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Abstract: Climate change not only worries government representatives and organizations, but also
attracts the attention of the scientific community in different contexts. In agriculture specifically,
the cultivation and productivity of crops such as sugarcane, maize, and sorghum are influenced by
several environmental factors. The effects of high atmospheric concentration of carbon dioxide ([CO2])
have been the subject of research investigating the growth and development of C4 plants. Therefore,
this brief review presents some of the physiological and genetic changes in economically important
C4 plants following exposure periods of increased [CO2] levels. In the short term, with high [CO2],
C4 plants change photosynthetic metabolism and carbohydrate production. The photosynthetic
apparatus is initially improved, and some responses, such as stomatal conductance and transpiration
rate, are normally maintained throughout the exposure. Protein-encoding genes related to
photosynthesis, such as the enzyme phosphoenolpyruvate carboxylase, to sucrose accumulation and
to biomass growth and are differentially regulated by [CO2] increase and can variably participate
owing to the C4 species and/or other internal and external factors interfering in plant development.
Despite the consensus among some studies, mainly on physiological changes, further studies are
still necessary to identify the molecular mechanisms modulated under this condition. In addition,
considering future scenarios, the combined effects of high environmental and [CO2] stresses need to
be investigated so that the responses of maize, sugarcane, and sorghum are better understood.
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1. Introduction

The increased atmospheric concentration of carbon dioxide ([CO2]) is one of the factors responsible
for global warming [1] and the consequent irreversible climate change for hundreds of years [2].
This increase has been significant since the industrial revolution, and over the last 50 years, [CO2]
levels have increased from 320 to 390 ppmv (parts per million volume) [3,4]. In 2018, [CO2] levels
reached 409.23 ppmv [5] and there are some predictions that for 2100, [CO2] will reach 800 ppmv [4].

High [CO2], as well as radiation, temperature, and water availability, influence crops [6].
Climate change affects plant growth and development, mainly owing to changes in photosynthetic
carbon assimilation [7]. Plants absorb atmospheric CO2 by chemically reducing carbon, and this
reduction is actually much more, because in addition to storing chemical energy in the plant,
photosynthesis also provides carbon skeletons for the organic molecules that comprise the vegetal
structure [8]. Theoretically, plants can mitigate climate change through the photosynthetic conversion
of atmospheric CO2 into carbohydrates and other organic compounds [9]. However, the direct and
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indirect effects of these changes on plants need to be better evaluated, especially regarding to their
impact on crop production and productivity [7]. Increased [CO2] levels affect most physiological
processes in plants; however, plants under this condition can present a mix of positive and negative
responses [5].

C3 and C4 species respond differently to this increase [10] because [CO2] levels affect biological
processes at different levels of organization [11]. There are many studies on plant responses to increased
[CO2] with C3 species. Less attention has been given to C4 plants, owing to the assumption that the
mechanism of CO2 accumulation in C4 plants makes them insensitive to high [CO2] levels [7].

However, studies on plants such as Saccharum officinarum L. [12,13] and Sorghum bicolor L. [14]
in high-level CO2 environmental conditions indicate increased photosynthetic rates. Changes in
the transpiration rate and metabolite production (e.g., glucose, mannose, and galactose) have been
reported in Zea mays L. [9]. In addition, increased [CO2] can also improve plant susceptibility to pests
and diseases, mainly because of decreased phytochemical and phytohormone production, with these
being part of the plant defensive system [15,16].

Several genes were identified in C3 and C4 plants that are directly involved in plant responses
to environmental conditions [17]. In soybeans (Glycine max ‘93B15’), 327 genes were responsive to
increased [CO2], indicating that this environmental condition stimulates carbohydrate degradation,
increasing energy and leaf expansion and growth precursors [18]. C4 plants under increased [CO2]
presented changes in the expression of genes involved in the photosynthetic mechanism of Zea mays [19]
and differential expression of dozens of genes also related to photosynthesis and development in
sugarcane plants [13].

Environmental factors, such as water availability and temperature, are associated with a
considerably increased atmospheric [CO2]. In C3 plants, the interactive effects of water deficiency and
increased [CO2] were studied by Medina et al. [20] in wheat genotypes (Triticum turgidum L.), finding
that these effects depend on genotype and severity of water stress, especially for the expression of
genes responsive to water conditions, such as catalase and superoxide dismutase, negatively regulated
in three of the four evaluated genotypes. More than 1600 differentially expressed genes involved in
photosynthetic processes and stress response mechanisms were identified in sugarcane under water
deficiency [21]. Molecular studies using cDNA arrays identified several genes induced by biotic and
abiotic stresses [22,23], revealing that drought-tolerant or sensitive genotypes respond differently to
this stress at the gene expression level [23].

Therefore, expanding our knowledge on physiological and genetic responses in different crops can
improve the development of cultivars that are better adapted to the new climatic conditions to which
they will be subjected in the coming decades. Considering the interest in elucidating these responses
in C4 plants (sugarcane, maize, and sorghum), this brief review approaches the main effects of high
[CO2] through considering different exposure periods (time) and emphasizing mostly physiological
aspects related to photosynthetic metabolism and differential gene expression, despite the lack of data
in the literature.

2. C4 Plants of Commercial Importance

Although C4 plants represent a small portion of the world’s plant species, they have substantial
ecological and economic significance [12]. Zea mays, Sorghum bicolor, and Saccharum spp. stand out
among C4 species and are considered the most important world crops in terms of production [24–27].
These plants are grasses belonging to the Poaceae family, generally growing in warmer climates with
considerable light intensity [28,29].

Grains and cereals, such as Zea mays and Sorghum bicolor, are essential food group in the human
diet, as they provide energy and essential nutrients. They are also a source of food for animals and of
raw materials to produce biocomposites. Maize is currently the most cultivated crop in the world,
being used as food and raw material for ethanol, starch, and oil production [30]. However, climatic
instability can influence crop yield, as is the case in the south of Brazil. Climate changes have negatively
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influenced the productive potential of maize crops (0.8% reduction in average productivity levels) [31].
Sorghum has also become important in terms of cultivation, being used in animal feed or as a food
base for millions of people, mainly in Africa and Asia [32]. A considerable portion of the global
sorghum harvest areas are in Africa and Asia. The majority of sorghum production is in Africa (41%),
the Americas (38%), and then Asia (18%) [33]. Recent reports show growth in cereal production in
the 2019/2020 harvest in Brazil, with an increase of 24.7% in sorghum production compared to the
previous harvest.

Saccharum spp. is a grass of Asian origin that is known for its sucrose storage capacity in the
stalks [34,35], and is considered a robust crop with efficient biomass production and great potential for
bioenergy production [36]. Brazil has the largest production in the world, estimated at 35.3 million
tons of sugar and 29.3 billion liters of ethanol in the 2019/2020 harvest, followed by India, China,
and other countries [37].

The productivity of these crop plants can be negatively or positively influenced, mainly owing
to cultivation in different regions and the consequent effects of atmospheric [CO2], global warming,
and precipitation rate changes [38,39]. Recent projections show significantly decreased yields in major
crops until the end of the 21st century, even with the effects of CO2 fertilization on crops [40,41].
Understanding plant responses to increased [CO2] is essential to predict net primary productivity and
for ecosystem service provision, which can meet future food and fuel demands [41].

3. C4 Photosynthesis Mechanism and CO2

In plants, carbon is assimilated through the phosphate-reducing cycle (Calvin cycle) [25]. Once CO2

has been absorbed into the aerial space of the leaf and mesophyll, it is converted into bicarbonate
and pre-assimilated into the mesophyll cytoplasm by the enzyme phosphoenolpyruvate carboxylase
(PEPC) [42,43]. Some plants have a C4 biochemical mechanism, responsible for photosynthetic
processes. Approximately 8100 plant species use C4 carbon fixation [44], and on the basis of the
decarboxylation mechanism in the perivascular sheath, these plants can be classified into different
subgroups [45]. Unlike the C3 photosynthetic pathway, which has only one carboxylation step, the C4

photosynthetic pathway has two carboxylation steps [46].
During photosynthesis, the incident light is absorbed by chlorophyll molecules, responsible for

transferring the captured energy to photosystem I (PSI) and II (PSII) reactions, which direct the energy
to the electron transport chain [47]. The CO2 absorbed by C4 species is diffused through the stomata
and hydrated by the carbonic anhydrase enzyme [48], being subsequently assimilated by oxaloacetate
using PEPC located in the cytosol as the substrate [49]. Upon receiving the electrons, oxaloacetate is
reduced to malate or aspartate, or even both. It depends on the subtype of C4 species, as they are
divided by the type of enzyme that performs the decarboxylation: nicotinamide adenine dinucleotide
phosphate-malic enzyme (NADP-ME), nicotinamide adenine dinucleotide-malic enzyme (NAD-ME),
and phosphoenolpyruvate carboxykinase (PEPCK) [50–53].

The CO2 is supplied to the active site of the enzyme ribulose-1,5-bisphosphate
carboxylase-oxygenase (Rubisco), located in the chloroplasts of the vascular sheath cells, and is
used for carbohydrate production [49,54]. According to Jenkins et al. [55], in C4 plants, [CO2] around
the vascular sheath Rubisco is 10 times higher than the [CO2] present in the atmosphere, explaining
the importance of this enzyme in the C4 photosynthetic apparatus.

Plants with the C4 mechanism use these biochemical processes to concentrate CO2 in the leaves
where the Rubisco enzyme acts by fixing CO2 [8]. As this is minimally affected by increased [CO2],
this is probably directly related to the high [CO2] in the sheath cells of C4 plants. Increased [CO2]
often has little direct effect on the photosynthetic rates of these plants; however, they reduce stomatal
conductance, consequently improving photosynthesis [56,57].

The Rubisco enzyme changes the flow of atmospheric CO2 in carbon assimilation [58]. At current
CO2 levels, this assimilation can be saturated in C4 species, mainly because PEPC uses HCO3

(bicarbonate system) as the substrate instead of CO2 [59]. Although studies that consider the [CO2]
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mechanism in C4 plants under high [CO2] conditions are less comprehensive, it is remarkable that
global concerns regarding climate change and the real impacts on the productivity of several crops
have led to studies that evaluated how these plants will respond to the predicted [CO2] increase.
What are the effects on plant development and gene response modulation? Are the physiological
mechanisms changed? These questions have been investigated through experiments evaluating high
[CO2] application, experimental conditions, periods of stress exposure, and integrative stress effect
(but little research involving genetic machinery), among other experimental aspects (Table 1).

Table 1. Experimental designs established in some research with C4 plants (maize, sugarcane,
and sorghum) and elevated atmospheric concentration of carbon dioxide ([CO2]) environments.

Plant [CO2] Applied 1 Experimental
Conditions 2 Reference

Zea mays

AC: 370 µmol mol−1 Soil–plant–atmosphere
research chambers

[60]
EC: 750 µmol mol−1

AC: 350 µL L−1
CEC [9]

EC: 700 µL L−1

AC: 378 µL L−1
FACE [61]

EC: 550 µL L−1

AC: 394 ppm
OTCs [19]

EC: 566 ppm

AC: 400 ppm
OTCs [62]

EC: 550 ppm

Saccharum spp.

AC: 360 µmol mol−1
TGG [12]

EC: 720 µmol mol−1

AC: 370 ppm
OTCs [13]

EC: 720 ppm

AC: 360 µmol mol−1
TGG [63]

EC: 720 µmol mol−1

AC: 400 ppm
OTCs [59]

EC: 750−800 ppm

Sorghum bicolor

AC: 370 µmol mol−1
FACE [64]

EC: 570 µmol mol−1

AC: 370 µmol mol−1
FACE [65]

EC: 570 µmol mol−1

AC: 400 µmol mol−1
OTCs [66]

EC: 800 µmol mol−1

1 AC = ambient condition; EC = under elevated [CO2]. 2 CEC = controlled environment cabinets;
FACE = free air CO2 enrichment; OTCs = open top chambers; TGG = temperature gradient greenhouses.

Despite the limited number of published studies, they present a similar context, pointing to the
same line of knowledge that, owing to their [CO2] mechanisms, C4 plants have an almost saturated
photosynthetic capacity under the current atmospheric CO2 conditions. In this context, many questions
arise, e.g., how do C4 plants really respond to high [CO2] conditions? Understanding how these plants,
economically important for the world, are influenced by increased [CO2] levels is essential for the
development of breeding programs aimed at improving or adapting plant growth and increasing
productivity considering future climate changes [12].

4. Physiological, Biochemical, and Gene Expression Changes

Increased [CO2] levels affect morphological, physiological, and productive plant aspects [67].
Many growth parameters have been shown to be positively altered in this climatic condition. In maize
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at the vegetative stage, there is an increase in leaf area (over 50%) in 550 ppm [CO2] [68], and in
studies with sugarcane (30%) [12] and sorghum (25%) [69], in 720 µmol mol−1 and 900 µL CO2 L−1,
respectively. Other measurements, such as plant height and biomass are increased under high [CO2]
(Table 2). According to Souza et al. [13] in sugarcane crops it was observed that productivity can
increase in environments with high [CO2], however, just as the authors report, it is necessary to consider
that some factors influence these growth responses (e.g., the experiment was not performed under
field conditions).

Photosynthetic metabolism, plant growth, and biomass accumulation are directly related to
productivity. Sorghum and maize showed no increase in productivity of grain yield under high [CO2]
conditions [70,71], and in sugarcane, the productivity, evaluated by the results of direct allocation of
sucrose to the stem, was satisfactory under high [CO2] conditions [13,72]. However, experimental and
environmental factors can improve different responses, as observed for some growth characteristics
(leaf area and biomass) in maize, resulting in improved crop yield under high [CO2] conditions
associated with increased precipitation [73].

Table 2. Growth responses of C4 plants (maize, sugarcane, and sorghum) under elevated [CO2] conditions.

Plant Growth Parameters Elevated [CO2] Effects *

Zea mays
Leaf area 550 ppm (↑) 1 (↑) 2

Plant height 550 ppm (↑) 1 (↑) 2

Total masses 70 Pa–550 ppm (↑) 3 (=) 4

Saccharum spp.
Leaf area 720 µmol mol−1 (↑)5

Plant height 720 ppm (↑)6

Total masses 720 ppm (↑)6

Sorghum bicolor
Leaf area 795–900 µ L−1 (↑) 7 (↑) 8

Plant height 795 µ L−1 (=) 7

Total masses 900 µ L−1 (↑) 8

* Reference: 1 Mina et al. [68]; 2 Adishesha et al. [74]; 3 Sicher and Barnaby [75]; 4 Huang et al. [62]; 5 Vu et al. [12];
6 Souza et al. [13]; 7 Chaudhuri et al. [76]; 8 Khanboluki et al. [69]. The symbols mean an increase (↑) and no
difference (=) in relation to control plants ([CO2] ambient).

Some studies evaluated the physiological, biochemical, and molecular responses of C4 plants
under high [CO2] conditions [12,13,19,62–64,75,77]. Figure 1 summarizes some of the main effects of
high [CO2] on C4 plant photosynthesis, specifically maize, sugarcane, and sorghum. In this schematic
representation, we emphasize physiological and genetic changes that occur owing to the duration of
exposure of C4 plants to excess CO2.

Carbohydrates are the main products generated in the photosynthetic process, being processed in
the stem and accumulated in the form of sugars in sugarcane [78]. Thus, increased photosynthetic rates
and sucrose content indicate that the main regulation of sugarcane photosynthesis in high [CO2] [5]
may occur through the light capture system, being possibly related to the increased electron rate of these
plants and the expression of genes related to light capture and electron transport [13]. Several genes
related to reserve accumulation and mobilization, cell cycle, and growth have been shown to be
sensitive to changes in sugar concentrations [79], mainly sucrose [80]. Souza et al. [13] reported that
among the main gene categories regulated in sugarcane after 150 days of exposure to elevated [CO2]
are those related to the cell cycle and plant development, along with a significant difference in height
and biomass between control and treated plants. The increased biomass of C4 plants under high
[CO2] was typically attributed to reduced stomatal opening and conductance, as well as to subsequent
improvement in the leaf water status [64,81] (Figure 1).



Plants 2020, 9, 1567 6 of 13

Figure 1. Schematic representation of some effects of elevated CO2 on C4 plants (maize, sugarcane,
and sorghum). The green arrows indicate inhibition or decrease, while the red arrows indicate promotion
or increase. The (+) sign indicates that other physiological parameters or genes/enzymes have also been
modulated, and the (,) sign indicates differential expression in some cultivars (plants C4) or experiments.
* Represents pyruvate phosphate dikinase (PPDK) enzyme activity. ** Example of experiments under
elevated CO2 conditions: sugarcane plants evaluated in fitotron plant growth chamber.

Sugarcane also shows a positive regulation of a few specific genes involved in sugar metabolism,
such as the induction of the xyloglucan endotransglucosylase/hydrolase (XTH) gene after 90 days
under high [CO2] [13]. XTH can hydrolyze xyloglucan backbones, consequently contributing to plant
tissue expansion [82], thus suggesting a greater potential for leaf cells to expand (increased leaf area)
and accumulate more sugars [13].

Genes related to PSI and PSII (photosystem I reaction center subunit N (PSAN) and photosystem II
protein K (psbK)) were positively regulated in sugarcane after 90 days under high [CO2], concomitantly
with the reported increase in CO2 assimilation rate [13]. In contrast, genes encoding Rubisco-related
subunits were inhibited, as reported in maize by Huang et al. [62]. Therefore, despite the probable
photosystem and electron transport chain functional normality in C4 plants due to increased atmospheric
CO2, inhibited or lower CO2 fixation by Rubisco in the Calvin cycle may be possible. In addition,
C4 plants invest more in the PEPC and pyruvate phosphate dikinase (PPDK) photosynthetic cycle and
less in Rubisco [83].

Some factors, such as, the experimental conditions ([CO2] levels and exposure time) can influence
in C4 plants responses. In general (but lacking consensus), it is understood that the photosynthetic
apparatus may acclimatize in the initial periods of plant exposure to high [CO2] [83]. In relation to
control plants (ambient [CO2]), it has been shown that CO2 assimilation increases (A) [13], which was
also observed in the increasing exchange rate of leaf CO2 in sorghum, maize, and sugarcane, especially
in younger leaves [12,84,85]. Leaf CO2 exchange rate increase (20%) in sugarcane plants (7 days after
leaf emergence) grown at double-ambient (720 µmol mol−1) CO2 [12].

Photosynthesis of the sorghum second leaves of FACE-grown plants (6 days, under daytime values
of 566 µL l−1 and 373 µL l−1 [CO2] and the mean nighttime values of 607 µL l−1 and 433 µL l−1 [CO2]
for FACE and control, respectively) was 37% greater than that of control-grown plants [84], and in
youngest fully expanded leaf of maize grown under 550 µmol mol−1 [CO2], authors observed at times
that A was up to 41% greater in leaves grown and measured under elevated [CO2] compared with
ambient [CO2] [85]. Similar effects of increased [CO2] to other physiological responses in relation
ambient [CO2] (control plants) have been shown in these three C4 species. The stomatal conductance
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(gs) decreases [13,19,64]; the transpiration rate (E) decreases [64,77]; and the expression of PEPC,
NADP-ME, and other genes/enzymes related to photosynthetic metabolism changes [13,19] (Figure 1).

Some responses remain unchanged (for example, gs) with the long-term exposure of sugarcane
plants (70–120 days) to high [CO2] (720 ppm), but other processes can be adjusted (regulated), such as
the decreased photosynthetic capacity of plants due to carbohydrate accumulation in the leaf [13,62,86]
and the modulation of the expression levels of genes related to growth, such as auxin response factor 2
(ARF2). Some studies showed the essential roles of ARFs in plant growth and development, as well as
in adapting to stress [87,88]. However, the role of ARF2 becomes evident in the results reported by
Lim et al. [89] as a true repressor of auxin signaling, that is, it directly interferes with the coordination
of plant growth [90]. The repression of ARF2 in sugarcane after 150 days of exposure to 720 ppm
[CO2], the differential expression of carbohydrate biosynthesis-related genes in sugarcane, such as
glucose-6-phosphate dehydrogenase and xyloglucan endo-transglycosylase/hydrolase [13], and in
maize exposure to 550 ppm [CO2], such as fructose-bisphosphate aldolase and glucose-1-phosphate
adenylyltransferase [62], may explain the probable regulation of mechanisms related to growth control
and the consequent biomass accumulation in C4 plants.

More experimental evaluations under high [CO2] are necessary to further understand the
connection between photosynthetic capacity and the expression of many genes, as verified for
the ribulose bisphosphate carboxylase small chain gene (rbcS) by Huang et al. [62]. In maize
grown under increased atmospheric CO2, Rubisco, PEPC, NADP-MDH (NADP-malate dependent
dehydrogenase), NADP-ME, and PPDK activities were negatively regulated [83], as also reported
by Vu and Allen [63] in mature sugarcane (Saccharum officinarum L. ‘CP72-2086’) leaves. However,
Rubisco, PPDK, and NADP-MDH enzymes were positively regulated in another sugarcane genotype
under the same [CO2] conditions (Saccharum officinarum L. ‘CP73-1547’) [12].

C4 plants may show biochemical variations related to the type of decarboxylation enzyme [53]
and probably in the role played by Rubisco in high atmospheric CO2 conditions. In maize, the expression
of the NADP-ME gene was positively regulated in the B106 genotype, and the PEPC and NADP-MDH
genes were negatively regulated in the same genotype. Different responses (except for the NADP-ME gene)
were obtained in the analysis of the B76 maize genotype [19]. Therefore, genetic variability considerably
influences different physiological and gene expression responses to high [CO2].

Little information is available about the molecular responses regulated in maize, sugarcane,
and sorghum, and this approach shows the importance of C4 plants under high [CO2] conditions
and the need of further studies involving this subject. The understanding needs to include aspects of
physiology, metabolic mechanisms, and molecular mechanisms regulated in this condition, especially
with regard to the photosynthetic enzyme efficiency, osmotic adjustment, antioxidant metabolism,
and secondary metabolite production, among other processes that may directly or indirectly influence
the adaptability responses to the climatic condition.

5. Perspectives

As previously reported, the elevated [CO2] contributes to the increase of biomass in maize,
sugarcane, and sorghum. However, high [CO2] levels are closely related to water stress, one of the
major factors of crop production and productivity losses [5]. How would a C4 plant sensitive to water
stress react in conditions of high atmospheric [CO2]? Would it activate the same set of genes already
identified under normal CO2 conditions? What are the physiological mechanisms and gene and/or
protein profiles regulated under these conditions?

Increased [CO2] influences the photosynthetic and carbohydrate metabolisms. However, we know
that the study efforts will be directed towards the investigation of the combined action of different
environmental stresses on plants and high [CO2] (Figure 2). What is expected for the coming years are
studies that involve physiological responses, secondary metabolism pathways, hormones, and mainly
gene and protein profiles modulated by the combined effect, aiming at C4 plants more adapted to
climatic diversities that are tolerant and productive.
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Figure 2. Environmental factors and increased [CO2] influence on physiology and general metabolism
of C4 plants.

In this sense, studies aiming to provide information on the molecular machinery through which C4

plants respond to increased atmospheric CO2 are fundamental to supply genetic data to the scientific
community. Several gene groups (more than 1300 differentially expressed genes) were identified by Ge
et al. [91] through analysis of the maize transcriptome under high [CO2]. These data, associated with
physiological aspects, can provide additional support to understand the effect of this increase and the
interactive effect of stresses.

6. Conclusions

The physiological responses of C4 plants to increased [CO2], such as transpiration rate, stomatal
conductance decreases, and photosynthetic enzymes are differentially expressed in maize, sugarcane,
and sorghum. The gene regulation involved in carbohydrate metabolism and plant growth changes
according to time of exposure to stress and experimental aspects.

C4 plants can present advantages in high [CO2] environments and, owing to climatic forecasts
involving increased temperature and decreased precipitation, the understanding of adaptive
physiological and genetic mechanisms is fundamental in order to guarantee the satisfactory growth of
these plants.
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