) on the eastern edge of Qinghai-Tibetan in different sampling months (March,
May, July, September). By investigating the seasonal dynamics of soil bacterial communities
under different habitats, we can better understand the influence of the physicochemical
properties of soil, seasons and vegetation on the microbial composition and structure under
natural conditions. The overall aims of this study were: (1) to analyze the soil bacterial
composition and structure sampled from four typical alpine meadow habitats in different
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sampling month on the QTP; (2) to determine the contributions of environmental factors,
seasonal shifts and habitats to differences in bacterial communities and investigate the
relationship between environmental factors and bacterial communities; (3) to compare the
co-occurrence patterns of bacterial communities over months and identify the potential
keystone taxa in different seasons.

2. Materials and Methods
2.1. Study Area and Soil Sampling

This study was conducted at the Alpine Meadow and Wetland Ecosystem Research
Station of Lanzhou University in Maqu County (Azi Branch Station, N33◦40′, E101◦52′),
which is located in the east of the QTP at an altitude of 3350 m. The mean annual tempera-
ture is 1.3 ◦C (average temperature −11 ◦C in January and 11.8 ◦C in July), and the average
yearly rainfall is 670 mm. The annual frostless season is less than 7 days, and the rainy
season is concentrated during the short summer. The experimental site is mainly alpine
meadow with many monocotyledons, including Poaceae and Cyperaceae [30]. The main
soil type of the study area is meadow soil. The site is grazed only by livestock (e.g., yak
(Bos grunniens) and Tibetan sheep (Ovis aries)), with a low degree of disturbance [34].

The classification of four typical alpine meadow habitats (100 m× 100 m) was based on
the dominant vegetation and water gradient. Sampling sites were named according to the
habitat of each as follows: swamp wetland, swamp meadow, meadow and mature meadow
(Supplementary Figure S1; Table 1). Since the maximum distance between sampling points
was less than 5 km, and all sites were within the same range of elevation (60 m), we
did not consider geographic distance and precipitation differences among habitats. Soil
samples were collected from different habitats at the same site on March, May, July and
September in 2018. Five randomly selected sites (10 m × 10 m) were established along
two diagonal lines in each habitat. Each site was considered a replicate, and all sites
had the same slope and exposure. Five soil cores (20 cm depth) were randomly taken
from each site using a soil sampler tube (over a 0.25 m2 area) and then mixed as one
composite sample. Subsamples (approximately 50 g) were aseptically transferred into
plastic bags and immediately sent to the laboratory on dry ice for soil bacterial community
analysis. The remaining soil (approximately 200 g) was kept at 4 ◦C until the soil property
measurements. After completing the above steps, we marked each sampling point so that
we could accurately sample at the same site in the future.

Table 1. Characteristics of the four typical alpine meadow habitats.

Habitats Altitude Latitude & Longitude Dominant Plant Description (Ma et al., 2011)

SW 3512 m 33◦39′ N
101◦32′ E

Festuca sinensis Keng ex S. L. Lu
Kobresia royleana (Nees) Bocklr.

Potentilla anserina L.

The dominant species are typical wetland
plants grazed by yak and Tibetan sheep.

SM 3522 m 33◦39′ N
101◦52′ E

Ranunculus japonicus Thunb.
Carex tristachya Thunb.

Leontopodium nanum (Hook. f. et Thoms.)
Hand.-Mazz.

Festuca sinensis Keng ex S. L. Lu

The habitat is drier than SW. Water is
distributed on the soil surface in some
parts of this habitat only in the rainy

season. The swamp meadow has been
lightly grazed by yak and Tibetan sheep.

M 3540 m 33◦39′ N
101◦53′ E

Pleurospermum camtschaticum Hoffm.
Carex tristachya Thunb.

Sanguisorba filiformis (Hook. f.)
Hand.-Mazz.

Festuca sinensis Keng ex S. L. Lu

The habitat is drier than SM, without
water on the soil surface at any time. It
has already become meadow with some

drought-tolerant vegetation.

MM 3572 m 34◦40′ N
102◦52′ E

Artemisia mongolica (Fisch. ex Bess.) Nakai
Elymus nutans Griseb.

Anemone obtusiloba D. Don
Pedicularis szetschuanica Maxim.

It is a mature alpine meadow and soil
moisture content is the lowest among four

habitats. The mature meadow is under
low disturbance of grazing.

SW is swamp wetland, SM is swamp meadow, M is meadow, and MM is mature meadow.
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2.2. Measurements of Environmental Factors

While collecting soil samples, five replicate temperature measurements were taken at a
10 cm depth using an infrared thermometer. Shoot biomass was clipped level to the ground
from a quadrant (20 cm × 20 cm) at each of the five sampling sites within each habitat and
then weighed after being oven-dried at 65 ◦C for 48 h. Soil subsamples were oven-dried
at 105 ◦C until constant weight to calculate soil water content. The K2Cr2O7 method was
used to determine the content of total organic carbon (TOC). Soil total nitrogen (TN) was
determined using the semimicro Kjeldahl method. A pH meter (PHS-3C; Leici Instruments,
Shanghai, China) was used to determine the soil pH value with a 1:2.5 ratio of soil to
deionized water. For detailed descriptions of the soil chemical property measurement
methods we used, see Bao et al. [35].

2.3. Total DNA Extraction and PCR Amplification

According to the standard kit protocol, total DNA was extracted from 0.5 g soil sub-
samples using a PowerSoil DNA extraction kit. The purity and quality of the genomic
DNA were checked on 0.8% agarose gels. The primer sets 338F (ACTCCTACGGGAG-
GCAGCAG) and 806R (GGACTACHVGGGTWTCTAAT) were chosen to amplify the V3-V4
hypervariable regions of the bacterial 16S rRNA gene, given that this gene fragment pro-
vides sufficient resolution and has little bias for accurate classification of bacteria [36]. PCR
was carried out on a Mastercycler Gradient (Eppendorf, Hamburg, Germany) using 25 µL
reaction volumes containing 12.5 µL 2 × TaqPCR Master Mix, 3 µL BSA (2 ng/µL), 1 µL
of each primer (5 µM), 2 µL template DNA, and 5.5 mL ddH2O. The cycling parameters
were 95 ◦C for 5 min, followed by 32 cycles of 95 ◦C for 45 s, 55 ◦C for 50 s and 72 ◦C for
45 s with a final extension at 72 ◦C for 10 min. Three PCRs per sample were pooled to
mitigate reaction-level PCR biases. The PCR products were purified using a QIA quick
gel extraction kit (QIAGEN, Dusseldorf, Germany), and sequencing was performed on an
Illumina MiSeq PE300 platform (Beijing Allwegene Technology Co., Ltd., Beijing, China).

2.4. Data Processing and Statistical Analyses

QIIME (version 1.17) was used to demultiplex and filter the original fastq files
(http://qiime.org/scripts/pick_otus.html) [37]. Operational taxonomic units (OTUs) were
clustered with a 97% similarity cutoff and rarefaction curves were generated. The rarefac-
tion curves showed clear asymptotes, indicating that the bacterial communities were almost
completely sampled (Supplementary Figure S2). The RDP classifier algorithm of the Silva
(Silva 128) 16S rRNA database was used to classify each 16S rRNA gene sequence with an
80% confidence threshold. [38]. All samples were normalized at the same sequence depth
(20,112). The relative abundance of each specific taxon was calculated as the percentage of
sequences assigned to each taxon to the sequences in all samples. The species with a relative
abundance of <1% in all samples were classified as others. The alpha diversity indices,
including Sobs, Shannon, Chao 1 and pd indices, were calculated using “alpha_diversity.
py”, while the beta diversity was calculated using “beta_diversity. py” in QIIME 1.8.0
software [39].

Boxplots showing the soil environmental variables in different months among four
habitats were drawn using SPSS Statistics software (IBM Corporation, New York, NY,
USA). A stack bar plot reflecting the distribution ratio of dominant bacterial phyla from
different habitats and sampling months was performed in the R environment (package
= “ggplot2”). The relative importance of different habitats and sampling months for ex-
plaining the variations in the soil environmental variables, the relative abundance of the
dominant taxa and the alpha-diversity parameters were evaluated by one-way analysis
of variance (ANOVA) in SPSS [24]. The explanation degree determined by habitats and
seasons was represented by the R2-value. Permutational multivariate analysis of variance
(PerMANOVA) tests followed by pairwise comparisons were performed on the weighted
UniFrac distance in R (package = “vegan”) to test the significance of community distinc-
tions among habitats and sampling months [40]. Variance partitioning analysis (VPA)

http://qiime.org/scripts/pick_otus.html
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(package = “vegan”) was used to evaluate the individual and interactive explanations of
soil environmental factors, different habitats and sampling months on the differences in
soil bacterial community structure. The influence of specific soil environmental factors
on the dynamics of soil bacterial community structure was analyzed by distance-based
redundancy analysis (db-RDA) (package = “vegan”) [41]. Classification random forest
analysis (package = “randomForest”) was applied to select the most representative micro-
bial biomarkers at the genus taxonomic level in all soil samples [24]. The number of decision
trees was 500, and the accuracy of the model was verified by a 10-fold cross-validation
method. The relationships of identified microbial biomarkers and soil environmental
variables were estimated by Spearman correlations.

The co-occurrence pattern was determined by calculating the correlation between the
top 50 genera, which were selected based on relative abundance. Genera were consid-
ered strongly correlated if the absolute value of Spearman’s correlation coefficient (r) was
>0.6 and the p-value was <0.01 [26]. A correlation network was formed by the pairwise
comparison of all significant correlations determined by genus abundance, in which each
node represented a bacterial genus, and each edge indicated the significant correlation
between nodes. In order to describe the topological structure of these networks, a set of
measured values (including the number of nodes and edges, closeness centrality, between-
ness centrality, average degree, degree centrality, clustering coefficient, and transitivity)
were calculated in R, and Cytoscape was used to draw network diagrams [42].

3. Results
3.1. Distribution of Environmental Variables

All the environmental variables were found to be significantly affected by the different
habitats and sampling months. Among the seven environment variables tested, TN, TOC
and soil water content were largely influenced by habitat: 48.4% (p < 0.01), 57.4% (p < 0.01),
and 81.8% (p < 0.01) of their respective variation were explained by habitat alone. In
contrast, pH (R2 = 0.221, p < 0.05), C/N (R2 = 0.193, p < 0.01), shoot biomass (R2 = 0.777,
p < 0.01), and soil temperature (R2 = 0.968, p < 0.01) were significantly influenced by
the sampling month (Supplementary Figure S3). In September, the shoot biomass was
significantly higher than in other months, yet the soil water content was lower. The soil
temperature was lowest in March and reached a maximum in July. In addition, TN and
TOC in the mature meadow were significantly lower than in the other meadow types, and
the soil water content showed a downward trend across the four habitats (Supplementary
Figure S3).

3.2. Soil Bacterial Diversities and Community Structure

We obtained a total of 5,527,572 bacterial sequences. The average sequence length was
466 bp after removing low-quality sequences and chimeras. Each sample was sampled
twice to keep the same sequencing depth (20,112 reads per sample) and the sample was
clustered into 7556 OTUs at a 97% similarity level. A total of 50 bacterial phyla were
detected in 80 soil samples. The dominant phyla with a relative abundance of more
than 1% were Acidobacteria (34.59%), Proteobacteria (22.23%), Chloroflexi (12.55%), and
Actinobacteria (9.02%). Circos showed contrasting community compositions over different
habitats and months. In different habitats, Acidobacteria, Proteobacteria and Chloroflexi
were the most abundant bacterial phyla, but the difference was not statistically significant
among the four habitats (p > 0.05). Actinobacteria were more abundant in swamp meadows,
meadows and mature meadows than in swamp wetlands (p < 0.05). Gemmatimonadetes
and Planctomycetes were more abundant in mature meadows and swamp wetlands than
in swamp meadows and meadows (p < 0.05). Comparatively, the samples of mature
meadows had fewer Nitrospirae than the other three types (p < 0.05) (Figure 1). In different
soil samples, Acidobacteria were always dominant, whereas Proteobacteria were more
abundant in May than in other months (p < 0.05). Actinobacteria were more abundant in
September and March than in May and July (p < 0.05). There were significant differences in
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the abundance of Rokubacteria, Verrucomicrobia and Latescibacteria in different month
(p < 0.05) (Figure 1).
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There was no significant difference in the observed richness (Sobs), Shannon index or
Chao1 estimator (Chao 1) among the different habitats, except in mature meadow (p < 0.05)
(Figure 2). The samples from the mature meadows were found to have the highest levels
of bacterial richness and diversity regardless of month. The phylogenetic diversity (PD)
of swamp wetlands and swamp meadows was significantly different from that of mature
meadows. In the meadow and mature meadow, the average values of alpha diversity
among the different months appeared to be significantly different (Figure 2). In addition,
the Sobs (R2 = 0.236, p < 0.01), Shannon index (R2 = 0.537, p < 0.01), and Chao 1 (R2 = 0.181,
p < 0.01) were significantly influenced by the habitats. Nevertheless, 13.4% (p < 0.01) of
the variation in PD was explained by sampling month alone, which was more than that
explained by different habitats (Supplementary Table S1).

The PCoA with the PerMANOVA test revealed that habitat and month had significant
effects on bacterial community structure and that habitat (R = 0.41, p = 0.001) explained
more bacterial community structure variation than month (R = 0.19, p = 0.001). The mature
meadow was significantly separated from the other three habitats, but the others were not
distinct from each other (Figure 3; Supplementary Table S3).
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3.3. Effects of Environmental Factors on Bacterial Community Structure

According to VPA, environmental variables represented the largest fraction (15.31%)
of variation in bacterial community composition followed by habitat (8.66%) and sampling
month (2.87%). The three explanatory factors accounted for 0.31% of bacterial community
variation, and 77.59% of the variance was unexplained, suggesting the complex assembly
process of the bacterial community (Figure 4). The db-RDA indicated that the environ-
mental variables of soil temperature (r2 = 0.588, p = 0.001), TN (r2 = 0.169, p = 0.003), pH
(r2 = 0.161, p = 0.001), shoot biomass (r2 = 0.135, p = 0.004), TOC (r2 = 0.159, p = 0.004) and
C/N (r2 = 0.100, p = 0.013) were the main factors that induced the shift in bacterial beta
diversity. The soil water content (r2 = 0.066, p = 0.084) had no statistically significant effect
on the bacterial community structure (Figure 5; Supplementary Table S2).
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Finally, a random forest model was used to distinguish microbial biomarkers that
could discriminate the bacterial community in different seasons. Ranked by their im-
portance value, the top 10 bacterial genera primarily belonged to Opitutus, Rhodoplanes,
Neochlamydia, genera of Opitutaceae, Enterobacteriaceae and Pedosphaeraceae. These
biomarkers were evenly distributed in the soil in different seasons. The relative abundances
of Opitutus, Neochlamydia and unclassified genus-level lineage of the family Holosporaceae
were strongly positively correlated with some of the environmental factors that were
largely regulated by habitat (TN, TOC and water content), whereas Rhodoplanes, unclas-
sified genus-level lineage of the family Acidobacteriaceae and Pedosphaeraceae were
significantly negatively correlated with some of these factors. In contrast, these biomarkers
had opposite reactions to pH, C/N, shoot biomass and soil temperature, which were
largely influenced by the sampling season. Unclassified genus-level lineage of the family
Opitutaceae, the biomarker with the highest score in importance measurement, had a
significant negative correlation with shoot biomass (Figure 6).
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Figure 6. Top 10 identity biomarkers used for discriminating bacterial communities in different seasons (detected by random
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importance value of each biomarker estimated by the random forest model; the middle heatmap plots show the relative
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total nitrogen; SB, shoot biomass; TM, soil temperature; *** p < 0.001; ** p < 0.01; * p < 0.05.

3.4. Co-Occurrence Networks and Topological Properties of Bacteria in Different Months

Network analyses were carried out to explore the co-occurrence among microbes and
to identify potential keystone taxa. Based on the number of nodes and edges, average
degrees and clustering coefficient, network complexities were comparable in different
sampling months, and the complexity greatly increased in March and May. Generally,
there were more positive correlations in each network, but the proportions of positive
edges were higher in May than in other months. At the same time, the average degrees
in the networks increased in the order of September, July, March and May. The represen-
tative biomarkers showed the highest clustering effect in different seasons. A genus of
Subgroup_22 (degree = 22) affiliated with Solibacterales had the highest degree score in
March. Bryobacter affiliated with Solibacteraceae exhibited high degrees in May (degree
= 23) and July (degree = 19). Pseudonocardia affiliated with Actinobacteria was found
to show the highest degree in September (degree = 16). Most of the nodes belonged to
Acidobacteria, Proteobacteria, Rokubacteria and Chloroflexi in all networks, which implied
their important role in the studied ecosystem (Figure 7).
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4. Discussion
4.1. The Effect of Habitats Is Stronger Than Seasonal Changes on the Distribution of the Soil
Bacterial Community

Previous studies on the temporal variation of soil microbial community in local
areas showed that their structure had great seasonal variability [43,44]. The study of soil
bacteria at different sites at the same sampling time also confirmed the important role
of habitat in shaping bacterial community structure. However, there are few studies on
soil microbial ecology during multiple sampling seasons in the same site. In this study,
we investigated the patterns of soil bacterial communities from different habitats and
sampling months to evaluate the independent effects of season and habitat on microbial
community variations. Our results provide solid empirical evidence that habitats with
different vegetation communities are more important than seasons for predicting the
variation that characterizes the bacterial structure. Crucially, the results showed that season
and habitat shape the structure of the soil bacterial community by adjusting relevant
environmental factors.

Habitats have stronger influences in terms of changes in bacterial community com-
position, alpha diversity and beta diversity than does seasonal variability when assessed
at a small spatial scale. Since microbial communities can differ at the scale of meters or
centimeters [45], it is understandable that sampling month is not as important as sampling
space, even at a small spatial scale [46,47]. However, in a study on the relationship between
residual DNA and soil microbial communities on the relative hillsides of Colorado, USA,
it was found that removing residual DNA from soil led to greater temporal changes [22].
That is, the time signal may be masked by residual DNA (DNA released from dead mi-
croorganisms) in the data. In our study, the investigation of the total DNA of bacteria
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did not consider the influence of residual DNA, which may underestimate the true extent
of seasonal variation in the bacterial community. More than 77.6% of the variations in
bacterial community dynamics were not explained by month, habitat or environmental
variables in our study. The possible reason for this result may be the existence of other
unmeasured environmental factors, which vary with habitat and season [25,48], including
competition, symbiosis, predation and other biological interactions among microbial taxa
microbial taxa [49,50] and ecological processes such as dormancy and persistence traits of
microbial communities [6].

4.2. Environmental Variables Help Understand the Driving Effect of Habitats and Seasonal Shifts
on Bacterial Communities

Different habitats affect bacterial communities by regulating related environmental
factors. Habitats had a greater impact on TN (R2 = 0.484, p < 0.01), TOC (R2 = 0.574,
p < 0.01) and soil water content (R2 = 0.818, p < 0.01). This made Actinobacteria and
Nitrospirae differ significantly in various habitats (p < 0.05), which were more moisture-
sensitive than representatives of other phyla [33,42]. Soil water content also has important
effects on oxygen availability, and excessive water affects the aeration of the soil; thus, the
environment becomes deoxygenated [51]. This process may explain why some anaerobic
bacteria (i.e., SM1A02 affiliated with Planctomycetes) increased significantly with changes
in habitat (p < 0.05) [52,53]. The quality and quantity of litter and root exudates are often
different between different plant communities, resulting in differences in soil nutrient
contents (TN and TOC), and thus affect soil bacterial community structure [52,54]. The
taxa within Proteobacteria can grow rapidly in nutrient-rich environments. Therefore,
their relative abundance decreases as nutrient levels decline [55], whereas some genera
affiliated with Actinobacteria, such as Gaiella, Acidothermus and Conexibacter whose relative
abundance ranked within top 10 among the genera belonging to Actinobacteria, are well-
adapted to oligotrophic environments, resulting in the enrichment of relative abundance
as nutrients decrease [56]. Thus, the ratio of Actinobacteria to Proteobacteria gradually
increased as the habitats varied from swamp wetland to mature meadow in this study, and
the observed shifts were consistent with decreased soil nutrient status (i.e., carbon and
nitrogen content). Zhang et al. [33] used the increase in the Actinobacteria to Proteobacteria
ratio as a signal of permafrost degradation on the QTP, and these results were supported
by this study, suggesting the necessity of more attention in this area.

In the same habitat, there were significant differences in bacterial communities in
different sampling months. The bacterial communities attained higher diversity in July
and September. Microbial taxonomic richness is known to reflect metabolic diversity [57].
Thus, the greater species diversity in this period probably derived from high enzyme
activity promoted by favorable temperatures, or the higher biomass and diversity of
shoot and root exudates in a given month [58]. Seasonal shift has greater influence than
habitat only in PD α diversity index differences, which proved the important role of
different months in shaping bacterial phylogenetic diversity. In the formation of bacterial
community structure, soil temperature was the major influence and was largely affected
by the sampling month (r2 = 0.588, p = 0.001). Changes in soil temperature directly
affect microbial metabolic function and soil organic matter cycling in ecosystems [59],
and previous studies proved that soil temperature is an important factor affecting soil
microbial community structure [10,60,61]. However, this experiment was carried out in a
permafrost area, and the increase in temperature would lead to a coordinated change in
soil moisture content. The difference in hydrothermal conditions may have a very large
impact [62,63]. Shoot biomass (r2 = 0.135, p = 0.004) and pH (r2 = 0.161, p = 0.001) had
significant impacts on bacterial community structure, which was mainly regulated by
month. Soil pH is known as a strong driver shaping the bacterial community in various soil
ecosystems [47,64,65]. It has been proven that changes in pH on a small scale are difficult
to detect; thus, the variation in pH in different habitats was smaller than that in sampling
months [66,67]. Shoot biomass is one of the most important factors affecting the quality of
nutrients returned by plants and the rate of photosynthesis [53]. From March to September,
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the biomass of aboveground vegetation increased gradually, which directly increased the
impact on the underground bacterial community.

Many previous studies that focused on temporal variation in bacterial composition
have implicated that it is often induced by the availability of nutrients, temperature, and
moisture [68,69]. However, not all taxa within the bacterial community are equally sensitive
to temporal changes in the environment [44]. In our study, we detected certain taxa that
contributed to the discrimination of bacterial communities in different months. Their
relative abundances did not occupy dominant positions in the whole community, but they
did play important roles in indicating the seasonal variation of the community, suggesting
that some nondominant taxa play a vital role in the ecological process. The complex
and staggered relationship between these important phyla of bacteria and environmental
factors made the ecological process more undefined. Neochlamydia belonging to Chlamydia
is an important biomarker in terms of indicating the seasonal changes in the bacterial
community. This biomarker cannot synthesize bioenergy substances (ATP) and is therefore
completely dependent on the supply of the infected host cell [70]. Neochlamydia exhibited
significant correlation with all environmental factors in our study, and the possible reason
for this result was that their hosts (plants or other organisms) were strongly affected by
the monthly variation; this needs further study. Another interesting result was that most
biomarkers showed opposite responses to TN, TOC, soil water content (soil environmental
variables greatly affected by habitat), pH, C/N, shoot biomass, and soil temperature
(largely influenced by seasonal shifts), indicating that habitats and seasonal shifts may
have antagonistic effects on the shaping of bacterial communities. The results of VPA also
verified this conclusion.

4.3. Bacterial Network Interactions in Different Sampling Months

Co-occurrence networks showed different patterns in different months and they
could partially reveal complex interactions within a bacterial community [27,71]. The
positive correlations between bacteria were greater than the negative correlations in all
soil samples, indicating that different bacteria responded to the environmental factors
in a more similar way than a competitive way. The most abundant species of networks
were Acidobacteria, Proteobacteria, and Chloroflexi, suggesting that these “generalists”
adapt to various environments and play a key role in ecological processes [28,46,72]. A
genus of Subgroup_22 and Bryobacter affiliated with Acidobacteria showed the highest
clustering effects in different months. Several studies have confirmed that Acidobacteria
is among the most dominant phyla in many soil ecosystems due to its ability to break
down, utilize, and biosynthesize diverse structural and storage polysaccharides in various
environments [73,74]. The genus Bryobacter accommodates acidotolerant, strictly aerobic,
slow-growing chemoorganotrophic bacteria, which inhabit acidic wetlands and soils in our
study [75]. In September, Pseudonocardia, belonging to a kind of rare actinomycetes, had
the highest degree of connection with other bacteria. Pseudonocardia is mainly related to
cellulose degradation and antibiotic synthesis which can produce some important enzymes
and vitamins. They are also important in plant-associated microbial communities and
referred to as “free-living” which allows these organisms to require less energy and food for
survival [76,77]. This may be one of the potential reasons for the change in TN in different
habitats in September. May and July showed more clustering coefficients than in other
months, which may be related to the environmental conditions. In March, the temperature
was low, and plants had just started growing. The bacterial community broke dormancy
and became more active at this time. The enzyme activity was still very low, so there
were fewer relationships between bacteria. In September, the biomass of plants reached
a maximum and the ecosystem tended to be stable. The interaction between bacteria
was reduced, so a relatively scattered distribution pattern formed. In May and July, the
temperature was suitable, the amount of rain was sufficient, and the enzyme activity was
highest. Plants grow rapidly to drastically change soil nutrient conditions, and members of
the bacterial community must quickly adapt to the environmental changes.
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5. Conclusions

Our study confirmed that the soil bacterial community changed with different seasons
and habitats. The effects of four representative habitats on bacterial structure on a small
scale were much greater than those of seasons. The correlation analysis of the bacterial
community and environmental factors provided further evidence that habitats and seasonal
shifts affected the soil bacterial community structure by changing the soil physicochemical
and plant properties. Some keystone species (a genus of Subgroup_22, Pseudonocardia and
Bryobacter) were closely related to other bacterial groups and played important roles in
ecological processes. These results indicate that, to a certain extent, the data obtained from
the snapshot study can roughly predict the distribution pattern and small-scale seasonal
changes of bacteria in different habitats, which can be partly explained by environmental
factors. However, caution should be taken when interpreting our results, given that
only four months of the growing season were included in our study. The influence of
aboveground vegetation on underground microorganisms is greatly weakened in winter
when it is cold and there is little light, which causes obvious environmental differences
in natural ecosystems. The limited time points used in this study might underestimate
the true bacterial seasonal variation; hence, more winter month points should be included
when designing future studies. In summary, the study of soil bacterial ecology at both
habitat and season levels is most likely to provide a more comprehensive understanding of
the key factors regulating the biodiversity of permafrost grassland ecosystems on the QTP.
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