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Abstract: The complement system (CS) includes more than 50 proteins and its main function is
to recognize and protect against foreign or damaged molecular components. Other homeostatic
functions of CS are the elimination of apoptotic debris, neurological development, and the control
of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis
of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome,
rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will
review the main rheumatologic autoimmune processes in which complement plays a pathogenic role
and its potential relevance as a therapeutic target.
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1. Introduction

The complement system (CS) includes more than 50 proteins that can be found as
soluble forms, anchored to the cell membranes, or intracellularly [1]. Most of the com-
plement proteins are synthesized in the liver, although other cell types, especially mono-
cytes/macrophages, can produce them. Tissue distribution is variable and a higher con-
centration of these proteins is found in certain locations such as the kidney or brain. The
main function of the CS is to recognize and protect against foreign or damaged molecular
components, directly as microorganisms, and indirectly as immune complexes (IC). This is
achieved through different mechanisms such as opsonization and phagocytosis, direct cell
lysis, and triggering of pro-inflammatory responses by anaphylotoxins. Other homeostatic
functions of CS are the elimination of apoptotic debris, neurological development, and the
control of adaptive immune responses [2].

The activation of CS occurs through three main pathways—classical, lectin, and
alternative—that converge in C3 activation (Figure 1). Each pathway is activated by
different conditions, but all three pathways result in the creation of a pro-inflammatory
environment, the deposition of large amounts of C3 in target cells (opsonization), and
membrane disturbance, including lysis by the membrane attack complex (MAC). The
classical pathway is activated by the binding of C1q to the Fc portion of immunoglobulin
G or M in the IC [3]. Upon binding the target surface, C1q undergoes a structural change
with activation of C1r, which subsequently divides and activates the two C1s molecules
with serine protease activity [4,5]. Active C1s are divided into C4 and C2 to generate the C3
convertase, C4b2a. Once C3 is activated, the larger fragment C3b can covalently bind to the
target surface or to C4b in the C4b2a complex. This last reaction generates the C5 convertase
C4b3b2a, and the terminal pathway. Once C3b is deposited on a surface, the alternative
pathway can be activated forming the C3b-FactorB complex, which is also activated, giving
rise to C3bBb convertase by the action of Factor D. The lectin complement pathway has an
activation scheme comparable to that of the classical pathway, but lectins (carbohydrate-
linked proteins) replace antibodies and lectin-associated proteases replace C1r and C1s [6,7].
The lectin-associated serine proteases (mannan-associated lectin-binding serine proteases,
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MASPs) bind to mannose and cleave C4 and C2 factors [8]. The alternative pathway does
not require antibodies or contact with a microbe to be activated [9,10]. Instead, C3 is
constantly self-activated (C3 tick-over) at a low level, a process that is rapidly amplified in
the presence of a microbe, a damaged host cell, or importantly, by deficiency of complement
regulatory proteins. The deposition of C3b on a target can be efficiently amplified by the
feedback loop of the alternative pathway.
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Figure 1. Complement system. There are three activation pathways in the complement system: classical, lectin, and
alternative. All three pathways lead to the formation of C3 and C5 convertases, which rapidly amplify the complement
response. In addition to the processes described above, several complement regulatory proteins are able to inhibit
complement by inactivation of C3 and C5, and C3 and C5 convertases, or by preventing successful formation of the
membrane attack complex. DAF: decay-accelerating factor or CD55; FB: factor B; FD: factor D; FH: factor H; FI: factor I;
MASPs: MASP: MBL-associated serine proteases; MCP: membrane cofactor protein or CD46; MIRL: membrane inhibitor of
reactive lysis or CD59; P: properdin.

All these pathways result is the activation of inflammatory responses by releasing
pro-inflammatory peptides known as anaphylatoxins (C3a, C4a, C5a), due to their ability
to induce mast cell and basophil degranulation and hence the release of vasoactive and
chemoattractant mediators [11]. Cytokine signaling contributes to an up-regulation of
anaphylatoxin receptors (C3aR, C5aR) by endothelial cells in small vessels and circulating
leukocytes. Binding of C3a and C5a to the reciprocal receptors on these cells enhances the
release of cytokines and eicosanoids that contribute to an increase in vascular permeability,
vasodilation, and leukocyte extravasation. Anaphylatoxins up-regulate adhesion molecules
on endothelial cells and leukocytes, facilitating the adhesion of leukocytes to the vascular
wall and their subsequent transmigration into the interstitial tissue at sites of inflammation.
C3a and C5a stimulate mast cells to release histamine and proteases that also contribute to
vascular alterations. Monocyte-derived macrophages are among the first cells encountering
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non-self-antigens, and through the pattern recognition system they initiate an innate
immunity response [12]. While C3a and C5a are well recognized anaphylatoxins with
specific receptors, C4a has also been found to be a ligand for protease-activated receptors 1
and 4 (PAR1 and PAR4), also with effects on endothelial permeability and inflammatory
cell recruitment.

There is a complex system of control of CS activation (Figure 1). The regulatory
proteins inhibit the CS by destabilizing the activation complexes or by mediating the
specific proteolysis of activated fragments. Complement pathways are regulated in the
following critical steps: activation or initiation, amplification and convertases formation,
or MAC-dependent lysis [1,13,14]. In the classical pathway, the C1 inhibitor (C1Inh), a
serinprotease of the “serpin” family, binds to each C1r and C1s sub-components of the C1
complex. This causes its dissociation and release of C1q, which binds to the Fc portion of
immunoglobulin G and M [15,16]. C1Inh performs a similar function in the lectin pathway.
The activity of C3 convertases is regulated by a family of complement binding proteins.
These include membrane proteins such as the decay acceleration factor (DAF or CD55),
membrane cofactor protein (MCP or CD46), and the CUB and Sushi multiple domains 1
(CSMD1) protein [13,17]; in addition to plasma proteins such as the C4b-binding protein
(C4BP) that regulates the classical and lectin pathway conversion containing C4b and
C4b, factor H that regulates C3b, alternative pathway conversions containing C3b and
C5 fragments containing either one C3b (from the classical/lectin pathway) or two C3b
(alternative pathway).

The S protein (also known as vitronectin) controls the soluble MAC by binding to
the C5b-7 complex, thus preventing its anchorage to cell membranes [18]. The MAC that
is deposited in tissues is inhibited by the CD59 [19]. This widely expressed glycolipid-
anchored membrane protein has binding sites for both C8 and C9 and therefore inhibits
the final steps of MAC assembly.

Finally, receptors for complement activation fragments are expressed on many host
cells, including peripheral blood, endothelial, and epithelial cells [15,20,21]. Receptors
for C4b and C3b are present on most cells of the immune system and promote pathogen
destruction and the generation of the adaptive immune response. The receptors for C3a
and C5a are widely distributed where they trigger the local inflammatory response (innate
immunity) and also cell activation to prepare the adaptive immune response. Together,
these receptors promote the adhesion and phagocytosis of microorganisms and IC.

The CS plays an important physiological function in defense but its pathological acti-
vation plays prominent roles in the pathogenesis of most autoimmune diseases including
rheumatoid arthritis (RA), multiple sclerosis (MS), myasthenia gravis (MG), systemic lupus
erythematosus (SLE), ANCA-associated vasculitis (AAV), Sjögren’s syndrome (SS), an-
tiphospholipid syndrome (APS), dermatomyositis, systemic sclerosis, C3 glomerulopathies,
and many other diseases [22].

In this review, we will review the main rheumatologic autoimmune processes in
which complement plays a pathogenic role and therefore its potential relevance as a
therapeutic target.

2. Systemic Lupus Erythematosus

The pathogenic involvement of CS in SLE has two different facets. On the one hand,
classical CS activation significantly contributes to inflammatory tissue damage. On the
other hand, genetic deficiencies of complement factors are associated with an increased
risk of developing SLE. Deficiency of early complement factors is associated with a higher
risk of developing SLE. However, the risk varies depending on the factor affected by the
genetic deficiency, C1q (90–93%), C1r/C1s (50–57%), C4 (75%), and C2 (10%). Several
mechanisms may be involved in the high risk of SLE in C1 deficiency. C1q is an important
factor in the recognition and clearance of apoptotic cells and circulating IC that seem
potent stimuli of the innate and adaptative responses in SLE. Furthermore, it has a reg-
ulatory role by restraining CD8 T-cell responses that result in autoimmunity in animal
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models [23,24]. Successful treatment of C1q-deficient patients in SLE with fresh frozen
plasma or hematopoietic stem cell transplantation has been reported [25]. C2 deficiency, but
not C1q or C4 deficiency, is able to circumvent the mechanisms modulating complement
activation. In a registry of complement deficient patients, a third of C2 deficient developed
a SLE-like disease [22,26]. Interestingly, in the very rare cases of homozygous deficiency of
C3, the most critical protein where all three pathways of complement activation converge,
there is no association with SLE [27]. Complete deficiency of C4a and C4b is rare but
strongly associated with SLE. Partial defects in C4 factors are common in SLE, and are part
of the MHC haplotypes associated with an increased SLE risk, as well as to other multigenic
autoimmune diseases such as diabetes mellitus type 1 or primary biliary cirrhosis [28].
Genetic deficiency of MBL has also been associated with the development of autoimmunity,
including SLE and other types of arthritis [29–31]. Mutations in factors I and H have
been linked with an increased risk for SLE, atypical hemolytic uremic syndrome (aHUS),
paroxysmal nocturnal hemoglobinuria (PNH), and C3 glomerulopathies [32]. SLE linked
to genetic complement deficiencies has certain clinical peculiarities such as earlier onset
and more frequent development of photosensitive rash and neurological involvement but
less common development of pericarditis, and renal or pulmonary involvement.

CS activation is one of the most important mediators of inflammatory tissue injury
induced by autoantibodies and IC in SLE. The effector mechanisms of CS activation in
SLE involve cytotoxicity, inflammatory infiltration by increased endothelial permeability,
and leukocytes chemoattraction. CS also contributes to class I interferon production by
dendritic cells, and increases T and B cell autoimmune responses in SLE.

The pathogenic activation of CS in human SLE was early described [33,34], including
low total hemolytic activity of complement (CH50) and decreased levels of C3 and C4,
particularly in patients with most severe manifestations such as active nephritis [35].
Complement and Ig deposition in involved tissues and cells of SLE patients such as
collocation of IgG, IgA, and IgM with C1q, C4, and C3 factors (and C5b-9; the so-called
“full house” pattern) in the glomeruli is almost exclusively present in patients with lupus
nephritis [36]. Complement split products such as C3d and C5b-9 can also be detected in
the urine of SLE patients [37].

Complement components such as C1q, MBL, C3, and ficolin-3 may also be target
antigens for autoantibody responses. Anti-C1q antibodies are often detected in SLE as well
as other autoimmune diseases including hypocomplementemic urticarial vasculitis, and
with less prevalence in systemic sclerosis, RA, undifferentiated connective tissue disease,
and SS [38–41]. In SLE patients, anti-C1q antibodies are associated with proliferative lupus
nephritis (LN), and their level correlates with the degree of activity [42,43]. Autoantibodies
recognizing C3b have also been described in patients with LN [44,45] and correlate with
plasma levels of C4 and C3 [46,47]. Moreover, anti-C3b levels correlate with those of anti-
DNA [48], suggesting the hypothesis that the double presence of anti-DNA and anti-C1q
Ab may activate the complement system inducing the appearance of anti-C3b Ab [47].
Autoantibodies against soluble regulators such as anti-C1-INH autoantibodies have also
been described in patients with SLE associated with high disease activity scores [49].

A large variety of functional CS abnormalities have been described in SLE. The
complement receptor 1 (CR1) binds to targets opsonized by C4b and C3b, and is involved
in the transport and clearance of IC. Reduced CR1 levels have been observed in SLE,
therefore contributing to IC mediated pathology [50]. Reduced levels of CD55 and CD59
have also been found in SLE lymphocytes, possibly contributing to the development of
lymphopenia [51,52]. Higher soluble CD46 levels have been described in patients with
active SLE compared to healthy controls or patients with other autoimmune diseases [53].
Serum levels of other CS regulators such as Factor I also correlate negatively with the degree
of disease activity [54]. Finally, increased levels of ficolin-1 and -3 have been found in SLE
patients with a positive correlation with accrual damage and arterial thrombosis [55].

Additional effector mechanisms have also been described in SLE. Complement frag-
ments can activate neutrophils and platelets, inducing NETosis and favoring platelet
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aggregation and adhesion to the vascular endothelium [56,57]. SLE patients show in-
creased levels of C1q, C3d, and C4d in their platelets, especially in patients with a history
of venous thrombosis. One study also suggests that small dense particles of HDL may
activate the CS being involved in subclinical atherosclerosis in SLE patients [58].

3. Antiphospholipid Syndrome

Different animal models have shown the role of complement in the development of
thrombosis and obstetric pathology associated with antiphospholipid antibodies (APL) [59,60]
(Table 1). Animal models have shown that complement blockade or deficiency prevents the
development of thrombosis or fetal loss induced by the transfer of APL [61,62]. The disease
requires an intact alternative pathway, and treatment of mice with an inhibitory antibody
to factor B protected them from fetal loss [63]. The use of a C5a receptor antagonist was
also protective in this model. In animal models, specific blockade of the C5b-9 complex or
the C3 and C5 genetic deficiency protects from the development of thrombosis [64,65].

Table 1. Complement deregulation in autoimmune animal models.

Model Disease Complement Deregulation Therapeutic Management Clinical Consequences

Antiphospholipid syndrome C3 or C5 deficiency
C5b-9 blockade

Factor B blockade
C5 blockade

No fetal losses
No thrombosis
No fetal losses
No fetal losses

No fetal losses, no thrombosis
Rheumatoid arthritis

CIA/CAIA
CIA/CAIA
KRN/I-Ag7
KRN/I-Ag7
KRN/I-Ag7

Alternative pathway
Alternative pathway

Factor B absence

C3 or C5 blockade
Factor B blockade

Arthritis development
No arthritis development

Arthritis development
No arthritis development
No arthritis development

AAV
Anti-MPO induced vasculitis

C5 deficiency
C5aR deficiency C5aR blockade

No vasculitis development
No vasculitis development
No vasculitis development

AAV: ANCA associated vasculitis; CAIA: collagen antibody induced arthritis; CIA: collagen induced arthritis; KRN/I-Ag7 (or K/BxN)
mouse model of arthritis, mediated by a polyclonal T-cell dependent autoantibody response to a ubiquitous cytoplasmic glucose-6-
phosphate isomerase.

The suspected involvement of complement in the APS is well known, with evidence
of increased circulation of soluble C5b-9 (sC5b-9) [66], Bb, and C3a [67]. Co-location of
the complement with the endothelial β2GP1 further supports this association [68]. The
antigen β2GP1 contributes to the regulation of complement and coagulation, and antibodies
against it are probably the main pathophysiological driver of APS [69,70]. Activated
complement fragments can induce the activation of endothelial cells and a prothrombotic
phenotype through the MAC or C5a receptor (CD88). Studies in mice have suggested that
fetal regulation of the complement system is essential for embryo and fetal survival [60].
Blocking the complement pathway at the level of C3 activation and monoclonal anti-C5
antibody prevented fetal loss and thrombophilia in mouse models, respectively [59,65].

Resistance to endothelial cell activation and thrombosis was also found in C3- and
C5-deficient mice. It is also postulated that heparin, by inhibiting complement activation,
may play a role in reducing miscarriages in APS [71].

Indirect evidence also suggests that in patients with APS, CS also plays a role in
thrombosis and obstetric pathology. CS activation and hypocomplementemia have been
observed in patients with primary APS, but not a temporal correlation with thrombosis [72].

4. Sjögren’s Syndrome

The presence of C4A null alleles are part of the immunogenetic risk of SS, as they are
in SLE, and consistently, in SS, low serum C4 levels are often observed [73]. Decreased
levels of C4BP have been shown to correlate with increased disease activity [74]. Anti-C1q
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antibodies have also been detected in some patients with SS [38]. Hypocomplementemia
in SS is associated with extraglandular systemic manifestations such as fever, joint or
skin diseases, vasculitis and peripheral neuropathy, and with some immunological phe-
nomena (cryoglobulinemia and positive rheumatoid factor). Moreover, its presence is
associated with a worse prognosis with a higher risk of lymphoma and higher mortal-
ity [75]. However, longitudinal studies are lacking, and therefore a temporal correlation
between hypocomplementemia and some of these manifestations cannot be established.
Therefore, the pathogenic meaning of CS activation in SS is unknown, exception taken of
the vascular pathology caused by cryoglobulins. The clinical value of determination of
complement factors in the monitoring of these patients is also uncertain.

5. Rheumatoid Arthritis

Multiple evidences suggest that excessive local CS activation in the joints is a relevant
factor in the pathogenesis of arthritis in RA. Synovial tissue seems a complement factor
rich environment, since synovial fibroblasts, macrophages, and endothelial cells produce
complement factors in the joints [76–78]. Complement cleavage products such as IC
containing C3a, C3c, C5a, sC5-9, Bb, C1-C1INH are increased in synovial fluid from RA
patients [79–89]. Other signs of complement activation, such as C1q-C4 complexes, are
present in the circulation of RA patients [90], but systemic consumption of complement
factors is not present in RA as in other systemic autoimmune diseases. Instead, increased
plasma levels of C3 and C4 in active RA patients are observed, reflecting increased hepatic
synthesis induced by IL-6 mediated systemic response to inflammation, similarly to other
acute phase reactants [90].

About 80% of patients with early RA are positive for autoantibodies such as anti-
citrullinated protein antibodies (ACPAs) and/or RF. These antibodies interact locally with
antigens within joints, resulting in IC that trigger classical local complement activation.
In addition, molecules released from the extracellular matrix of cartilage, including fi-
bromodulin, osteomodulin, chondroadherin, the G3 domain of aggrecan and oligomeric
matrix protein (COMP), and death cells debris, including extracellular DNA, are also direct
triggers of complement activation [91–94].

The role of complement activation in RA is illustrated in models of collagen-induced
arthritis (CIA), in which a compromised complement system led to a less severe dis-
ease [95–98] (Table 1). In this model, only the alternative pathway is essential for the
development of the disease [99–101]. Factor H and its variant, factor H-1-like protein
(FHL-1), may have a protective role against complement damage in the synovium [102],
as has been also described in the collagen antibody induced arthritis (CAIA) model of
arthritis [103] (Table 1). In addition, autoantibodies to factor H were found more frequently
in RA patients compared to healthy controls [104]. Expression of CD55 in fibroblast-like
synoviocytes is higher compared to leukocytes and endothelial cells [105]. In addition to
its regulator role in CS activation, CD55 can also act as a ligand for CD97 expressed in a
variety of cells, including infiltrated macrophages and T lymphocytes, and therefore may
contribute to ongoing inflammation of the joint through other mechanisms as well [106].

A more relevant model of RA is the KRN/I-Ag7 (or K/BxN) mouse model of arthritis,
mediated by a polyclonal T-cell dependent autoantibody response to a ubiquitous cytoplas-
mic glucose-6-phosphate isomerase (GPI) [107] (Table 1). The KRN T cell receptor (TCR)
recognizes a foreign antigen, bovine pancreas ribonuclease (RNase), in the context of major
histocompatibility complex class II (MHC II) I-Ak [108]. Serendipitously, it also recognizes
a ubiquitously expressed self protein, GPI, in the context of MHC II I-Ag7 [109,110]. The
KRN/I-Ag7 mouse develops an inflammatory joint disease with many characteristics of
RA. A key feature of KRN/I-Ag7 model is that the arthritis can be transferred by serum or
with monoclonal antibodies to a wide range of mouse strains [111,112]. Transfer of these
autoantibodies are sufficient to mediate destructive arthritis, and represent a good model
for ACPA positive RA as non-tissue specific autoantibodies-mediated arthritis model. In
arthritic mice, these GPI deposits localized with IgG and C3 complement. Similar deposits
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were found in human arthritic joints, suggesting that GPI-anti-GPI complexes on articular
surfaces initiate an inflammatory cascade via the alternative complement pathway, which
is uncontrolled because the cartilage surface lacks the usual cellular inhibitors [113]. In
the same sense, circulating C3 appears as an element necessary and sufficient for arthritis
induction in this model [114]. However, other authors have shown that the presence of C3
is not necessary for the development of arthritis in this same model, suggesting that the
pathogenesis can largely proceed by complement-independent pathways [115]. In addition,
the classical and the lectin pathways are not involved in this model of antibody-mediated
arthritis induction [116]. In contrast, in the absence of factor B, most of the animals did not
develop arthritis [99], and similarly, oral administration of a factor B inhibitor prevented
KRN-induced arthritis in mice [117].

The C5a-C5aR axis is important in the onset of inflammation in RA synovium and this
pathway may be a relevant target for treatment of these patients [118]. Other therapeutic
approaches with complement inhibitors have been tested in animal models of the disease
in a non-specific way (e.g., with VSIG4, an Ig superfamily complement receptor, in CIA
and CAIA or in a targeted way e.g., against Cr2-factor H complex in CAIA). Most of these
inhibitors act at the level of C3 activation. In the animal models, different molecules have
also been tested to inhibit C5, administered systemically or at a local intra-articular level,
with good results.

6. ANCA Associated Vasculitis

The CS has a well-established pathogenic role in ANCA associated vasculitis (AAV) [119]
and in the endothelial damage in large vessel vasculitis such as Takayasu arteritis [120].
Homozygous mutations of factor I had been identified as a rare monogenic cause of
IC associated small vessel vasculitis [121]. These patients show a complete absence of
alternative pathway activity, and a decline in the classical pathway with decreased serum
levels of factor I, C3, and factor H but normal levels of C4. The first evidence of the
pathogenic role of complement activation in AAV was provided by the mouse model of anti-
myeloperoxidase (MPO) antibodies-induced vasculitis [122,123] (Table 1). C4-deficient mice
are not protected against vasculitis induced by transfer of anti-MPO antibodies, whereas
C5 deficiency confers protection [122]. Treatment with complement depleting agents
slows down the development of anti-MPO antibody-induced renal involvement [122]. In
this model, C4-deficiency, which precludes complement activation by the classical and
lectin pathways, does not prevent the development of glomerulonephritis and vasculitis,
whereas animals with a deficient alternative pathway were protected [122]. The blockade
or deficiency of the C5a receptor (C5aR) also protects mice humanized with human C5aR
against ANCA-induced glomerulonephritis [124]. In this study, C5aR deficiency improved
the effect of induced glomerulonephritis, while animals with human C5aR showed a
disease similar to that of wild type mice. Therapy with the human C5aR inhibitor CCX168
was used to block human C5aR in mice, resulting in a drastic decrease of necrosis and
crescents in the glomeruli and less neutrophil infiltration in the glomeruli [124].

Neutrophils activated by the presence of ANCA release factors such as properdine,
factor B, proteases, ROS, and MPO that can directly damage the endothelium and activate
the alternative pathway generating in turn C5a with a high chemoattracting capacity
on neutrophils [125]. Therefore, CS activation enhances the effect of autoantibodies on
neutrophils, resulting in severe necrotizing inflammation of the vessel wall. It remains
unclear how the alternative pathway is activated but recently, it was suggested that it might
be activated by activated platelets [126]. As the main regulator of the alternative pathway,
factor H may play an important role in limiting the secondary activation of complement.
In fact, plasma levels of factor H were significantly lower in patients with active AAV
compared to patients with AAV in remission and healthy controls [127]. Further research
has shown that factor H in AAV patients is generally less active in binding and regulating
C3b and in protecting cells from complement damage [128]. Clinical data show that in
AAV patients, plasma and urinary complement fragments levels increase during disease
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flares [129,130]. Histological observations also confirm the presence of renal IC and C3c,
C3d, C4d, and C5-9 deposition in correlation with proteinuria and renal failure [125,131].

7. Other

There is no definitive evidence for the pathogenic involvement of the complement
system in systemic sclerosis. However, the presence of hypocomplementemia is clinically
associated with characteristic features of overlap syndromes such as vasculitis or inflamma-
tory myopathy [132]. Eculizumab has been anecdotally used in patients with scleroderma
renal crisis with improved renal function and hypertension [133].

Complement-mediated damage has been studied predominantly in DM [134]. Au-
toantibodies and the CS mediate the immune damage manifested by the deposition of C3b,
C4b and MAC in endomysial capillaries in the early stages of the disease [135]. Similarly,
affected cutaneous areas show MAC deposits, while unaffected skin does not [136]. Some-
what paradoxically, genetic deficiency of C2 and C9 has been described associated with
DM [135,137].

8. The Complement System as a Therapeutic Target

There are currently two CS blockers approved for therapeutic use, eculizumab,
and plasma C1 protease inhibitor (C1INH). Eculizumab was approved for the treat-
ment of paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syn-
drome (aHUS) [138–140] while C1INH is indicated for the treatment of hereditary an-
gioedema [141]. Eculizumab has also been approved for the treatment of acetylcholine
receptor antibody positive refractory MG [142] and aquaporin antibody-positive (AQP)-4
neuromyelitis spectrum disorder [143].

The development of CS inhibitors is a difficult task. The target proteins are present in
a high concentration in the circulation, with a rapid turnover and therefore, high doses of
inhibitors or very frequent administration of antagonists seems necessary. Moreover, some
redundancy in the activation pathways may limit the final effect of antagonists of upstream
factors. The physiological roles of CS in IC processing, defense to intracellular bacteria,
and potentially cell regeneration and repair cycles predict some potential side-effects of CS
antagonists. The phenotype of patients with homozygous complement deficiencies include
autoimmune disease, enhanced susceptibility to infections by Neisseria [144–146].

Different strategies to target CS are being developed that include the use of natural
blockers such as factors H and I, pathogen-derived inhibitors, neutralizing antibodies or an-
tibody fragments, peptides, small molecules, aptamers, siRNA, antisense oligonucleotides,
and small molecules [147].

Eculizumab is the first approved CS antagonist. It is a designed IgG-kappa humanized
monoclonal antibody, with an IgG2/IgG4 hybrid Fc component. Eculizumab specifically
binds to C5 protein and inhibits its cleavage, thus preventing the generation of active C5a
and C5b, and the C5b-C9 [148]. Although initially developed to treat autoimmune diseases
such as RA, SLE, and DM [148] (and pexelizumab, a single-chain version was studied in
acute myocardial infarction [149,150]), it finally obtained approval for the treatment of PNH.
PNH is a clonal hematopoietic stem cell disorder that manifests with hemolytic anemia,
bone marrow failure, and thrombosis as result of an acquired deficiency of complement
regulatory proteins [151]. Following the results of a pilot study [152], two landmark trials
confirmed its remarkable therapeutic efficacy. A randomized, placebo-controlled trial
in transfusion-dependent patients, showed reductions in transfusion dependence and
intravascular hemolysis, and an increased quality of life [140,153]. In a further open-label
trial [153,154], these findings were confirmed in a larger patient population. Post-marketing
and observational data [139,154] also showed a reduced risk of thrombosis [155,156].
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by
intravascular hemolysis, thrombocytopenia, and acute kidney failure. Atypical HUS
(aHUS) is usually caused by uncontrolled complement activation, or as secondary HUS
with a coexisting disease [157]. In 2013, Legendre et al. published two phase II trials
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of eculizumab in aHUS; one cohort with active thrombotic microangiopathy (TMA) and
thrombocytopenia that did not respond to plasma treatment, and the other included
patients with chronic plasma-dependent disease. Eculizumab improved the event-free
status of TMA, increased glomerular filtration rate, allowing discontinuation of dialysis,
and improved QoL [138], and these results persisted years after the end of the trial [158].
The efficacy of eculizumab in aHUS was then confirmed in two phase III trials in adults [159]
and children [160]. The efficacy of eculizumab in other CS-mediated glomerular diseases
such as C3 glomerulopathy has also been suggested by different case reports [161].

Ravulizumab (ALXN1210), a humanized monoclonal antibody to complement compo-
nent C5, was engineered from eculizumab to have a substantially longer terminal half-life,
permitting longer dosing intervals for PNH treatment, and achieving noninferiority for all
efficacy and safety endpoints [162,163]. Similarly, ravulizumab has efficiently been used in
adult patients with aHUS [164].

In view of the relevant role of CS in SLE, its therapeutic blockade seems a rational goal
(Table 2). However, complement blockade therapy has only sporadically been tested in SLE.
Genetic deficiencies of the components of the classical pathway may be successfully over-
come by repeated plasma infusions, which result in disappearance of SLE symptoms [165].
Based on the effects of long-term treatment with anti-C5 on lupus nephritis in NZB/W
lupus mice [166], a phase I study with eculizumab was conducted in 24 patients with SLE.
In this single-center, randomized, placebo-controlled, double-blind trial with a range of
doses, patients received a single intravenous dose of eculizumab or placebo and were
followed for two months. Only mild adverse events were reported and a 10-day inhibition
of the complement was observed in the 8 mg/kg group [167]. Eculizumab has been used
off-label in patients with proliferative lupus nephritis and may be effective in patients with
severe disease, but further randomized trials are clearly needed [168,169].

Table 2. Clinical studies of drugs targeting complement pathways in rheumatic autoimmune diseases.

Agent Disease Type of Study Therapeutic Effect

Eculizumab (C5a inhibitor)

SLE
SLE and TMA

CAPS
RA
DM

Clinical Trial (phase I)
Case Report
Case Report
Clinical Trial
(phase IIb)

Clinical Trial
(placebo-controlled double blind pilot study)

Case Report

No evidence
Improvement
Improvement
No evidence
No evidence

Improvement

PMX53 (C5aR inhibitor) RA Clinical trial
(placebo-controlled double blind pilot study) No evidence

CCX168 (C5aR inhibitor) AAV Clinical Trial
(phase II, III) Improvement

AAV: ANCA associated vasculitis; CAPS: catastrophic antiphospholipid syndrome; DM: dermatomyositis; RA: rheumatoid arthritis; SLE:
systemic lupus erythematosus; TMA: thrombotic microangiopathy.

Several case reports also describe the use of eculizumab in SLE patients with TMA [167].
In patients with SLE and aHUS treated with eculizumab, a good tolerance and improve-
ment of clinical, hematologic, and renal manifestations have been reported [169–173].

Current therapy for APS is based on anticoagulation. In catastrophic APS (CAPS),
the most difficult to treat syndrome in which patients have multiple organ thrombosis,
eculizumab has been used in patients with diseases refractory to anticoagulation or con-
ventional immunosuppression getting a sustained remission [174].

In the case of RA, different strategies have been tested in animal models with com-
plement blockers such as soluble CR1 (which suppresses complement activation at the
C3 level) [175], or recombinant C3a and C5a receptor antagonists [176,177], and CD59
(which inhibits the formation of MAC) [178]. Selective intrarticular administration of an
anti-C5 antibody showed therapeutic potential in the prevention or treatment of arthritis
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in a preclinical animal model for RA [179,180]. However, in humans, C5a blocking with an
oral C5aR inhibitor PMX53 has not shown promising results [181] (Table 2). Neither has
treatment with eculizumab showed efficacy in RA [182].

In 2000, the FDA granted eculizumab orphan drug status for the treatment of DM. This
was followed by a pilot study to evaluate the safety and efficacy of the drug in 13 patients
with the disease undergoing concomitant treatment with moderate doses of methotrexate
or steroids. Although the results of the trial were positive in terms of safety and tolerability,
the company did not publish any further information. A case report of a severe and
refractory DM with TMA has also showed efficacy in this indication [183].

With respect to AAV, the rational points to the alternative pathway or the C5a-C5aR1
complex as therapeutic target. The first human studies are the CCX168 (avacopan) C5aR
inhibitor trials (Table 2). This compound blocked the activation of C5aR after oral dosing
in both humans and C5aR humanized mice (knock-in hC5aR mice). Recently, the results
of phase I [184] and phase II [185] trials of CCX168 in patients with a clinical diagnosis
of granulomatosis with polyangeitis, microscopic polyangeitis or vasculitis limited to
the kidney have been published. In the phase I human clinical study, CCX168 was well
tolerated, with excellent oral bioavailability and proportional dose increases in systemic
exposure. Analysis of human data revealed that 30 mg of CCX168 twice daily provided
excellent C5aR coverage in human blood leukocytes. The CLEAR (C5aR inhibitor in
leukocyte-associated exploratory renal vasculitis) study was designed to assess whether
the high doses of chronic steroids used in the standard of care (SOC) regimen for AAV could
be reduced or eliminated—without compromising efficacy—by substitution with CCX168.
The trial met its primary endpoint based on the Birmingham Vasculitis Activity Score (VAS)
response. The proportion of patients with a VAS response at week 12 was numerically
higher and statistically not lower among patients receiving CCX168 plus low-dose steroids
and no steroids compared to the high-dose steroid-treated group A higher proportion of
patients receiving CX168 had early clinical remission at week 4, sustained until week 12.
Patients receiving CX168 (especially without steroids) showed significant improvement in
health-related quality of life domains such as physical functioning, mental health, emotional
well-being, pain, and vitality. Glomerular filtration rates improved similarly with CCX168
compared to controls, indicating that steroids are not needed to improve kidney function
when patients are taking CCX168. Recently, results from the phase 3 clinical trial were
announced. This study aimed to evaluate the safety of avacopan for the treatment of AAV
in addition to SOC treatment with glucocorticoids with cyclophosphamide or rituximab.
Although pending final publication, the preliminary results are very positive. [186].

There is a wide current development of blocking agents against different components
of complement such as APL-2 (pegcetacoplan derivative of compstatin that blocks C3)
or narsoplimab (that blocks MASP2) in lupus nephritis, and IFX-1 (that blocks C5a) in
AAV [187].

Due to its multiple anti-inflammatory and immunomodulatory properties, IVIG is
successfully used in a wide range of autoimmune and inflammatory conditions. IVIG
has outstanding properties not only in neutralizing the activity of autoantibodies and
suppressing the production of autoantibodies, but also in modulating the activity of
CS. IVIG can exert its effects by several mechanisms: (a) linking the activated C3 and
C4 and avoiding the deposition in situ of these fragments, (b) linking C1q and causing
a deviation of C1 from its target, (c) enhancing the inactivation of C3 in the complex
with immunoglobulins and thus regulating downwards the activity of C3 convertase, (d)
modulating a mild and controlled activation of CS [188].

Practical experience has been gained in the area of infection risk mitigation through
the clinical use of eculizumab and the means by which Neisseria infection has been partially
mitigated through long-term antibiotic treatment and/or vaccination for Neisseria a month
before starting therapy with eculizumab [148].
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9. Conclusions

The pathogenic involvement of the CS in systemic autoimmune diseases has been
described both by the genetic or functional deficiencies of certain components and by an
excessive activation of the CS in both preclinical and human models. This has provided the
pathogenic basis for the development of therapies aimed at blocking certain facets of com-
plement. However, this development is still limited and, therefore, additional randomized
and controlled studies are needed to confirm the usefulness of these directed therapies.
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