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Abstract: DNA methylation is an epigenetic mechanism that is related to mammalian cellular
differentiation, gene expression regulation, and disease. In several studies, DNA methylation has
been identified as an effective marker to identify differences between cells. In this review, we
introduce single-cell DNA-methylation profiling methods, including experimental strategies and
approaches to computational data analysis. Furthermore, the blind spots of the basic analysis and
recent alternatives are briefly described. In addition, we introduce well-known applications and
discuss future development.

Keywords: DNA methylation; single cell; bioinformatics

1. Introduction

In humans, DNA methylation is only found on cytosine residues [1]. DNA methyl-
transferases (DNMTs) transfer the methyl group of S-adenyl methionine (SAM) to the fifth
carbon of the cytosine residue to form 5-methylcytosine [2], commonly referred to as 5mC
or mC. Methylation of vertebrate genomes occurs on CG dinucleotides (commonly referred
to as CpG to emphasize the importance of order) [1]. The methylation of non-CpG sites is
only observed in the brain and in stem cells [3,4]. Therefore, detecting DNA methylation is
often the same as confirming whether the cytosine of CpG in the genome is methylated.
In humans, 28 million CpG dinucleotides are present in the genome, and 60–80% of those
sites are known to be methylated [5,6]. This is certainly a large number, but compared to
other dinucleotides, CpG is underrepresented [7]. As a result, the distribution of CpG in
the genome is sparse at most locations but dense at some locations. Among the regions
where CpGs are distributed at high density, the regions that satisfy the CpG density and
scale criteria are called CpG islands (CGIs) [8,9]. Most housekeeping genes are present near
CGIs [10], and there is a high correlation between the location of CGIs and promoters [11].
Studies have shown that CGIs function as genomic platforms for regulating transcription
at their associated promoters [12]. Therefore, some profiling methods enrich high CpG
regions such as CGIs [13].

In general, methylation of the CpG site is often taken as a sign of repression of gene
transcription [14]. The relationship between DNA methylation and repression of gene
expression has been reported in several studies and occurs in genomic imprinting [15],
X-chromosome inactivation [16], and silencing of retroviral elements [17]. Nevertheless, not
all methylation implies repression. For example, it has been observed that methylation of
the gene body is associated with the expressed gene [18]. Other exceptions have also been
reported [19]. These counterexamples suggest that DNA methylation can reveal important
implications not only for CGIs, but also for numerous other sites. Therefore, methods
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such as reduced representation bisulfite sequencing (RRBS) [20], which focus mainly on
high-CG regions, have the risk of missing important features. Therefore, a method such as
whole-genome bisulfite sequencing (WGBS) [3] might be useful for observing the entire
genome. On the other hand, counterexamples also suggest that CpG methylation of a
specific site or region does not guarantee gene repression. The precise meaning of CpG
methylation for a gene can be confirmed when cross-validated with other information,
such as RNA expression levels or chromatin accessibility. For this reason, many multi-
omics methods have been developed. However, this does not mean that profiling only
methylation is meaningless. DNA methylation has the advantage of showing easily observ-
able differences between samples under different conditions. By comparing the relative
methylation between samples, it is possible to determine the key specific CpG sites or
regions responsible for the differences. The terms hypermethylation and hypomethylation
are used to refer to the relative increase or decrease in methylation, respectively, in such
comparisons [21]. Although the methylation status of most CpG sites remains unchanged,
a single CpG site or multiple CpG sites in a genomic region may become hypermethylated
or hypomethylated as the environmental conditions change [22]. Under each condition,
it has been reported that hypermethylation or hypomethylation occurs at different CpG
sites [23–29]. Individual single cells also show differences in methylation at CpG sites [30],
which is due to cell differentiation [31,32]. At the single-cell level, the methylation of indi-
vidual CpG sites is clearly divided into methylated and unmethylated, and methylation
of different locations is simply showing differences between different cells. Therefore, in
the single-cell methodology, DNA methylation can be an efficient marker, distinguishing
individual cells under different conditions or different cell types.

In this review, we describe methods for DNA methylation profiling in single cells. We
introduce the basic principles and technologies shared between single-cell profiling meth-
ods and discuss the differences between methods. Although there are some profiling meth-
ods for modifications of 5mC, such as 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC), and 5-carboxylcytosine (5caC), these are not covered here. In addition, we only
introduce genome-wide methods, as most single-cell methylation analyses require data
from many locations within the genome for comparison. Because the main purpose of
methylation analysis is to search for differences between groups, mainstream data analysis
of single-cell methylation data does not greatly differ from bulk methylation data analysis.
Therefore, we introduce a standardized basic methylation analysis process. Although
many multi-omics methods are introduced, the individual analytical processes of each are
beyond the scope of this review and, therefore, not discussed; this includes analyses such as
RNA and chromatin accessibility. Instead, we describe the problems that researchers often
encounter in the process of basic analysis and recent efforts to solve them. Additionally,
we introduce an application method where DNA methylation is mainly used in single cells.
Finally, we discuss the future direction of development.

2. Experimental Methodologies
2.1. Bisulfite Conversion

There are several methods of profiling methylation, and these can be roughly divided
into two groups depending on whether or not base conversion occurs. In the case of base
conversion, cytosine or methylcytosine is selectively modified by reagents and finally
detected as thymine by sequencing. The base-conversion–based method has the advan-
tage of allowing inspection of methylation at individual CpG sites, whether converted
or not. Methods of this type include bisulfite sequencing [33], ten-eleven translocation
(TET)-assisted pyridine borane sequencing (TAPS) [34], and enzymatic methyl-seq (EM-
seq) [35]. Because TAPS and EM-seq were recently developed, the conventional single-cell
methylation profiling was performed based on bisulfite conversion. The method using
bisulfite conversion is considered the gold standard for profiling DNA methylation [36].
It was favored by researchers because of its high conversion efficiency (>99%) [37], re-
producibility [38], and simple accessibility through a commercial kit [39]. However, the
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bisulfite conversion method employs harsh reaction conditions that cause DNA degrada-
tion. Degradation causes loss of DNA and reduced sequence quality, which results in loss
of final data yield [37]. Post-bisulfite adaptor tagging (PBAT) [40] was developed to solve
the problem of loss caused by degradation (Figure 1a).
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Figure 1. Key strategies to minimize DNA loss in single-cell DNA methylation profiling methods.
Because a single cell contains a small amount of DNA, several methods are used to minimize loss.
(a) Overview of the post-bisulfite adaptor tagging (PBAT) method to prevent loss due to degradation
during the bisulfite conversion process. Unlike the conventional method (left panel), loss of shortened
DNA fragments is prevented in PBAT (right panel). Each single-cell methylation profiling method
using the PBAT strategy differs in the number of amplifications of the bisulfite conversion product
(α) and the number of random sequences in the primer (β). (b) Overview of single-tube reaction.
Common to several methods, reagents are continuously added, without purification, to the tube or
well containing cell lysate or nuclei. In this way, DNA loss during the purification process can be
prevented. (c) Use of microfluidics demonstrated in the microfluidic diffusion (MID)-based reduced
representation bisulfite sequencing (RRBS) process. DNA loss can be minimized during purification
using microfluidics. This figure is based on the figure of a previous article (Ma, S., de la Fuente
Revenga, M., Sun, Z. et al. 2018) [41] and adapted with permission from 2018 Springer Nature.
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Although PBAT cannot prevent degradation by bisulfite conversion, it prevents loss
in the next-generation sequencing (NGS) library preparation process by ligation of the
adaptor after degradation. Therefore, it is widely used in the single-cell methylation
profiling method, where loss must be minimized due to a small amount of input.

2.1.1. RRBS-Based Methods

RRBS [20] and WGBS [42,43] are popular genome-wide methylation profiling methods.
Both methods include bisulfite conversion and NGS preparation. The main difference
between the two methods is that RRBS screens GC-rich regions using appropriate restriction
enzymes and size selection (Figure 2a) [44].
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Figure 2. The pattern of the resulting data that can be obtained for each basic method. The resulting pattern of each
single-cell profiling method reflects the pattern of the basic method associated with it. The figure format was based on the
figure in the paper (Ja-Rang Lee, et al. 2018) [45]. (a) An example of the final data pattern represented by the single-cell
method based on RRBS. According to the basic principle of RRBS, reads are observed mainly at high-CG positions. (b) An
example of the final data pattern represented by the single-cell method based on WGBS. According to the basic principle of
WGBS, a relatively even distribution of reads is observed. (c) Example of the pattern of results in single-cell (sc)CGI-seq
where methylation-sensitive restriction enzymes (MSREs) are used. Similar to RRBS, the read is observed at the high-CG
position in the genome, but the methylated site can be observed based on the difference between the control and the sample.

Because most CpG sites do not show significant changes in methylation status, RRBS
can be useful for cost savings [22]. Single-cell (sc)RRBS [46], quantitative (Q)-RRBS [47],
and microfluidic diffusion (MID)-RRBS [41] are methods that optimize RRBS for single-cell
research (Table 1).
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Table 1. Brief summary of single-cell DNA methylation profiling methods 1.

Basis PBAT Single-Cell Method Related Method 2 Advanced Strategy 3 Ref.

RRBS No

scRRBS None Single-tube reaction, tRNA carrier [46]
Q-RRBS scRRBS UMI adaptor [47]

MID-RRBS None Microfluidics [41]
scTrio-seq scRRBS, scRNA-seq Multi-omics (RNA, CNV) [48]
scMT-seq scRRBS, Smart-seq2 Multi-omics (RNA) [49]

WGBS Yes 4

scBS-seq None Single-tube reaction, Preamplification,
SPRI bead [50]

scPBAT None Non-preamplification
(repeat-specialized) [51]

scWGBS None Non-preamplification [52]
snmC-seq2 5 snmC-seq Single-strand library preparation method [53]

sci-MET None Transposase tagmentation,
combinatorial indexing [54]

scTrio-seq2 scBS-seq, scTrio-seq Multi-omics (RNA, CNV) [55]
scM&T-seq scBS-seq, G&T-seq Multi-omics (RNA) [56]

scNMT-seq scM&T-seq, NOMe-seq Multi-omics
(RNA, chromatin accessibility) [57]

iscCOOL-seq 5 scCOOL-seq, NOMe-seq Multi-omics (chromatin accessibility,
CNV, ploidy) [58]

scNOMe-seq NOMe-seq Multi-omics
(chromatin accessibility) [59]

MSRE No scCGI-seq None MDA [60]
1 This table originated from another review paper (Karemaker and Vermeulen, 2018) [61] and has been reduced, reorganized, and updated
to fit our review scope. The original review contains descriptions of various methods that are not within the scope of this paper. 2 If there is
no mention of a related method in the paper, even if the method is similar to other methods, the classification is None. 3 Because DNA
methylation is indicated by default, it is not separately indicated in multi-omics. 4 If there was an adaptor tagging step after bisulfite
conversion, it was classified as PBAT. 5 Because the improved method and the original method are similar in basic purpose, only the most
recent method is indicated. PBAT: post-bisulfite adaptor tagging; RRBS: reduced representation bisulfite sequencing; Q: quantitative; sc:
single-cell; UMI: unique molecular identifier; MID: microfluidic diffusion; trio, triple omics; WGBS: whole-genome bisulfite sequencing;
CNV: copy number variation; MT: methylome and transcriptome; SPRI: solid-phase reversible immobilization; M&T: methylation and
transcriptome; G&T: genome and transcriptome; NMT: nucleosome, methylation, and transcription; NOMe: nucleosome occupancy and
methylome; iscCOOL-seq: improved single-cell chromatin overall omic-scale landscape sequencing; sci-MET: single-cell indexing for
methylation analysis; MSRE: methylation-sensitive restriction enzymes; CGI: CpG island; MDA: multiple displacement amplification.

Traditional RRBS can be broadly divided into five steps. The first is to digest DNA
using restriction enzymes, the second is adaptor ligation and its preprocessing, the third is
GC-rich site enrichment using gel size selection, the fourth is bisulfite conversion, and the
last is the amplification process before sequencing. Several purification steps are included
in these processes, and the final step, the amplification process, exists to compensate for
losses during the process. Unlike previous RRBS, RRBS in a single cell is not free from
loss. Due to the small amount of input DNA from a single cell, the conventional method
does not guarantee that the target DNA is maintained until the final amplification process.
Therefore, single-cell RRBS has been refined in the direction of reducing loss. scRRBS is a
method that focuses on minimizing the losses that occur during the purification process.
Loss reduction is achieved by restriction enzyme digestion, adaptor ligation processes, and
bisulfite conversion in a single tube without purification (Figure 1b). In addition, the use
of tRNA carriers and reordering of size selection are also aimed at preventing loss. The
quantitative (Q)-RRBS method introduced unique molecular identifiers (UMI) to overcome
the bias problem of multiple cycles of PCR in order to amplify the small amount of DNA
in scRRBS. If the length of the UMI is sufficient, reads with the same UMI sequence can
be regarded as duplicated reads derived from the same molecule. The Q-RRBS method
may be a good choice for researchers who are concerned about duplications and artifacts.
MID-RRBS is identical to scRRBS in that the goal is to reduce DNA loss. However, there are
differences in the process identified as the cause of the loss and the prevention method. The
MID-RRBS method pointed to the column purification process during bisulfite conversion
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as the main cause of loss and suggested an alternative using microfluidics technology
(Figure 1c). Using the microfluidic device can replace the reagents and DNA purification at
the same time. The slow diffusion rate of DNA according to molecular weight enables the
minimization of DNA loss. Single-cell triple-omics sequencing (scTrio-seq) [48] and single-
cell methylome and transcriptome sequencing (scMT-seq) [49] are multi-omics methods
based on scRRBS. In both methods, the nucleus is maintained through a mild lysis protocol
to prevent DNA and RNA from mixing and is then physically separated. The separated
DNA is subjected to scRRBS, and in the case of RNA, scTrio-seq is performed by scRNA-
seq [62], and scMT-seq is performed using the Smart2-seq [63] protocol. Both methods
were able to confirm the correlation between methylome and transcriptome, but scTrio-seq
showed that copy number variations (CNVs) can also be estimated using DNA fragments.

2.1.2. WGBS-Based Methods

Although RRBS is sufficient in many cases [64], there are several limitations due to
the nature of screening in only a few genomic regions [13,65]. On the other hand, WGBS
(specifically methylC-seq [43]) has the advantage of being able to cover most of the CpGs
in the genome (Figure 2b). Compared to RRBS, which has to undergo several purification
and selection processes, WGBS undergoes a relatively simpler process. Therefore, it
is considered relatively important in WGBS to prevent loss by degradation in bisulfite
conversion, and thus many WGBS-based single-cell methods are often modified based
on PBAT [40]. The PBAT method is divided into four steps. The first process is bisulfite
conversion, and the second process synthesizes the first DNA strand from the converted
DNA with a primer containing biotin at one end and a random tetramer (N4) at the other
end. The next step is to immobilize the synthesized DNA with streptavidin and then
synthesize the second DNA strand using a primer containing a random tetramer. Finally, a
second DNA strand of the appropriate size is selected and sequenced.

WGBS-based single cell profiling methods include single-cell bisulfite sequencing
(scBS-seq) [50], single-cell PBAT (scPBAT) [51], single-cell WGBS (scWGBS) [52], single-
nucleus methylcytosine sequencing (snmC-seq) 2 [53], and single-cell combinatorial index-
ing for methylation analysis (sci-MET) [54]. These methods also generally follow the flow
of PBAT, but there are differences in the details.

The scPBAT method is almost identical to the original PBAT, except that it uses a
primer containing a random tetramer (N4) and a weak (A, T, or U) tetramer (W4). However,
since the original PBAT method does not have an amplification process, there is a limit to
its applicability to a small amount of single-cell DNA. As a result, scPBATs can only be
used for limited applications, such as determining the methylation of repetitive elements.
Therefore, the most recent version of the scBS-seq method is based on PBAT, but unlike
PBAT, the bisulfite conversion in scBS-seq is done directly in the cell lysate. The primer
also contains a random hexamer (N6) instead of a random tetramer. PBAT only performs
annealing and extension in the two-strand formation steps. However, scBS-seq performs
five cycles of amplification on bisulfite-converted DNA in the first DNA strand synthesis
step. The second strand synthesis is performed only once, as in the original PBAT, with the
difference that 10~15 cycles of amplification are performed using adaptor sequences present
on both sides of the synthesized DNA. In these procedures, the purification process using
streptavidin beads is omitted and replaced with solid-phase reversible immobilization
(SPRI) beads. scWGBS uses a primer containing a random hexamer for the synthesis of
the first DNA strand, similar to scBS-seq, but does not perform multiple cycles. Instead,
terminal tagging occurs during the synthesis of the first strand, and the second strand
synthesis is performed for up to 18 cycles using the tagged sequence. snmC-seq [66] and
the improved snmC-seq2 [53] showed that the reaction proceeded in the nuclei instead of
the previously used cell lysate. In addition, it showed relatively high coverage through the
introduction of a single-strand NGS preparation method using an adaptase. It is similar to
scWGBS in that the tagged sequence is used for second-strand synthesis. sci-MET tried to
improve the scale by improving not only the use of nuclei, but also tagmentation through
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transposase and the performance of combinatorial indexing in multiple wells. In scWGBS
and snmC-seq2, a tag sequence is added at the time of first-strand synthesis, but in sci-MET,
the tag is inserted in advance during tagmentation by transposase.

Multi-omics methods are distinguished according to which methylation profiling
method is combined with which other profiling method (RNA, chromatin accessibility).
Single-cell genome-wide methylome and transcriptome sequencing (scM&T-seq) [56] and
scTrio-seq2 [55], a variation of scTrio-seq [48], are based on scBS-seq. scM&T-seq is a
combination of genome and transcriptome sequencing (G&T-seq) [67] and scBS-seq, and
G&T-seq is a method of identifying both DNA and RNA based on Smart-seq2 [63]. RNA
and DNA were physically separated through the G&T-seq process, and then the purified
DNA was subjected to the scBS-seq process. scTrio-seq2 extended the observable range
using scBS-seq instead of scRRBS in scTrio-seq. Therefore, like scTrio-seq, CNV estimation
is possible.

On the other hand, techniques applied to the single-cell methylation profiling method,
such as PBAT, can also be similarly applied to another method called nucleosome occupancy
and methylome-sequencing (NOMe-seq) [68]. NOMe-seq can confirm open chromatin and
CpG methylation in bisulfite-converted DNA using the difference in chromatin accessibility
of GpC methyltransferase according to the presence or absence of nucleosomes. Single-cell
chromatin overall omic-scale landscape sequencing (scCOOL-seq) [69], improved scCOOL-
seq (iscCOOL-seq) [58], and scNOMe-seq [59] can monitor chromatin accessibility and CpG
methylation together. If NOMe-seq is added based on scM&T-seq, it becomes single-cell
nucleosome, methylation, and transcription sequencing (scNMT-seq) [57]. This method
makes it possible to confirm chromatin accessibility, DNA methylation, and transcrip-
tome profiling.

2.2. Conversion-Free Methods

Observation of methylation by methods other than conversion is largely divided into
two classes: the use of affinity binding of methylcytosine and the use of the sensitivity of the
restriction enzyme to methylcytosine. Methyl-CpG-binding domain sequencing (MBD-seq)
and methylated DNA immunoprecipitation sequencing (MeDIP-seq) are representative
affinity-based methods [70,71]. Affinity-based methods are not suitable for application on a
single-cell scale, because these methods generate average DNA methylation profiles based
on DNA fragments, which does not allow discrimination of differences in DNA methylation
patterns across single cells [72]. Therefore, until now, application in single cells has not been
within the range of our knowledge. MRE-seq [73] is a representative example of a method
using the sensitivity of a restriction enzyme to methylcytosine. The unmethylated CGIs are
sequenced after a size-selection process. Similar to affinity-based methods, MRE-seq was
not suitable for single cells because it required the enrichment of DNA fragments. However,
the MSRE-based method could be improved, unlike the affinity-based method. Since the
affinity-based method determines the presence or absence of methylation by enrichment of
DNA fragments with methylcytosine, it is difficult to improve it in a single cell with a small
amount of DNA. On the other hand, since the MSRE-based method determines whether
methylation occurs by cleavage, the enrichment of the DNA fragment is an intermediate
step for detection. A refinement of the single-cell method using MSRE can be found
in Methyl-seq [74]. Methyl-seq is similar to MRE-seq, but it compares the results with
methylation-sensitive and -insensitive restriction enzymes. This method was not developed
for single-cell purposes. scCGI-seq [60] measures methylation in a similar way to methyl-
seq. If the CGI site is methylated, cleavage by MSREs is inhibited, the sequence is amplified
and detected, and the result is compared to the result of digestion by a methylation-
insensitive restriction enzyme (Figure 2c). Multiple displacement amplification (MDA)
makes it possible to use this approach on a single-cell scale.

Although the method using MSRE continues to develop [75], there is no conversion, so
the GC rate is maintained and there is no degradation. However, despite these advantages,
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it is clear that the bisulfite conversion method is the standard at this time. Therefore, the next
chapter describes a standardized analysis method, assuming the use of bisulfite conversion.

3. Data Analysis
3.1. Data Quality Assessment

After sequencing experiments, including RRBS or WGBS, preprocessing of sequence
data is required. Preprocessing steps can be divided into data quality control (QC), trim-
ming of sequencing reads, and alignment of sequencing reads. The first part of quality
control measures overall basic sequencing data quality utilizing software programs such as
FastQC [76]. After overall sequence quality assessment, the conversion efficiency of bisul-
fite sequencing should be confirmed. For samples with low bisulfite conversion efficiency,
distinguishing bases sequenced as cytosines in CpG sites from true methylated cytosines
or sequencing error is challenging. This acts as a confounding factor in downstream analy-
sis, including finding differentially methylated regions. The conversion efficiency can be
directly derived from unmethylated lambda DNA spiked in by calculating the fraction of
converted bases at cytosine sites or using available software programs [37,77,78].

3.2. Read Trimming and Sequence Alignment

Artifactual sequences, including sequencing adaptors and homopolymeric sequences
in sequence read ends, are trimmed using software such as Trim Galore! [79], fastp [80], and
Trimmomatic [81]. The trimmed sequence reads are then aligned on the reference genome.
The cytosine-to-thymine conversion causes two problems in sequence alignment. The first
is the alignment of converted thymines onto original cytosine residues. The purpose of the
alignment step is to identify the most likely genomic region from which a given sequence
read originated. To discover such regions, alignment software adopts a penalty score that
is correlated with the number of mismatches. The converted cytosines are considered
mismatches in the alignment step. Therefore, the alignment should consider these high
penalty scores. The second problem is that the alignment must be unique and accurate,
although the complexity of a sequence read is low. Bisulfite sequence reads are AT-rich.
This causes increased similarity between reads although the sequences originated from
different genomic regions. This hinders the unique alignment of each read. There are many
aligners designed to solve these problems (Table 2).

Table 2. Bisulfite sequencing read-alignment software programs 1.

Aligner Index Method URL

BSMAP Wild-card https://code.google.com/archive/p/bsmap/
RMAPBS Wild-card https://github.com/smithlabcode/rmap
Bismark Three-letter https://github.com/FelixKrueger/Bismark

BS-Seeker Three-letter

version1: https://bmcbioinformatics.biomedcentral.com/
articles/10.1186/1471-2105-11-203

version2: https://github.com/BSSeeker/BSseeker2
version3: https://github.com/khuang28jhu/bs3/

BitmapperBS Three-letter https://github.com/chhylp123/BitMapperBS
1 This table is based on the table of another review paper (Bock C., 2012) [82] and has been modified to include
the well-known programs that fit the scope of this paper.

Aligners can be classified as either utilizing a wild-card character for alignment or
adopting a three-letter system for reference genome indexing [82]. The former converts
all cytosines with wild-card character Y (cytosines and thymines), and the latter utilizes
a reference genome in which all cytosines are converted to thymines in both strands.
Although the wild-card method has the benefit of increased coverage resulting from more
surviving reads compared to the three-letter system, the biased estimation of methylation
rate due to misalignment is a major issue. On the other hand, the three-letter system has
reduced coverage because it discards more reads than the wild-card system. However, the
bias in methylation rate is lower than for the wild-card system (Figure 3a).

https://code.google.com/archive/p/bsmap/
https://github.com/smithlabcode/rmap
https://github.com/FelixKrueger/Bismark
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-203
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-203
https://github.com/BSSeeker/BSseeker2
https://github.com/khuang28jhu/bs3/
https://github.com/chhylp123/BitMapperBS
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Figure 3. The bisulfite treatment-based sequencing data analysis should take into consideration the converted normal
cytosine. (a) With the exception of the CpG loci (red), all cytosine residues of produced sequence reads are converted to
thymine after PCR (left panel). These sequence reads are aligned on the reference genome using the wild-card method
(upper right panel) or three-letter method (lower right panel). Although the wild-card alignment aligned more reads
and coverage is increased, the methylation level is biased. In the three-letter system, some reads failed to align but the
calculated methylation level is unbiased compared to the wild-card method when there is alignment (transparent reads
are an alignment failure) (adapted with permission from [82], 2012 Springer Nature). (b) Sequence reads after bisulfite
treatment. Due to the PCR step, four types of sequence reads are produced. Two are from the original target molecule
(OT, OB), and the other two are from the complementary strand generated by PCR (CTOT, CTOB). OT: original top, OB:
original bottom, CTOT: complementary to original top, CTOB: complementary to original bottom (adapted with permission
from [83], 2012 Springer Nature).

Misalignment in both methods arises from repeat sequences, such as transposable
element sequences. Because the accuracy of alignment in these regions can be further
improved using long-read sequencing technologies, the recent design of alignment software
focuses on low-computation resources and low time complexity of alignment [84–86]. For
the downstream analysis after alignment, such as single-nucleotide polymorphism (SNP)
discovery in CpG sites, researchers should consider if the bisulfite sequencing data are a
mixture of reads originating from the original top and bottom strands of DNA molecules
and their complementary sequences generated by PCR (Figure 3b).

3.3. Methylation Analysis Using Methylation Level

The major objective of methylation analysis is to explore epigenetic evidence that con-
stitutes differences between samples, organs, and disease status, including cancer [87–89].
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For the purpose of discovering these differences, a numeric value that implies this concept
is required.

β =
Methylated Cytosine

Methylated Cytosine + Unmethylated Cytosine
(1)

M = log2

(
max(Methyl, 0) + α

max(Unmethyl, 0) + α

)
(2)

A widely used term is the β-value (Equation (1)), which ranges from 0 to 1 and is
defined as the proportion of methylated cytosines at a given CpG site. Although this
value is biologically interpretable, another metric, the M-value (Equation (2)), is used for
statistical interpretation. This methylation-calling step is the initial step of methylation
analysis (Figure 4a). Although the β-values and M-values range in bulk methylation
level analysis, these values are usually binary (unmethylated or methylated) in single-
cell analyses.

After methylation calling, subsequent analyses such as t-stochastic neighbor embed-
ding (t-SNE) (Figure 4b) for visual analysis, cluster analysis (Figure 4c), and identification of
differentially methylated cytosines (DMCs) (Figure 4d) or differentially methylated regions
(DMRs) (Figure 4e) are conducted. Selection from DMCs and DMRs for certain analyses is
dependent on the feature a researcher considers [90]. In the case of analysis focusing on
DMRs, there are additional numerical values to distinguish differences between groups
that summarize the methylation information in a region, including average methylation
fraction (AMF) or individual methylation fraction (IMF). A recent study imported the
concept of haplotype block [91]. This method builds a haplotype block of CpG sites, con-
sidering each CpG site as an SNP locus and the methylation status of each CpG site as
B-allele frequency (BAF). To build haplotype blocks, the authors compiled WGBS data and
RRBS data for various types of tissues. To explore differences between tissues, the authors
suggested a new term, methylation haplotype load (MHL). This metric performed best
compared to AMF and IMF for tissue classification and detection of tissue of origin for
cell-free tumor DNA samples [91]. These various analysis methods are similarly used in
single-cell analysis. As an example, two papers [92,93] analyzed methylation of circulating
tumor cells (CTCs) and clustered single-cell groups and found DMR. Researchers can find
the difference by applying the above methods even in single cells.

3.4. Methylation Analysis Using Methylation Pattern of Sequence Reads

Methods described above mainly rely on the methylation level of individual CpG
sites. Recent methylation analysis makes use of the pattern of methylation in each read for
disease diagnosis, especially for cancer [94,95]. This new concept in analysis is based on the
biological property of methylation that there is a tendency to maintain methylation between
adjacent CpG sites unless there is de novo methylation [96]. Conventional methods using
β-values or AMFs are not suitable for disease detection when the disease burden is low.
This is because those values “average out” the mixture of patterns that comprise the total
information and low disease signals cannot be detected when the majority of signals are
not disease signals (Figure 5).
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Figure 4. Analysis methods of DNA methylation. (a) Overview of methylation analysis pipeline. The analysis starts
with the quality check of raw sequence reads followed by adaptor trimming and alignment. After alignment, two tracks
of analysis are performed. The first is assessment of the experimental quality, such as bisulfite conversion rate, M-bias
plot, and removal of known single-nucleotide polymorphisms (SNPs). The second is removal of duplication followed by
methylation calling. After methylation calling, several steps, such as visualization (b), cluster analysis (c), and identification
of differentially methylated sites or genes between bulk or single-cell groups (d) or regions (e), are carried out. Each analysis
method is used on both the bulk scale and single-cell scale, and individual single cells are treated similarly to individual
samples in bulk. The image in (b) was adapted from the t-SNE figure of the open access iscCOOL-seq paper (Gu, C., Liu, S.,
Wu, Q. et al. 2019) [58]. t-SNE: t-stochastic neighbor embedding.
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Figure 5. Benefits of read-pattern analysis. Single CpG loci values can confound the methylation call. Consider a scenario of
detection of cancer using methylation. (a) Sequence reads in a given region are nearly identical to the reference pattern
but are dissimilar due to an error of the methyltransferase. The overall methylation percentage is calculated as 25%. The
methylation level of this region is different from that of the reference and, hence, a false positive methylation call can occur.
(b) Although the CpG methylation level is the same in the former scenario, there is a molecule that is perfectly methylated.
In this case, we consider that this region has a methylated molecule because the multiple CpG site error of methyltransferase
in a single DNA molecule occurs with very low probability. Therefore, we call this true positive methylation. (c) In early
cancer, there is a small cancer DNA burden in the blood that is nearly undetectable using single CpG methylation (here 2%
of methylation). Unless utilizing the methylation pattern of molecules, a false negative result occurs.

The read-pattern method can detect DNA molecules having disease signals and has
the possibility of increasing the chance of disease signal detection. Practically, liquid biopsy
studies adopted this concept due to the very small amount of input materials extracted
from samples. The concept of detection of DNA molecules “as is” by obtaining the pattern
of methylation in each read becomes important in the early detection of cancer. A recent
study using published clinical data mathematically shows that approximately 570 tumor
DNA molecules are present in whole human blood from lung cancer with a primary tumor
size of 1 cm3. Very limited amounts of blood samples (<15 mL) are accessible in clinical
settings. This is equivalent to the detection of one or two DNA molecules [97]. Without
the read-pattern analysis, methylation signals can be treated as negative (Figure 5c) in this
setting. For example, a large liquid biopsy study has designed an ensemble classifier that
categorizes the types of tumor based on the read-pattern analysis and showed remarkable
results for the detection of early-stage cancer [94]. Moreover, the quantification of tumor-
derived DNA molecules through the methylation pattern is an alternative method of
observing tumor burden (Figure 6) [98,99].
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Figure 6. Applications of methylation pattern analysis in cancer clinical settings. Each DNA methylation pattern in a single
sequence read is evaluated using a trained machine learning classifier. The classifier considers the methylation pattern as a
mixture of a healthy (normal) methylation pattern and tumor methylation pattern. In the training step, both the normal
methylation pattern and the methylation pattern information data for each cancer type are fed into the classifier. According
to trained hyperparameters, the classifier scores each read and classifies whether the read (i.e., DNA molecule) originates
from tumor or normal DNA. The model collects information for each read in an ensemble manner for each genomic region
of interest. The collected signal is utilized to (1) decide whether the sample is cancerous and (2) deconvolute the tumor of
origin. (TOO: tumor of origin, f : fraction of tumor).

These suggest that methods making decisions on the presence or absence of tumor
DNA molecules by methylation read level pattern analysis are often intuitive compared
to methods adapting average scores such as methylation rate. It has been reported that
analysis using read-level methylation patterns in a single cell is possible because single-cell
and liquid biopsies share a small amount of inputs [100,101]. Therefore, it can be considered
as an option for those who wish to perform methylation analysis in a single cell.

4. Application

It is known that DNA methylation is an epigenetic marker that is inherited during
cell division and affects the biological function of a cell [6,102]. In this review, we would
like to briefly introduce the applications of single-cell DNA methylation studies, especially
biological function studies, which use the fact that it is possible to find cellular heterogeneity,
which is the advantage of single-cell sequencing over conventional bulk studies.
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4.1. Cell Development

The maturation of a germline cell or embryonic cell is affected by the expression
of specific genes, which correlates with the methylation level in DNA. Ping et al. [103]
found that tens of thousands of genomic loci are de novo methylated in preimplantation
embryonic cells. This suggests that the balance between global demethylation and focal
remethylation occurs in the preimplantation stage. At the same time, it was found that the
paternal genome was demethylated faster and at a higher level than the maternal genome
and that the paternal genome was more highly methylated than the maternal genome from
the two-cell stage to post-implantation. Based on these methylation characteristics, they
used single-cell methylation sequencing to investigate the mechanism of preimplantation
cell methylation and its phenomena through a study of early blastomere lineage tracing.
Preimplantation plays an important role in transforming terminally differentiated gametes
into pluripotent cells through a mechanism that removes methylation during cell develop-
ment. As a result of examining strand-specific changes using single-cell DNA methylation,
it was observed that the loss of methylation maintenance was strand-specific [104]. CpG
methylation was established broadly at the immature germinal vesicle stage using single-
cell methylation sequencing to study not only the process of embryonic development
(Figure 7, left) but also the process of human germ cell maturation. In particular, it was
observed that non-CpG methylation continues to accumulate throughout the stage of
maturation, suggesting that non-CpG methylation would have a different role than CpG
methylation at the time of oocyte maturation [105].
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4.2. Disease-Associated Studies

In patients with a disease, the pattern of DNA methylation has a different pattern
than that of healthy individuals [106,107]. Among various diseases, cancer in particular
has a DNA methylation pattern that a normal cell does not have that causes a difference in
gene expression levels. In the case of studies on cancer with such heterogeneous properties,
a multi-omics approach that analyzes genomic variation and RNA expression together
is used rather than methylation alone. Researchers have developed a computational tool
that learns present linkages between methylation and gene expression using gene- and
cell-dependent features. With a multi-omics approach, the performance of certain analysis
tasks such as clustering and cell type identification has improved [108]. A research group



Biomolecules 2021, 11, 1013 15 of 20

has recently developed a method called scTrio-seq2, which integrates single-cell RNA-seq
and single-cell methylation sequencing data. For application, they have sampled multiple
regions of colorectal cancer patients from the primary tumor to distal metastases to study
and trace the lineage of cancer. They also co-profiled somatic copy number variations and
showed the emergence of a sublineage. Through the integration of transcriptome data and
methylation data, they have revealed the molecular association between gene expression
and DNA methylation. Typically, the promoter regions were negatively correlated, but a
positive correlation was observed in the gene body region. Each cancer sublineage showed
a different DNA demethylation level across the whole genome [55]. Other research has
analyzed the heterogeneity of liver cancer using single-cell methylation analysis. They
found that the copy number change causes proportional changes in RNA expression but
generally does not affect DNA methylation [48]. These examples show that the multi-omics
method using single-cell methylation sequencing (sc-methyl-seq) can overcome the limi-
tations of the previous method and have better discrimination capability (Figure 7, right).
Thus, sc-methyl-seq can be used in various fields to address fundamental questions related
to biological processes and diseases.

5. Future

Still, there are several problems with single-cell DNA methylation studies. The first
among them is the degradation problem of bisulfite conversion, which is the current gold
standard. However, at the single-cell scale where the amount is limited, the loss due to
degradation is a more serious problem than at the bulk scale. To solve this problem, tech-
niques such as PBAT are applied, yet the performance is not comparable to the methods
using larger amounts of DNA [109]. In recent years, methods using TET enzyme activity,
such as TAPS [34] and EM-seq [35], have been developed and are attracting attention
as a solution to the chronic degradation problem. TET enzymes sequentially convert
methylated cytosines into hydroxymethyl cytosines, formyl cytosines, and carboxyl cy-
tosines [110]. The mild enzymatic reaction conditions of TAPS and EM-seq compared to
bisulfite sequencing are free from DNA degradation issues. Prevention of degradation can
be useful for other sequencing methods that read long-reads, such as single-molecule real-
time (SMRT) sequencing or nanopore sequencing [111]. Therefore, TAPS or EM-seq may
be considered an alternative to bisulfite conversion in future single-cell DNA methylation
profiling methods.

Another issue is that a clear standard analysis process has not been established. The
gold standard for NGS processing of bisulfite sequencing data was presented as a constant
pipeline through Bismark–Trim Galore!–Samtools, but for the interpretation of results
after methylation of the individual CpG positions of each read is confirmed, numerous
methods are still used. The root cause of this situation is the ambiguity of the meaning of
each CpG methylation. DNA methylation is regulated by various biological factors such
as TET, histones, MBD, transcription factors, and adjacent CpG status, and these factors
change over a short or long period of time due to macroscopic factors such as excessive
exercise and disease. The boundary line for the observed continuous variable, methylation
level, is ambiguous regarding actual transcription control. This requires the analyst to
spend extra time to validate the analyzed result. The accumulation of DNA methylation
data is insufficient to consider all the variables described before. However, many of the
existing methylome data are only a one-off event, and there are many cases in which each
paper lacks information other than the features of interest to the researcher, thus limiting
further use. In addition, the assignment of cell types in cluster visualization analysis of
single-cell data, such as t-SNE, is difficult compared to single-cell RNA-seq data due to
the lack of clear cell-type methylation markers compared to gene expression markers. To
overcome these limitations, high-quality, reproducible data with minimized bias in each
feature should be accumulated.

Because of these challenges, the current best method is to introduce a multi-omics
method to cross-validate. It has been demonstrated in several experiments that this can be
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an effective alternative in the current situation where the understanding of methylation is
limited due to a lack of data. In addition to the transcriptome and chromatin accessibility,
cross-validation between additional elements and the DNA methylome will be a milestone
for researchers leading to accurate interpretations of the data.

Nevertheless, we believe that much will be possible in the future using DNA methy-
lation alone. One piece of good news is that the cost of data acquisition is gradually
decreasing due to the development of NGS. Because the cost of sequencing is a bottleneck
in whole-genome bisulfite sequencing studies, a reduction in sequencing cost would gener-
ate more whole-methylome data. A large amount of DNA methylation-related data held in
various databases was created using several commercially available methylation capture
panels, and this is the result of efforts to obtain the most meaningful data at a limited cost
and accordingly a fixed amount of data. There are efforts to build marker sets between
different cell types including DNA methylation of mouse brain [112] and discovery of
DMRs for some tissue types [113]. In addition, the global consortium for studying the hu-
man epigenome, called the International Human Epigenome Consortium (IHEC), spends
many resources to understand disease-related methylation patterns and the heterogeneity
between different cell types. The accumulation of comprehensive data could provide an
opportunity to understand methylation. The accumulation of evidence on methylation will
make it possible to find methylation hotspot regions that fluctuate by different tissue types,
different experimental or environmental conditions, and heterogeneous diseases such as
cancer. Furthermore, the discovery of cell-type-specific markers through accumulated data
would benefit the cellular heterogeneity analysis through visualization of single-cell DNA
methylation data, including the assignment of cell clusters in a t-SNE plot. We believe that
an understanding of the relationship between methylation and its biological role in disease
will be revealed with further data in the future.
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