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a b s t r a c t

Differential equation models of infectious disease have undergone many theoretical ex-
tensions that are invaluable for the evaluation of disease spread. For instance, while one
traditionally uses a bilinear term to describe the incidence rate of infection, physically
more realistic generalizations exist to account for effects such as the saturation of infec-
tion. However, such theoretical extensions of recovery rates in differential equation models
have only started to be developed. This is despite the fact that a constant rate often does
not provide a good description of the dynamics of recovery and that the recovery rate is
arguably as important as the incidence rate in governing the dynamics of a system. We
provide a first-principles derivation of state-dependent and time-varying recovery rates in
differential equation models of infectious disease. Through this derivation, we demon-
strate how to obtain time-varying and state-dependent recovery rates based on the family
of Pearson distributions and a power-law distribution, respectively. For recovery rates
based on the family of Pearson distributions, we show that uncertainty in skewness, in
comparison to other statistical moments, is at least two times more impactful on the
sensitivity of predicting an epidemic's peak. In addition, using recovery rates based on a
power-law distribution, we provide a procedure to obtain state-dependent recovery rates.
For such state-dependent rates, we derive a natural connection between recovery rate
parameters with the mean and standard deviation of a power-law distribution, illustrating
the impact that standard deviation has on the shape of an epidemic wave.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Compartmental models of infectious-disease transmission have proven to be an invaluable tool for the prediction of
disease progression and the evaluation of public health policies and interventions. In general, compartmental models
describe how an infectious disease propagates throughout a population by characterizing the rates of transition of a populace
from states of susceptible to, infectedwith, and finally recovered fromdisease. The rate of transition from the susceptible state
to the infected state is often called the force of infection or incidence rate (Liu, Hethcote, & Levin, 1987), and the rate of
transition from the state of infectedwith the disease to recovered fromdisease is called the recovery rate.While classically the
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incidence rate is taken as a bilinear term, there has been extensive theoretical work regarding alternative nonlinear incidence
rates. These alternative nonlinear incidence rates are normally developed to account for behavioral characteristics, such as the
crowding of infected individuals and the avoidance of exposure to infection (Alexander & Moghadas, 2005; Liu et al., 1987;
Liu, Levin,& Iwasa,1986; Ruan&Wang, 2003; van den Driessche&Watmough, 2000) or to account for multi-stage infections
(Krylova & Earn, 2013). In fact, formulations of nonlinear incidence rates can be justified through a first-principles derivation
(Ponciano & Capistr�an, 2011).

Like incidence rates, recovery rates have received significant attention in regards to their formulations in integral equa-
tions (Feng, Xu, & Zhao, 2007; Fowler & Hollingsworth, 2015; Hethcote & Tudor, 1980) and stochastic epidemic models (Ball,
1983, 1986, 1991; Britton, 2010; Clancy, 1999, 2014). Recovery rates have also been generalized in ordinary differential
equation (ODE) models, mainly through the method of stages, whereby the infected state is broken into multiple stages,
where each stage has a constant recovery rate (Krylova& Earn, 2013; Lloyd, 2001a, 2001b). However, theoretical extensions of
recovery rates beyond multiple constants in ODEs have only started to be developed, despite the fact that constant recovery
rates based on themean value of an exponentially distributed infectious period are epidemiologically unrealistic (Bailey et al.,
1975; Gough, 1977; Keeling & Grenfell, 1999; Keeling & Rohani, 2007; Lloyd, 2001a, 2001b).

Here we derive time-varying and state-dependent recovery rates for ODE models of infectious diseases. To obtain such
novel recovery rates, we use the connection between integral equation models, ODEs and survival functions. First we show
how an integral equation model for an infectious disease (Hethcote & Tudor, 1980) is related to more typical ODEs. A key
component of this relationship is the probability distribution of the time spent in the infectious class. Most traditional models
assume this time is exponentially distributed, and so we review this distribution and its connection to stochastic processes.
Next, we show how an alternative probability distribution of the time spent in the infectious class leads to different forms of
recovery rates in ODE models.

We validate our work by modeling historical measles outbreaks in Iceland (Cliff, Haggett, Ord, & Versey, 1981). First, we
develop a compartmental model with a time-varying recovery rate based on infectious periods that follow the family of
Pearson distributions (Pearson, 1893, 1895). The family of Pearson distributions span all possible values of skewness and
kurtosis, sowe evaluate the sensitivity of model predictions of the timing andmagnitude of an epidemic peakwith such time-
varying recovery rates, relative to the uncertainty in the skewness and kurtosis derived from infectious period data.

Finally, we turn to state-dependent recovery rates, where we compare recovery rates based on power-law distributions to
constant recovery rate models. Through this comparison, we demonstrate advantages of recovery rates based on a power-law
distribution, including the potential for scaling invariance, the finite contribution of infected individuals to disease spread and
the potential for deterministic disease burnout.
2. Methods

We now outline how to obtain state-dependent and time-varying recovery rates h in ODE models. To accomplish this, we
illustrate the connection between integral equation models to survival functions and finally ODE models.
2.1. Integral equation models of infectious diseases

We considered a population divided into the proportion of susceptible ðsÞ, infected ðiÞ and recovered ðrÞ individuals, with
sþ iþ r ¼ 1, which follow an integral equation formulation of an SIR compartmental model:

s ¼ 1� ð1� s0Þexp
�
�~bt

�
�
Zt
t0

~lðxÞsðxÞexp
�
� ~bðt � xÞ

�
dx;

i ¼ i0Pðt; t0Þexp
�
�~bt

�
þ
Zt
t0

~lðxÞsðxÞPðt; xÞexp
�
� ~bðt � x Þ

�
dx;

r ¼ ðr0 þ i0 � i0Pðt; t0ÞÞexp
�
�~bt

�
þ
Zt
t0

~lðxÞsðxÞð1� Pðt; xÞÞexp
�
� ~bðt � x Þ

�
dx:

(1)

Here ~l is the force of infection, ~b is the population birth rate minus the population death rate, and Pðt; xÞ is the waiting-time
distribution for the time spent in the infectious class before recovery, where x is the time of infection.

As Pðt; xÞ characterizes the time waiting in the infectious class before recovery, it also may be interpreted as a survival
function. Thereby, Pðt; xÞ possesses all the properties of a survival function, including 1� Pðt; xÞ corresponding to cumulative

distribution function, � d
dt ln Pðt; xÞ being a hazard function, and

Z∞
x

Pðt; xÞdt as the average waiting-time (Arino & van den

Driessche, 2006; Rodriguez, 2007).
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Note, as r ¼ 1� s� i, we omit entirely the integral equation, integro-differential equation (IDE) and ODE formulations of r
for the ease of presentation.

2.2. The probability of remaining infected

To generalize constant recovery rates, we now provide insight into the formulation of Pðt; t0Þ. We begin by expressing
Pðt; t0Þ in terms of the recovery rate. Taking fðt; t þ DtÞ to be the probability of recovery during the time interval ½t; t þ Dt�, it
follows that

fðt; t þ DtÞ ¼ hðiðtÞ; sðtÞ; tÞDt;
where hðiðtÞ; sðtÞ; tÞ is a time-dependent and/or state-dependent recovery rate. Thus, if we want to know Pðt þ Dt; t0Þ, where
Dt is some small increment of time, then

Pðt þ Dt; t0ÞzPðt; t0Þð1� fðt; t þ DtÞÞ; (2)
If hðiðtÞ; sðtÞ; tÞ is constant and time invariant, then fðt; t þ DtÞ ¼ gDt, and

Pðt þ Dt; t0ÞzPðt; t0Þð1� gDtÞ; (3)

where g is the constant recovery rate.
By rearranging the terms in (3) and letting Dt/0, the ODE formulation of Pðt; t0Þ is obtained:

d
dt

Pðt; t0Þ ¼ �gPðt; t0Þ; Pðt0; t0Þ ¼ 1
and thus,

Pðt; t0Þ ¼ expð � gðt � t0ÞÞ: (4)
Alternatively, if fðt; t þ DtÞ is dependent on factors, such as the state of the epidemic, or time, then fðt; t þ DtÞ ¼ hði; s; tÞDt
where hði; s; tÞ is the recovery rate at time t. It once again follows from (2) that

Pðt þ Dt; t0ÞzPðt; t0Þð1� hði; s; tÞDtÞ:
Rearranging terms and letting Dt/0 yields the ODE formulation of Pðt; t0Þ:

d
dt

Pðt; t0Þ ¼ �hði; s; tÞPðt; t0Þ; Pðt0; t0Þ ¼ 1 (5)
and thus,

Pðt; t0Þ ¼ exp

0
B@�

Zt
t0

hðiðzÞ; sðzÞ; zÞdz

1
CA: (6)
Equation (6) is not the only alternative to the waiting-time distribution (4). For instance, taking

Pðt; t0Þ ¼
�
1 ift2½t0;uþ t0�
0 otherwise

where u is the constant waiting-time in the infected state, is a common assumption used to motivate delay-differential
equations (Arino & van den Driessche, 2006).

2.3. Differential equation models of infectious diseases

To obtain ODE models of infectious diseases, we start by differentiating (1) to obtain the IDEs:
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ds
dt

¼ ~bð1� s0Þexp
�
� ~bðt � t0Þ

�
þ ~b

Zt
t0

~lðxÞsðxÞexp
�
� ~bðt � xÞ

�
dx� ~ls;

di
dt

¼ d
dt

�
i0Pðt; t0Þexp

�
� ~bðt � t0Þ

��
þ
Zt
t0

~lðxÞsðxÞ d
dt

�
Pðt; xÞexp

�
� ~bðt � xÞ

��
dxþ ~ls:

(7)
From system (7), we obtain ODEs by imposing assumptions on Pðt; xÞ, and then using system (1) to eliminate the integral
terms.

2.3.1. Constant recovery rates
To derive ODE models with a constant recovery rate from integral equation models, we make use of the standard as-

sumptions that Pðt; t0Þ ¼ expð�gðt � t0ÞÞ: Thus it follows that d
dt Pðt; t0Þ ¼ �g expð�gðt � t0ÞÞ ¼ �gPðt; t0Þ: Thereby system (7)

simplifies to

ds
dt

¼ ~bð1� s0Þexp
�
� ~bðt � t0Þ

�
þ ~b

Zt
t0

~lðxÞsðxÞexpð�bðt � xÞÞdx� ~ls;

di
dt

¼ �
�
gþ ~b

�0B@i0Pðt; t0Þexp
�
� ~bðt � t0Þ

�
þ
Zt
t0

~lðxÞsðxÞPðt; xÞexp
�
� ~bðt � x Þ

�
dx

1
CAþ ~ls:

(8)
From system (8), the standard ODE formulation of an SIR compartmental model is obtained by further substituting system
(1), which yields:

ds
dt

¼ ~b� ~bs� ~ls;

di
dt

¼ ~ls� gi� ~bi;

(9)
2.3.2. State-dependent and time-varying recovery rates
Alternative assumptions on Pðt; t0Þ leads to formulation of other recovery rates. For instance, Pðt; t0Þ as in (5). To obtain

state-dependent and time-varying recovery rates, first note that (6) reduces the IDEs from system (7) to

ds
dt

¼ ~b� ~bs� ~ls;

di
dt

¼ �
�
hði; s; tÞ þ ~b

�0B@i0 exp

0
B@�

Zt
t0

hðiðzÞ; sðzÞ; zÞdz� ~bðt � t0Þ

1
CAþ

Zt
t0

~lðxÞsðxÞexp
0
@�

Zt
x

hðiðzÞ; sðzÞ; zÞdz� ~bðt � x Þ
1
Adx

1
CAþ ~ls:

(10)
The IDEs from system (10), through the substitution of system (1), reduce to the ODEs,

ds
dt

¼ ~b� ~bs� ~ls;

di
dt

¼ ~ls� hði; s; tÞi� ~bi;

(11)

with recovery rate hði; s; tÞ.



S. Greenhalgh, T. Day / Infectious Disease Modelling 2 (2017) 419e430 423
2.4. The reproductive numbers

The next-generation method is a standard technique to determine the basic reproduction number, R0 (Diekmann,
Heesterbeek, & Metz, 1990; Heffernan, Smith, & Wahl, 2005; Liu et al., 1987; van den Driessche & Watmough, 2000,

2002). Traditionally, the next-generation method is applied to system (10), with ~l ¼ bi and hði; s; tÞ ¼ g; linearizing the
flow of newly infected individuals, F ¼ bis, and the flow from the infected state V ¼ giþ bi, at the disease-free equilibrium
E0 ¼ fs ¼ 1; i ¼ 0; r ¼ 0g From the linearized flows,

F ¼ d
di
F
����
E0

¼ d
di
~l

����
E0

¼ b and V ¼ d
di
V
����
E0

¼ d
di
ðgiþ biÞ

����
E0

¼ gþ b:
The largest eigenvalue of the next-generation matrix, G ¼ FV�1 is taken as R0, which in this case corresponds to b
gþb.

In general, system (9) with arbitrary ~l and h need not be linearizable (Greenhalgh, Galvani, & Medlock, 2015), which
impedes the use of the next-generation method. Thus, we consider computing the effective reproduction number directly as

Reði; sÞ ¼ FV�1 ¼
~ls

hiþ bi
;

and the basic reproduction number as,
R0 ¼ Reði; sÞjs¼1:
If the assumption of a constant R0 is still imposed, it follows that the force of infection is of the form:

~l ¼ R0ðhjs¼1 þ bÞi: (12)
For the force of infection (12) to be biologically meaningful (Liu et al., 1987), it follows that

lim
i/0þ

~l ¼ 0⇔ lim
i/0þ

i,hjs¼1 ¼ 0:
Such a condition ensures the infectious period is well-posed near the disease-free equilibrium and provides a natural
connection to the null probability of transmission in the absence of infection (Korobeinikov & Maini, 2005; Ponciano &

Capistr�an, 2011). It also follows that

d~l
di

� 0⇔ i
dh
di

����
s¼1

þ hjs¼1 þ b � 0;

and
Table 1
Parameter values.

Definition Parameter Point estimate Reference

Transmission rate (time-varying) bTV 0:2374=day Fit
Rate of demographic turnover ~b 0:027=year Statistics Iceland
Average infectious period m 8.00 days (Cliff et al., 1981; Simpson, 1952)
Standard deviation of infectious period s 2.26 days (Cliff et al., 1981; Simpson, 1952)
Skewness (m3) and kurtosis (m4) of infectious period distribution: (Cliff et al., 1981; Simpson, 1952)
Estimates from data

m3
m4

0:39 days
2:92 days

Best fits of Pearson distributions
Type I m3

m4

0:23 days
2:61 days

Type III m3
m4

02:1 days
09:6 days

Type IV m3
m4

00:1 days
3:03 days

Type V m3
m4

0:66 days
3:82 days

Type VI m3
m4

4:13 days
46:5 days
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d2~l
di2

� 0 ⇔ i
d2h
di2

����
s¼1

þ 2
dh
di

����
s¼1

� 0:

Here, such conditions placed on the force of infection amount to bounds on how quickly h changes relative to the infected
proportion.
3. Novel recovery rates

To demonstrate model predictions with time-varying and state-dependent recovery rates, wemodel measles outbreaks in
Reykjavik Iceland. To do this, we use a classical data set on the infectious period of measles (Simpson,1952), time series data of
measles incidence in Reykjavik Iceland (Cliff et al., 1981) from 1924 to 1928, and parameter estimates from the literature
(Table 1).

First, we apply our methodology to obtain time-varying recovery rates that capture the first four statistical moments
(mean, standard deviation, skewness and kurtosis) of infectious period data (Schuster, 2016, pp. 83e197). To do this, we
assume the infectious period distribution belongs to the family of Pearson distributions. The family of Pearson distributions
consists of types I, III, IV, V, and VI, which encompass nearly all classical continuous probability distributions, including
normal, Student's t, exponential, gamma, beta, inverse gamma, beta prime, and F distributions. The family of Pearson dis-
tributions also has the distinction of being the first to fit the higher statistical moments of skewness and kurtosis arbitrarily
well. Importantly, this ability implies that one can specify any mean, standard deviation, skewness and kurtosis and find a
Pearson distribution that describes that probability density (Pearson, 1893, 1895; Rhind, 1909) (Fig. 1).

Using the family of Pearson distributions, we develop recovery rates that account for any mean, standard deviation,
skewness and kurtosis of an infectious period distribution. We evaluate how uncertainty in these moments impacts pre-
dictions on the timing and magnitude of the epidemic peak through a variance-based sensitivity analysis (Sobol, 2001). To do
this, we make use of a data set on the infectious period of measles (Simpson, 1952), and determine a sampling region for
skewness and kurtosis based on the best fits of each member of the family of Pearson distributions (Fig. 2) to the observed
values of skewness and kurtosis from the data.

Next, we demonstrate how to obtain state-dependent recovery rates based on a power-law distribution, outlining how
such a recovery rate leads to a finite contribution to the spread of disease from infected individuals. We then demonstrate
how different power-law exponents affect the trajectory of disease, through a comparison to the traditional model with a
constant recovery rate.
3.1. Time-varying recovery rates associated to the Pearson distribution

To obtain time-varying recovery rates for ODEs, we take ~l ¼ bi and impose that the infectious period distribution QðtÞ is
distributed according to the family of Pearson distributions, which are given by the relation:

�
dQ
dt

��1d2Q
dt2

¼ � t � lþ a

b2ðt � lÞ2 þ b1ðt � lÞ þ b0
; (13)

where
Fig. 1. Square of skewness and kurtosis plane. The region for each member from the family of Pearson distributions is labelled, in addition to the impossible zone
(m4 � m23 þ 1) and sampling region for the variance-based sensitivity analysis.



Fig. 2. Best fit to Pearson distribution. Least-squares fit of the family of Pearson distributions to infectious period data of measles.
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b0 ¼ s2
4m4 � 3m3

10m4 � 18� 12m3
; b1 ¼ a ¼ s

ffiffiffiffiffi
b1

p
ðm4 þ 3Þ

10m4 � 18� 12m3
; b2 ¼ 2m4 � 3m3 � 6

10m4 � 18� 12m3
;

and l is a scale parameter. Note, the parameters s; m3 and m4 correspond to the standard deviation, square of skewness and
kurtosis of the distribution respectively.

Each member of the family of Pearson distributions corresponds to particular assumptions placed on parameters a; b0; b1
and b2. For each case of these assumptions we fit the resulting cumulative distribution function (1� QðtÞ), through a least-
squares procedure, to infectious period data of measles (Fig. 2). After obtaining the best fit QðtÞ for each member of the family
of Pearson distributions, we estimate the conditional waiting-time distribution given time tN by

PrfT > tjt ¼ tNg ¼
PN

j¼0I
	
tj


Q
	
tþ tN � tj



PN

j¼0I
	
tj


Q
	
tN � tj


 ; (14)

where T is a random variable for the time spent in the infectious class, t � 0 is the time spent in the infectious class and IðtjÞ
corresponds to the bi-weekly measles incidence data from Reykjvik Iceland.

As equation (14) is a survival function, integrating t over all durations of infectiousness yields a series of constant residual
waiting-times (Finkelstein, 2002):

mðtNÞ ¼
Z∞
0

PrfT > tjt ¼ tNgdt:
Approximating mðtÞ for all t through linear interpolation between each ðtN ; tNþ1Þ, we finally determine hðtÞ from
(Finkelstein, 2002)

hðtÞ ¼ m
0 ðtÞ þ 1
mðtÞ : (15)
3.1.1. The sensitivity of model predictions to an infectious period distribution
To evaluate the sensitivity of model predictions to the uncertainty in the mean, standard deviation, skewness and kurtosis

from an infectious period distribution, we calculate the variance-based sensitivity indices for predicting the time to, and
magnitude of the measles epidemic peak.

We now outline the procedure to conduct the analysis. First, we estimate a skewness of 0:39 and a kurtosis of 2:92 directly
from the infectious period data. We sample the ball of radius rz9:49 centered at ð0:392;2:92Þ in the m3�m4 plane (Table 1).
The value of r is the average distance from ð0:392;2:92Þ to the point corresponding to the best fit parameters of each Pearson
distribution type (Table 1, Fig. 1). Additional details of the sample distributions and parameters are available in Table 1. Next,
for evaluating the sensitivity of model predictions relative to the uncertainty in model inputs, we measure 1) the predicted
time to the measles epidemic peak, 2) the predicted magnitude of the measles epidemic peak, and 3) the combined time to,
and magnitude of, the measles epidemic peak, as given by:
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D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ipeak �M, max

t2½0;365�
iðtÞ
�2

þ
 
tpeak � argmax

t2½0;365�
iðtÞ
!2

vuut ;

where Ipeak ¼ 831; tpeak ¼ 302 days and M ¼ 24134 is the total population size.
The calculation of the variance-based sensitivity indices yields that uncertainty in the skewness of the infectious period

distribution is the largest contributor to sensitivity in both predictions of the magnitude of the measles epidemic and the
combined scenario (Table 2).

3.2. State-dependent recovery rates associated to the power-law distribution

To obtain state-dependent recovery rates we follow a similar approach to one that connects constant rates to exponential
distributions. In particular, one assumes that no inflow into the infectious class occurs given a certain infectious proportion i0
at some initial time t0 (Martcheva, 2015, pp. 9e31). Under such conditions with an exponentially distributed infectious
period, the infectious proportion from system (11) behaves according to a linear ODE with coefficient eg. The solution to this
ODE corresponds to the exponential decay, and i ¼ i0 expð�gðt � t0ÞÞ/0 as t/∞, with i>0 for any t <∞. The waiting-time
distribution stems from normalizing i by i0, which leads to Pðt; t0Þ ¼ expð�gðt � t0ÞÞ. Note, due to the exponential decay
Pðt; t0Þ>0 for any t2½t0;∞Þ.Physically speaking, having Pðt; t0Þ>0 for all finite infectious periods is unrealistic, even in the
most extreme of conditions.

Under the same scenario of no inflow into the infectious class, an alternative to the exponential distribution that avoids the
pitfall of Pðt; t0Þ>0 for all finite infectious periods is taking Pðt; t0Þ to correspond to the power-law distribution,

Pðt; t0Þ ¼

8>>>><
>>>>:

ð1� cðt � t0ÞÞ
1
x t < t0 þ

1
c
;

0 t � t0 þ
1
c
:

(16)
Here c>0 and x>0. Once again, making use of the assumption i ¼ i0Pðt; t0Þ we obtain

i ¼ i0ð1� cðt � t0ÞÞ
1
x :
In addition, the mean and standard deviation for such a Pðt; t0Þ, are:

m ¼ x

cð1þ xÞ; s
2 ¼ x2

c2ð1þ xÞ2ð2xþ 1Þ
: (17)
Similarly to the exponential distribution case we have Pðt; t0Þ/0 as t/∞. However, now Pðt; t0Þ ¼ 0 for t � t0 þ 1
c.

To determine the recovery rate hðiÞ that corresponds to this choice of Pðt; t0Þ, we isolate Pðt; t0Þ ¼ ð1� cðt � t0ÞÞ
1
x for t � t0

yielding,

Pðt; t0Þx � 1 ¼ �cðt � t0Þ:
Making the substitution Pðt; t0Þ ¼ i
i0
and rearranging the factor ix0 yields

ix � ix0 ¼ �cix0ðt � t0Þ: (18)
Through differentiation and simplification, it follows that
Table 2
First-order sensitivity indices.

Scenario Mean Standard deviation Skewness Kurtosis

Magnitude of epidemic 0.013 0.013 0.244 0.071
Timing of epidemic 0.008 0.006 0.287 0.091
Timing and magnitude of epidemic 0.066 0.019 0.241 0.138
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di
dt

¼ �c
x

�
i0
i

�x

i ¼ �hðiÞi;

where the state-dependent recovery rate is
hðiÞ ¼ c
x

�
i0
i

�x

: (19)
3.2.1. The epidemic wave from an infectious period that is power-law distributed
We now demonstrate how a power-law distributed infectious period affects the shape of the predicted epidemic wave. As

we are only concerned with effects of a single epidemic wave, we take ~b ¼ 0 with an average infectious period of
m ¼ 8:00 days (Table 1). It follows from the formulas for the mean and standard deviation (17) that

c ¼ m2 � s2

m
	
m2 þ s2


; x ¼ 1
2

�
m2

s2
� 1

�
;

and
hðiÞ ¼ 2
m

s2

m2 þ s2
i
1
2

m2�s2

s2

* i
�1

2

�
m2

s2
�1

�
:

� �

For hðiÞ to be biologically valid requires s2 1ffiffiffi

3
p m;m . Violation of this interval results in 1) di

dt being undefined at i ¼ 0 when

s< 1ffiffiffi
3

p m, or 2) the associated survival function (16) taking positive values before the initial moment of infection t0, as s>m

forces c<0. In addition, for a state-dependent recovery rate to be well-posed over the course of an entire epidemic the
parameters of the power-law distribution need to be selected to account for the largest occurring infected proportion i*.
instead of just any infectious proportion i0 at some time t0.

This proportion is precisely the endemic equilibrium value of i, or when no such equilibrium exists, the value of i along a
trajectory when s ¼ 1

R0
and thus di

dt ¼ 0.

Finally, taking ~l as in (12), yields

~l ¼ R0hðiÞi ¼ R0
2
m

s2

m2 þ s2
i
1
2

m2�s2

s2

* i
�1

2

�
m2

s2
�1

�
i:
Because demographic factors are not included it follows that

di
ds

¼ �1þ 1
R0s

⇔iðsÞ ¼ i0 þ s0 �
1
R0

�
R0sþ ln

�s0
s

��
:

As the peak of infection occurs for s ¼ 1
R0
, as this enforces di

dt ¼ di
ds ¼ 0, the magnitude of the peak of infection is

i* ¼ i0 þ s0 �
1
R0

ð1þ lnðs0R0ÞÞ: (20)
Further imposing s ¼ 1ffiffiffi
3

p m reduces system (11) to a linear ODE system. From the solution of the linear ODE system we

determine the time of the peak of infection,

tpeak � t0 ¼ 2m
lnðs0R0Þ
i*R0

: (21)
With (20)e(21) and the measles incidence in Reykjavik Iceland (Cliff et al., 1981) from 1924 to 1928, we determine i* so
that the predicted epidemic peak corresponds to the peak of infection for R02ð1;10� and standard deviations of an infectious
period that is power-law distributed (Fig. 3).
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4. Discussion

We derive infectious disease models with both time-varying and state-dependent recovery rates. To do this, we illustrate
how integral equations reduce to ODE models through their connection with survival functions. We first demonstrated the
novelty of time-varying recovery rates by quantifying the contribution of uncertainty in an infectious period distribution's
moments to the sensitivity in predicting the epidemic peak of Iceland's 1924 measles outbreak. Our findings show that
skewness had a sensitivity index at least double the other moments (Table 2). This suggests that parameter estimation
techniques that rely on fitting infectious period distributions should pay close attention to the resulting value of skewness if
the prediction of epidemic peaks is the ultimate goal. Secondly, we demonstrated state-dependant recovery rates derived
from a power-law distribution. For such rates, we illustrated how the parameters associated with the infectious-period
distribution influence the shape of an epidemic wave.

To explore the impact of uncertainty onmodel predictions, we used the family of Pearson distributions because it spans all
possible skewness and kurtosis values (Pearson, 1893, 1895). However, alterative distribution families, such as the expo-
nentially generalized Beta distribution, which is often used in estimation of hazard functions, or distributions associated with
nonstandard parametric survival functions (Lawless, 2002) also provide further avenues for exploring the overall effects of
uncertainty on model predictions.

An important extension of our approach in developing time-varying and state-dependent rates is in the evaluation of
deterministic models that compare treatment outcomes, such as drug treatments for malaria (Greenhalgh, Ndeffo, Galvani,&
Parikh, 2015; Tarning et al., 2012) or vaccine interventions. These models often reduce collected treatment and vaccination
data tomean values in order to determine rate parameters. While models that compare treatment outcomes in such a fashion
are useful, incorporating higher moments, like skewness and kurtosis, yields models that use more information and thus
stand to provide more powerful predictions.

Many physically motivated functions merit use as a state-dependent recovery rate. We demonstrate how to obtain a state-
dependent recovery rate from a power-law distribution, however other distributions with inverse cumulative density
functions, such as the Weibull and Kumaraswamy distributions (Jones, 2009), would naturally lead to novel state-dependent
recovery rates. Specifically, state-dependent recovery rates based on distributions that capture the recovery process, such as
those with a finite infectious period or those that more accurately capture the concentration around the mean infectious
period, provide a more powerful description of how infected individuals contribute to the spread of disease. Such state-
dependent recovery rates would improve the modeling of quarantine, treatment or other policies that curtail the ability of
infected individuals to spread disease.

Another benefit of state-dependent and time-varying recovery rates is the potential for new exactly solvable systems.
Exactly solvable systems, such as the typical Susceptible-Infected models, are exceptionally rare and exceptionally useful in
disease modeling. Thus, any new such system achieved from state-dependent and time-varying recovery rates would open
the door to a plethora of new analytical insights.

The development of time-varying and state-dependent recovery rates stands to benefit the study of disease elimination
and eradication. Disease elimination and eradication are currently important issues to world health authorities (Hopkins,
Fig. 3. The shape of the epidemic wave. Measles time series (black dashed line) and measles incidence for i* ¼ 831∕24134, R02ð1;10� with a) s ¼ m, b)
s ¼ 1

2

	
1þ 1ffiffiffi

3
p


m and c) s ¼ 1ffiffiffi

3
p m.
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2013), particularly because of the partial success of the Global Malaria Eradication program (N�ajera, Gonz�alez-Silva,& Alonso,
2011) and the successful eradication of both smallpox (Fenner, Henderson, Arita, Jezek, & Ladnyi, 1988) and rinderpest
(Normile, 2008). For diseases slated for eradication, such as measles, yaws and polio, models that accurately capture the
physical process of disease spread stand to provide quantitative information on policies and interventions designed to
expedite the elimination and eradication process. As time-varying and state-dependent recovery rates better account for the
contribution of infected individuals to disease spread and also include the potential for disease burnout (Greenhalgh, Galvani,
et al., 2015), they thereby provide invaluable information absent from more traditional modeling formulations.

5. Conclusions

Approaches to accurately account for non-constant rates in deterministic epidemic models is recognized as an open
challenge in infectious disease modeling (Roberts, Andreasen, Lloyd, & Pellis, 2015). Here, we provided an approach to ac-
count for time-varying and state-dependent rates developed from infectious period data. By basing time-varying and state-
dependent recovery rates on infectious period distributions derived from such data, ODE models of infectious diseases are
able to more accurately account for the dynamics of transmission. While we developed ODE models of infectious diseases
with non-constant rates based on such infectious period data, our approach is easily generalizable to novel rates from
alternate sources, including viral load, latent period and pharmacokinetic data. In summary, our work enables disease and
compartmental modellers to shed the shackles imposed by exponentially distributed waiting times and constant rates by
enabling the discovery and use of new non-constant rates that more accurately capture the dynamics of disease.
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