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ABSTRACT
Genomic studies of glioma sub-types have amassed new disease specific 

mutations, yet these only partially explain how mutations are linked to predisposition 
or progression. We hypothesized that microsatellite variation could expand the 
understanding of glioma etiology. Furthermore, germline markers for gliomas are 
typically undetectable; therefore we also hypothesize that the predictability of cancer-
associated microsatellite loci in germline DNA may support the current hypothesis of 
a glioma cell of origin. 

In this study, “normal” germline exome sequenced DNA from the 1000 Genomes 
Project (n=390) were compared with exome sequences from germlines of subjects 
with WHO grade II and III lower-grade glioma (LGG, n=136) and WHO grade IV 
glioblastoma (GBM, n=252) from The Cancer Genome Atlas to identify microsatellite 
loci non-randomly associated with glioma. From germline data, we identified 48 
GBM-specific loci, 42 Lower-grade glioma specific loci and 29 loci that distinguish 
GBM from LGG (p≤ 0.01). We then attempted to distinguish WHO grade II glioma 
(n=67) from GBM resulting in 8 informative loci. Significantly, in all glioma grades, 
comparisons between tumor and matched germline sequences demonstrated no 
significant differences in these variants (p≥ 0.01). Therefore, these microsatellite 
loci are considered to be components of grade-specific signatures for glioma which 
distinguish germline sequences of individuals with cancer from those of individuals 
that are “normal”. In order to better understand the significance of these loci, we 
identified biological processes enriched in genes with these variants. Most strikingly, 
six helicase genes were enriched in the GBM cohort (p≤ 1.0 x10-3). The preservation of 
these glioma-specific loci could therefore serve as valuable diagnostic and therapeutic 
markers; especially since the heterogeneity of tumor cell populations can obscure the 
identification of mutations preceding a metastatic phenotype.

INTRODUCTION

Every year in the U.S. approximately 10,000 new 
adult malignant brain tumors are diagnosed[1] with 
the most common being glioblastoma (GBM; WHO 
grade IV astrocytoma)[2]. Treatment with radiation 
and chemotherapy yields a median survival of only 11-

14 months; therefore, GBM is considered a terminal 
diagnosis [3]. There are three main histological groups of 
adult gliomas: astrocytoma (A); oligodendroglioma (OD) 
which are slower-growing but rarely progress to GBM; 
and mixed glioma such as oligoastrocytomas (OA), a mix 
of A and OD[4, 5]. Astrocytoma is graded from I to IV 
according to the World Health Organization’s (WHO) 
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classification criteria while OD and OA are primarily in 
grades II and III. Lower grade adult astrocytomas can 
progress to higher grade tumors. Recurrence after therapy 
is common with A, OA, and most OD and is generally 
associated with more aggressive and infiltrative tumors 
[6]. 

High-throughput sequencing studies of tumor 
genomes have produced new molecular markers that 
have enhanced classification of GBM and highlighted 
molecular pathways that propagate pathogenesis and 
progression [6-9]. In this study, we have chosen to 
identify and characterize a specific component of glioma 
genomics- DNA microsatellite variants – a feature that 
is understudied relative to SNPs or epigenetic markers. 
Microsatellites (MST) are short tandem repeated 
sequences with variable lengths, making them excellent 
markers of disease[10]. Repetitive nucleotide sequences 
account for 55% of the intergenic region of the genome 
with 3% of these considered microsatellite repeats[10, 
11]. Microsatellites can be found in both coding and 
non-coding regions, are generally 10-15 nucleotides in 
length and are found as monomers, di-, tri-, penta-, or 
hexamers[11, 12]. Expansion of tri-nucleotide repeat 
sequences are notably contributive to over 40 different 
neurological disorders including Fragile X, Huntington’s 
and Parkinson’s Disease[13]. These alterations are 
hypothesized to lead to changes in gene regulation through 
modified binding sites for transcription factors, splicing 
machinery, or microRNAs [10, 12, 13]. Thus, changes to 
microsatellite sequences elicit phenotypes and contribute 
to diseases, including cancer. 

Therefore, we hypothesize that gliomagenesis is 
correlated with microsatellite variability at specific loci 
in germline DNA. Additionally, we demonstrate that 
germline (non-tumor) DNA is representative of the tumor 
and these glioma-specific microsatellite loci discriminate 
glioma grades (specifically II versus IV). With validation, 
such markers could be developed to aid clinical 
predictions. We further hypothesize that these loci could 
influence tumor biology, including a potential contribution 
to early glioma tumorigenesis.

RESULTS

The two populations studied are GBM and lower-
grade gliomas (LGG)

Classifications were provided by The Cancer 
Genome Atlas (TCGA) and we have chosen to discuss 
our results using the same assemblage for scientific 
comparisons (as such, lower-grade gliomas are a mix of 
glioma types that are non-GBM samples). Microsatellite 
loci were identified from exome sequencing data for 
a cancer germline and a “normal” population. Those 
sequences that varied in length significantly between the 
two populations were compiled to create a ‘signature’ 
list (see Table 1). Signatures consist of variant allelic 
pairs (genotypes) from cancer-associated microsatellite 
loci (CAMLs). Three signatures are reported: GBM vs 
normals, LGG vs normals, and GBM vs LGG. 

Gliomas Compared with Normal Sample 
Sequences:

 The distribution of CAML genotypes found within 
samples differentiates the germlines of patients when 
compared to cancer-free controls. Considering the GBM 
signature, 19% of GBM germline samples had ≥75% 
of CAML genotypes and 16% of GBM tumors also 
had ≥75% of these loci (Fig. 1A). Additionally, 100% 
of the CAML genotypes from the GBM signature were 
discovered in 12% of GBM germline samples, while 
only 3% of “normal” samples demonstrated similar 
results. Also described in Figure 1 are normal samples 
compared with LGG: here the largest cluster of LGG 
germline samples (20%) had 50% of the detectable 
CAML genotypes (Fig. 1B). In an alternative analysis, 
we removed Grade III astrocytomas (n=28; additionally, 
samples with non-descript pathology (16 described as NA 
and 2 as UNK)) to create a new LGG signature (see Fig. 
S3): this signature is composed of 24 CAMLs, of which 
all but 4 loci were in the LGG data that are described in 
Fig. 2B. Importantly, all 4 of these loci were identified 

Table 1: Genomic Microsatellite Loci Identified from GBM, LGG, and Grade II Germline Sequences. The 
number of informative loci that passed all statistical tests and differentiated CAMLs from “normal” genomes 
included 48 GBM loci and 42 LGG loci; of these, 10 of the signature loci in GBM overlapped with those in the 
LGG signature. Eight loci from 67 Grade II germline samples were uniquely identified when compared with GBM 
(average detectable loci in GBM 4.3 loci (± 1.6)).

Total MST Loci
(Exome Sequences)

Significant MST Genotypes
(p≤ 0.01)

FDR Corrected 
CAML Genotypes
(Signature)

Average Detectable Signature 
Genotypes per Sample

GBM 26,021  (SD ± 4,859) 179         48 13.1  (±6.6) 
LGG 26,596  (SD ± 2,392) 146         42 15.1  (±5.9)
Grade II 26,427  (SD ± 2,333) 75          8 4.2    (±1.7)



Oncotarget6005www.impactjournals.com/oncotarget

as significant in the analysis associated with Figure 2B. 
Also, given the heterogeneous population in the LGG 
cohort, we isolated OD Grade II and Grade III (n=59) and 
show the distribution of LGG genotypes in these samples 
compared with the total LGG germline population (n= 
92); the largest population of OD (15%) had 25% of LGG 
CAMLs (see Fig. S3). 

Glioma Grades Compared with GBM Sequences:

 We compared LGG and GBM germline sequences 
(Fig 2A) to determine if there was information 

FIGURE 1: Variant Glioma Microsatellite Loci 
Significantly Differ from Normal Germlines. The y-axis 
describes the percentage of samples and the x-axis shows a given 
fraction of detectable CAML genotypes; a receiver operator 
characteristic (ROC, see supplement) was used to determine 
the cut-off thresholds, which are 57% GBM and 35% LGG; 
illustrated by a black hashed-vertical line). (1A.) GBM: First, 
we compared TCGA GBM to an ethnically matched “normal” 
population in the 1000 Genomes Project (1kGP) and calculated 
a sensitivity of 94% and specificity of 77% (corresponding 
GBM tumor sensitivity is 96% and specificity is 75%). Second, 
we compared LGG to 1kGP and determined the sensitivity to 
be 91% and specificity at 86% (LGG tumor sensitivity is 84% 
and specificity is 86% compared with 1kGP). (1B.) LGG: 
LGG encompassed WHO grade II and III A, OD, and OA. We 
identified the cut-off again using ROC analysis at 32%. Sixty-six 
percent of LGG samples contained ≥ 40 percent of LGG-specific 
CAML genotypes. 

FIGURE 2: Variant Microsatellite Loci Distinguish 
Lower and High Grade Gliomas. (2A.) LGG versus GBM: 
CAML genotypes shared between LGG and GBM sequences 
were identified. GBM germline sequences contain 90% of 
the signature CAMLs, whereas 3% of LGG germlines were 
represented in the same group (2B.) Grade II versus GBM: 
Seventy-percent of Grade II A, OA, and some OD progress to 
Grade III or IV[40]. We identified Grade II glioma signature 
genotypes; we then measured the percentage of samples (GBM 
and Grade II) with these CAMLs. In this analysis we identified 
eight Grade II specific genotypes. The sensitivity of these loci is 
90% and specificity is 70%, with a cutoff of 85%. GBM germline 
sequences shared an abridged population of LGG genotypes; 
82% of identifiable Grade II germline genotypes were also found 
in GBM samples. (2C) Below 82%, the percentage of CAML 
genotypes in LGG are more enriched. In Grade II samples, ≥ 
75% of loci could be located in 26% of samples versus 4% of 
GBM. The genotypes identified in 19% of Grade II samples 
with 80% of CAMLs were located with the following genes 
(in order of significance): KIAA1219 (13 samples), SNX17 (12 
samples), SACMIL (9 samples), MYCBP2 (8 samples), GFM1 
(7 samples), COPS4 (6 samples), and CDC16 (1 sample). All 
eight signature loci were identifiable in the majority of Grade II, 
GBM, and the general population (1kGP; data not shown). We 
compared GBM with LGG germline and calculated sensitivity at 
74% and specificity at 90% (tumor analysis shows sensitivity at 
76% and specificity at 72%). We identified a sensitivity of 90% 
and specificity of 70% for Grade II loci compared with GBM. 
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Table 2: GBM and LGG Genes with CAMLs and Novel Transcript Isoforms. RNASeq data for GBM and LGG were screened for 
transcript diversity and abundance these were compared with normal adult brain transcript data, previously analyzed[16]. For GBM and 
LGG, described are genes for which an isoform was the most abundant transcript; reported are the average copies for these transcripts 
and the average copies of total transcripts for a gene. We also identified genes in which transcripts were exclusively identified in GBM 
and/or LGG compared with normal brain tissue. Ten CAMLs were shared between GBM and LGG, of these we identified three that 
were expressed in both sample populations; in both GBM and LGG the most abundant transcript for FUBP3 was an isoform compared 
with normal tissue which had one transcript that was a conserved sequence. RNASeq data from the Illumina BodyMap 2.0 Project was 
used to determine if transcripts had been identified for those genes which only showed expression in GBM or LGG in normal brain, all 
genes demonstrated positive expression in these data. 

GBM

Gene Transcript Diversity Avg. Copy of Gene Avg. Copy of Novel Isoform
DICER1 (GBM)

DICER1 (N)

16 0.15 1.2

4 5.5

FGFR2 (GBM)

FGFR2 (N)

11 0.24 1.6

4 3

FUBP3 (GBM)

FUBP3 (N)

5 0.41 0.99

1

HYDIN (GBM)

HYDIN (N)

17 0.48 3.45

1

ICA1L (GBM)

ICA1L (N)

10 2.4 0.41

3

OFD1 (GBM)

OFD1 (N)

14 0.18 0.86

1

POLQ (GBM)

POLQ (N)

7 0.49 1.8

1

SPOPL (GBM)

SPOPL (N)

7 1.04 0.24

2

EXPRESSED ONLY IN GBM 

Gene Transcript Diversity Avg. Copy of Gene Avg. Copy of 
Novel Isoform

Avg. Copy of 
Common Transcript

TTF2 10 0.29 1.03

ACRC 5 0.39 0.76 0.86

COL9A1 10 0.17 0.59

CORIN 6 0.09 0.02 0.92

FRMD7 1 5

GTPBP8 4 0.25 0.03 0.94

NSUN5 6 0.21 0.31 0.62

NUFIP1 4 0.29 0.09 0.98

RYR1 8 0.68 2.3

SLC44A4 2 0.05 0.03 0.07

STRC 8 0.03 0.05
0.005
0.02 

0.07

LGG
CDC16 (LGG)

CDC16(N)

13 0.23 1.2

5 1.2

RBM5 (LGG)

RBM5 (N)

14 0.3 1.3

5 2.6

EXPRESSED  ONLY IN LGG
CDH16 1 0.08

CDRT1 1 0.41

DENND3 13 0.64 0.65 2.2

LNX2 2 0.2 0.02 0.39

GUSB 8 0.35 1.3 

ARSK 5 0.1 0.01 0.38

EXPRESSED IN GBM & LGG
EVC (GBM)

EVC (LGG)

EVC (N)

8 0.24 0.76

6 0.24 0.85 0.1

0

FUBP3 (GBM)

FUBP3 (LGG)

FUBP3 (N)

6 0.41 0.99

5 0.36 0.86

1 2 2

PSME3 (GBM)

PSME3 (LGG)

PSME3 (N)

6 0.29 0.24 0.93

11 0.15 0.09 0.77

1 3
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Figure 3: A-C. Differences in Cancer-Associated Microsatellite Loci and Driver Mutations in GBM & LGG. Frequently identified 
somatic mutations were quantitated from DNA sequencing samples from GBM (n= 216) and LGG (n=200). Mutations in TP53, EGFR, 
RB1, NF1, PTEN, PIK3CA, IDH-1, and six mis-match repair genes were classified from sequencing samples and reported as a percentage 
of the total population for each glioma cohort. 3A: The percentage of samples with CAMLs (ranging from 20%-100%) and with up to 5 
driver mutations (the maximum) are shown. 3B: A pie-chart was created to describe the distribution of mutations in those genes for GBM 
and LGG; mutations in p53, EGFR, and PTEN were frequently identified from GBM, while missense mutations in IDH-1 were the most 
common in LGG samples. Mutations in mis-match repair genes were infrequently identified from both GBM and LGG, regardless of 
the percentage of CAMLs identified in GBM or LGG. 3C: Samples with a given population of mutations (on average between 1-5) were 
examined to determine the percentage of GBM or LGG samples with CAMLs, and of these the percentage of CAMLs per sample. LGG 
samples contain more CAMLs compared with GBM, however, more GBM samples with CAMLs were identifiable. 
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embedded in patient germlines that forecast tumor grade 
and discovered 29 signature CAMLs that distinguish LGG 
from GBM. Eleven of these loci were in LGG, CAML 
genotypes (p≤ 0.01) and 10 loci were found among 
significant LGG microsatellite (MST) genotypes. Two 
loci (9:52626-52640 and 2:91886031-91886042) are in 
the GBM signature and one locus was found amongst 
significant GBM genotypes (SSX2). Our next goal was 
to determine, if specific microsatellite variants could be 
further used to distinguish Grade II from GBM. Most 
Grade II samples (75%) had between from 0% to 80% 
CAMLs, while 90% of GBM samples exhibited 100% 
CAMLs (Fig. 2B). 

Gene Ontologies & Cell Functions Important to 
LGG & GBM

 Molecular, cellular, and biological processes 
significantly (p ≤ 0.1) associated with signature loci were 
analyzed using DAVID annotation tools[14]. From these 
annotations, we further evaluated individual genes and 
their potential roles in GBM biology, as described in detail 
in Tables S1, S2, and S3. Genes proximate to our CAMLs 
primarily contribute to RNA- processing and the ubiquitin 
proteasome system (UPS). Both of these cell functions are 
activated by interferon in viral pathogenesis, and both are 
important in identifying and degrading/correcting mis-
folded macromolecules (e.g. – RNA, DNA, and proteins). 
Additionally, malfunctions by the UPS are frequently 
linked to neuropathies and gliomas [15]. 

Regulatory Elements near CAMLs in LGG & 
GBM:

We discovered CpG islands (≤10 kB from MST 
loci) and transcription factor binding sites (TFBS, ≤ 40 
bases of MST loci) near CAMLs. Ten MST loci from 
GBM and 9 LGG loci (with 3 loci shared between both 
glioma cohorts) were linked to CpG islands. Nine MST 
loci from GBM and 20 MST loci in LGG (with 2 loci 
shared between both populations) were located within or 
near TFBS (see Table S1). Illustrated in Figure S2 are the 
six helicase genes with CAMLs from the GBM signature: 
all six loci are within ENCODE methylation marker 
sites (H3KMe1 and H3KMe3), 5 of the loci are within 
transcription factor binding sites, and 2 are located within 
expressed sequence tags (EST). 

Correlation between CAMLs & Gene Expression: 

We measured changes in gene expression and 
differences in transcripts for those genes with CAMLs, 
and RNA transcripts from glioma tumors (LGG and 
GBM) were compared with normal adult brain RNASeq 
data, previously described by Ameur, A. et. al, (Table 2) 
[16]. In our analysis from tumor versus “normal” germline 
samples, expression data demonstrated significant (p≤ 
2.0-fold) down-regulation of LNX2 and FGD6 and up-
regulation of CRISP1 in LGG. In GBM, a significant 
down-regulation of SEMA3E and up-regulation of 
SLC44A4 were measured (see Tables S1 and S2). 

Figure 4: The potential contributions of cancer-associated microsatellite variants to gliomagenesis: Briefly outlined 
is a model to explain MST driven gliomagenesis. We hypothesize that these cancer-associated variants are a component of a 
glioma initiating cell population enriched for CAMLs that predict functional associations with RNA synthesis, RNA degradation, and 
protein degradation important to transcription complexes (spliceosomes, snRNPs, snoRNPs, and snRNA). As evidenced through our data, 
several helicases and E3 ubiquitin ligases that are transcriptionally up-regulated by interferon signaling harbor CAMLs, suggesting that a 
mosaic of genes with functions ascribed to known glioma-specific biology, may work differently in glioma cells with specific and variant 
microsatellite genotypes. These subtle yet compounding variants may produce gene-products which further intensify genomic instability 
causing greater genomic alterations (gene mutations, hypermethylation, chromosome loss/breakage, etc.) favoring cancer. 
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Correlation between CAMLs & Glioma 
Associated Driver Mutations 

We analyzed TCGA gene mutation data (i.e. 
INDEL, frame shift, non-frame shift etc…) to identify 
connections between driver mutations loci (36 mutations 
in total identified in 7 genes and 6 mis-match repair 
genes (MMR)) closely identified with gliomas and the 
signature. Our data show that GBM samples contain 80% 
of the GBM CAML genotypes regardless of the number 
of driver mutations found within those samples and that 
the majority of LGG samples contain 60% of LGG CAML 
genotypes. However, an increase in CAMLs was identified 
in most samples with an average of 5 driver mutations, 
in both GBM and LGG. Interestingly, LGG samples 
with only 1 driver gene mutation (frequently, IDH-1) 
were the most likely population to demonstrate CAMLs, 
and on average 81% of these LGG samples had 43% of 
the LGG CAMLs (Fig. 3C). In general both GBM and 
LGG populations carry similar percentages of CAMLs, 
regardless of the number of driver mutations.

DISCUSSION

These data show microsatellite genotypes can 
differentiate cancer from non-cancer populations and 
also lower grade from GBM. Since these variant loci are 
identifiable in somatic DNA and are conserved in tumors 
lends support to the hypothesis that glioma initiating cell 
populations exist and are inherent to the individual and 
their disease. 

Interestingly, we observe that a small number 
≤3% of normal subjects have 100% of the GBM, CAML 
genotypes. This may be due to sample population age 
biases such that some individuals are as yet undiagnosed, 
or that our measure over-predicts given that the rate 
of gliomas in the general population is less than 3%. 
Therefore risk screening may be valuable only in a subset 
of the population presenting with an abnormal MRI. 
Additionally, when we inspected samples with driver 
mutations, observed in gliomas, the relative percentage 
of CAMLs is similar in individuals with 1-4 mutations. 
However, for individuals with 5 mutations there appears 
to be an increase in identifiable CAMLs which may 
correspond to overall instability in the genome’s of these 
individuals. The mix of glioma types in the LGG cohort 
may lend to smaller populations of LGG DNA sequences 
with identifiable CAMLs compared with GBM (as 
observed in Fig. 2B, Fig 3C, and FigS3) which suggests 
that distinguishable and conserved MST loci may further 
differentiate glioma phenotypes and may be tumor specific 
markers. Circulating disease markers for tissue-specific 
cancers are progressively becoming more detectible; 
however diagnosing primary brain cancer markers outside 
of brain tissue remains poor[17]. Therefore, testing 

for these CAMLs from blood samples could provide a 
potential supplemental diagnostic resource to identify the 
most common and dangerous adult brain-specific cancers.

Since some microsatellites are associated with DNA 
‘fragile sites’, locations within chromatin susceptible to 
constrictions or break-points that are linked to cancers 
and neuro-developmental disorders, we analyzed our 
MST loci to determine which are located in these regions, 
as a possible mechanism for tumor potentiation [18, 
19]. BRWD2, found in our GBM signature, is located at 
a break-point on chromosome 10 and allelic deletions 
within 10p, 10q 25-26, and 19q 13.3-13.4 are the most 
common alterations in glial tumors[20, 21] . Given the 
location of the breaks, BRWD2 is considered a candidate 
tumor suppressor; through our analysis we identified 80% 
of GBM patients versus 50% of “normal” individuals 
have a CAML genotype at BRWD2. Interestingly, FGFR2 
and BRWD2, both genes included in the GBM signature, 
are an oncogene and tumor suppressor pair located at a 
recombination locus in which deletion of exon 21 of 
FGFR2 results in the exclusion of BRWD2 (the tumor 
suppressor) and amplification of FGFR2; thus intronic 
CAMLs harbored by these genes could be biological 
indicators for tumorigenic activity. Additionally, loss of 
10p is found in 47% of GBMs while 10q loss is found in 
70% of primary and 63% of secondary GBMs[20]. In our 
GBM signature, we identified 4 loci in Ch10 at FGFR2, 
BRWD2 (WDR11), GLUD1, and NRP1; none were 
identified in the LGG signature. 

In the original account of ’the two-hit hypotheses’ 
for somatic retinoblastoma, the first hit was an inherited 
mutation in Rb, rendering individuals more susceptible to 
the disease later in life. Our data suggests the ‘first hit’ 
may also be somatic microsatellite instability which then 
increases the sensitivity to, and probability of, greater 
genomic aberrance theoretically by stress factors such as 
environment, inflammation or age leading to the ‘second 
hit’[22-24]. These tentatively ‘predisposed’ variants 
may highlight a connection between cancer-associated 
microsatellites and developmental and cell cycle genes 
notably mutated in cancer (such as those identified in our 
study: SRC, NPAT and CBL); thus, these MST variants 
may be additive to gene mutations (including, SNPs) that 
contribute to cancer. 

More recently, mutable genes commonly identified 
in GBM patients post chemotherapy and radiation 
treatment were discovered, and included RYR1 [25]. RYR1 
expression is notably down-regulated in GBM; our GBM 
data demonstrates CAML genotypes unique to RYR1 
with transcripts and isoforms also unique to GBM. Thus, 
CAML loci at genes such as RYR1 may render them to be 
more susceptible to mutation (for example from stresses 
associated with treatment) and may be valuable indicators 
for potential treatment outcomes. Additionally, this further 
supports the possibility of tumor initiating cells with 
irregular genetic variations that generate disease relative 
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to an underlying combination and abundance of affected 
microsatellite loci.

The aberrant alteration of six helicase genes in 
GBM suggests that genes important to microsatellite 
identification and correction, along with transcription 
and RNA synthesis are themselves modified with MST 
variants. Previous studies have demonstrated that in 
addition to mis-match repair genes, helicases (notably 
RecQ family DNA helicases [26]) are important in DNA 
damage repair and DNA/RNA metabolism[27]. In our data 
we observed minimal MMR gene coding SNP mutations 
in both GBM and LGG tumors (see, Fig 3B) but found 
CAMLs significantly associated with helicases, suggesting 
modifications to these genes may also be important to 
genomic instability in glioma or that there may be more 
MMR genes that remain to be discovered. As such, one 
mechanism may be that GBM tumors produce atypical 
RNA. This idea is further supported by the enrichment 
of MST variant loci in helicase genes activated through 
interferon; interferon can initiate helicases and ubiquitin 
ligases to degrade viral RNAs and other dsRNAs (see 
Table S3), a process which could be interrupted if these 
helicases are affected by MST. As described in Table 
2, we identified multiple genes in which a novel RNA 
isoform was the abundant transcript for several GBM 
genes with CAMLs, including DICER1 and POLQ, both 
genes associated with RNA and DNA modification and 
metabolism. 

With the abundance of helicase and UPS associated 
genes in our glioma signatures, another cancer promoting 
scenario may be introduced through changes to gene-
products that compose spliceosome complexes (snRNA, 
snRNP, or snoRNP); through these genetic modifications, 
alternatively spliced RNAs may support spliceosome-
associated proteins differently, which may further modify 
mature RNAs. A third mechanism may be modifications 
to ubiquitin proteasome system proteins (ligases and 
ubiquitin complex proteins) which could alter protein 
degradation or signal transduction. Supporting these two 
hypotheses we identified functionally associated genes 
with CAMLS, including: DDX60 and TRIM25; SPOPL 
and BRMS1L; FGFR2, BRWD2 and CBL; SEMA3E and 
NRP1. Other functional associations important to changes 
in RNA transcription included, SLC44A4 transcript 
isoforms uniquely identified in GBM (and with expression 
significantly greater than normal tissue). Similar results 
were observed for LNX2 in LGG supporting our 
hypothesis that CAMLs may modify RNA transcription 
and expression. 

Additional important biological changes observed 
and linked to CAMLs included significantly decreased 
expression of SEMA3E (a GBM signature locus) compared 
with normal samples; as previously noted SEMA3 
competes with VEGF-165 for NRP1 (a GBM signature 
locus) and suppresses angiogenesis [28]. Therefore, 
decreased expression of SEMAs in GBM suggests that 

these microsatellite variants could contribute to glioma 
angiogenesis. Several genes, including the EVC transcript 
were identified in GBM and LGG but not in normal brain 
tissue, and in GBM the novel isoform was the common 
transcript; expression data suggests that EVC is expressed 
more in GBM and LGG tumors when compared with 
normal germline expression, although these data did not 
pass our stringent 2-fold difference in expression (GBM 
= 1.68; LGG = 1.97).

Since these loci can be identified from germline 
(non-tumor) DNA, it further suggests that there is a tumor 
initiating cell population in which developmental cell 
signaling and patterning pathways may result in aberrant 
differentiation and proliferation due to an underlying 
transcriptional landscape determined by cancer-associated 
MST variants. Therefore, we further hypothesize that 
DNA microsatellite variability underlies an adaptability 
that is conserved in all cancers and can be investigated by 
determining the frequency of microsatellite variability in 
those genes (1) that are essential for cancer cell survival 
(and conserved across a cancer type) (2) contribute 
intermittently – to cancer cell phenotypes like metastasis, 
heterogeneity, or aggressiveness, and (3) are tissue-
specific, associated with only one type of tumor or tissue 
origin. If so, we can predict that specific microsatellite 
instability contributes to cancer-specific genomics and 
may occur during embryogenesis, which has also been 
predicted in other MST associated diseases, including 
Huntington’s disease and Fragile X syndrome[13]. Thus, 
these markers may be valuable to screen risk of occurrence 
or for treatment decisions in newly diagnosed cancer 
patients. 

MATERIALS & METHODS

Microsatellite genotyping

Exome sequencing data, from Illumina HiSeq 
sequencing machines were obtained from The Cancer 
Genome Atlas (TCGA) and the 1000 Genomes Project 
(1kGP). These sequences were aligned to the human 
reference genome using BWA, by their respective projects, 
and re-alignment followed with microsatellite loci and 
variant identification by methods and software established 
in our laboratory [29-31]. Only loci with sequencing 
reads with 15x or greater depth of coverage were used 
to identify possible informative loci. A distribution of 
alleles for the affected (TCGA) and unaffected (1kGP) 
cohorts was then generated for each locus. An allele is 
defined by a genomic locus with a specific microsatellite 
repeat and nucleotide sequence length, in each sample 
a pair of alleles was identified and each allelic pair was 
then defined as a genotype. The genotype most prevalent 
from a distribution of genotypes was identified in 1kGP 
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samples; this genotype was defined as the consensus 
sequence or predominant genotype (if more than a pair 
of alleles was identified for a locus that locus in the 
particular sample was not used). Similar to the 1kGP 
samples, LGG and GBM samples were analyzed for 
genotypes from the same genomic loci, loci significantly 
different from the consensus (predominant genotype) 
in one population compared with the second population 
were identified. The statistically significant genotypes 
were determined from data adjusted for false discovery 
rate (FDR), using a two-sided Fisher’s p- test and 
Benjamini-Hochberg correction; relative risk (RR) was 
calculated for each locus and loci with a P≤ 0.01 were 
considered significant. More specifically, an R script 
computed the p-value for each locus using the two sided 
fisher-test function. The Benjamini-Hochberg cut-off was 
selected as approximately 0.01% (computed as the FDR 
< 1/X (where x is the total number of loci with p-value 
< 1 for the signature)) to make it unlikely that any locus 
is a false positive from our data set. Those genotypes, 
although individually significant and informative, were 
also assembled into a ‘signature’ or ‘cancer-associated’ 
informative loci set which together increase the statistical 
significance across all samples. Sequences included 390 
(n=249 female; n=141 male) normal/healthy samples 
from the 1kGP, GBM germline (n=252), GBM tumor 
(n=139), LGG germline (n=136), and LGG tumor (n=158) 
sequencing samples (dbGAP Study Accession: phs000178.
v8.p7) [32] through the Cancer Genomics Hub (CGHub). 
Microsatellite genotypes were identified through a 
software system developed in our laboratory [30, 31]. 
These samples, like all others, were processed to remove 
any reads that did not meet the QC thresholds required in 
the 1kGP [33] 

Creation of microsatellite target set

 We produced a set of over 850,000 microsatellite 
loci which have flanking sequences unique in the human 
genome. Initially a set of over a million microsatellites 
was found in the human genome (NCBI36/hg18) using 
Tandem Repeats Finder (TRF) [34], with previously 
established parameters. A series of filters are in place to 
remove tandem repeat sequences previously identified 
through RepeatMasker in the flanking sequences of our 
loci, microsatellites shorter than 12 nucleotides in regions 
other than exons for which we allowed a minimum length 
of 10 nucleotides, those containing SNPs, indels, or SNP 
variations that account for variability greater than 10% 
of the locus lengths (Repeat Masker Ref. Smit AFA; HR 
Green). A custom Perl script was written to filter repeat 
sequences lacking unique flanking regions (10 base 
flanking sequences were chosen because Illumina reads 
are 100 bases in length, respectively); filtered sequences 
were screened based on corresponding flanking sequences 
to the reference genome (microsatellites with flanking 

sequences within 200 bases of each other and 5 bases 
of the repeat in between were also excluded). Vetted 
microsatellite loci are described with genomic location 
and gene associations using RefSeq data obtained through 
the UCSC Genome Table Browser [35] . 

Identifying repeat lengths using microsatellite-
based genotyping

 Reads are mapped to the reference genome using 
BWA or BWA-sw (for long reads; LS454) [36]. A custom 
Perl script with SAMTOOLS [37] filters for reads with 
MST loci, to assure the span of the MST sequence is 
captured, a 5 base flanking sequence on either side 
of the read are tested , this process is to validate BWA 
aligned sequences. Reads with identical repeat sequences 
are binned; separating reads with different SNPs. SNPs 
contained in microsatellites were ignored for this study.

Accuracy estimations of our microsatellite-based 
genotyping method: Using Sanger sequencing and data 
from HapMap, we were able to validate 96.5% of a subset 
of 85 non-synonymous variations composed of repeat 
length variations and SNPs contained in microsatellites. 
The novel variants we validated using Sanger sequencing 
were submitted under the lab handle SGARNER and 
are available on-line in the latest release of dbSNP. All 
microsatellite-based genotyping calls from these studies 
were made publically available at MicrosatDB (http://
discovery.vbi.vt.edu/MicrosatDB/) [31].

Microsatellite identification restrictions for 
population-based statistics

 To increase uniformity of coverage and genotyping 
rates across samples sequenced at different times with 
different methods by different studies, we required at 
least 15,000 microsatellite loci to be called per sample 
for inclusion in this study. This filtered out one 1kGP-F 
sample and 235 1kGP-M samples. From the TCGA 
samples, this filtered out 23 LGG germline samples, 57 
LGG tumor samples, 238 GBM germline samples, and 254 
GBM tumor samples. The large number of GBM samples 
filtered is expected as these samples were sequenced much 
earlier by TCGA than the LGG samples. So we would 
expect lower coverage and shorter reads. Only those loci 
with at least 15x coverage are considered “callable” in a 
given sample (healthy or cancer genomes). A locus had to 
be called in a minimum of 10 exomes to be included in the 
genotype distribution comparison analysis and to remove 
loci which may be called at insufficient frequency in one 
of the two data sets. 
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Alternative splicing

 We processed 339 GBM tumors, 268 LGG tumors, 
and 57 LGG germline RNAseq Illumina data sets with 
Cufflinks [38] by using the CuffCompare function to 
identify possibly alternatively spliced transcripts. These 
samples had been aligned by TCGA to the reference 
using TopHat[39]. For each transcript for each sample, 
we determined it was possibly alternatively spliced if 
one of the transcripts called by CuffCompare was not a 
complete match of the intron chain. Additionally, RNAseq 
data was downloaded for two normal brain tissue samples, 
adult [16]. These RNAseq SOLiD fastq read files where 
reformatted into standard color-space paired files and then 
run through TopHat using the default parameters, except 
for indicating the color-space type, as was done by the 
TCGA to align the GBM/LGG samples. These samples 
were then processed using Cufflinks to identify possibly 
alternatively spliced transcripts. 

CpG Island and TFBS Analysis

 Locations of CpG islands and transcription factor 
binding sites associated with the human reference genome 
were downloaded from the UCSC Genome Browser 
[35]. A Perl script was written to determine the distance 
of each microsatellite loci from the nearest CpG island 
and transcription factor binding site. Methylation data 
was downloaded for the samples from TCGA. This 
data provided the CpG islands and corresponding gene 
with respect to each methylation site. A Perl script was 
written to compute methylation averages for each site for 
samples with and without CAML signature loci for the 
corresponding gene. 

Identification of Driver Mutations in GBM & 
LGG Samples

 Variant calls for the GBM and LGG samples were 
downloaded from TCGA. The driver mutations and MMR 
genes of interest (IDH1, PTEN, PIK3CA, RB1, MSH2, 
MSH3, MSH4, MSH5, MSF6, MLH1, and MLH2) were 
analyzed with respect to the CAML status of the samples.
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DESCRIPTION of ADDITIONAL DATA FILES 

I.The following additional data are available 
with the online version of this paper. Data file 1 titled 
“Supplementary Information.doc”) contains figures and 
tables associated with the following: 

a.ROC analysis 
b.CpG and TFBS loci 
c.RNA expression 
d.Ontologies/gene functions 
e.LGG sub-group 
 II.Data file 2 contains all computational analysis 

summarized in an ‘Excel’ file, titled “Supplementary 
Data_Glioma MetaData.xlsx’
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