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* roy.mueller@klinikum-bayreuth.de

Abstract

Objective

Unilateral trans-tibial amputation signifies a challenge to locomotion. Prosthetic ankle-foot

units are developed to mimic the missing biological system which adapts push-off power to

walking speed in some new prosthetic ankle-foot designs. The first systematic review includ-

ing the two factors aims to investigate push-off power differences among Solid Ankle Cush-

ion Heel (SACH), Energy Storage And Return (ESAR) and Powered ankle-foot units (PWR)

and their relation to walking speed.

Data sources

A literature search was undertaken in the Web of Science, PubMed, IEEE xplore, and Goo-

gle Scholar databases. The search term included: ampu* AND prosth* AND ankle-power

AND push-off AND walking.

Study appraisal and synthesis methods

Studies were included if they met the following criteria: unilateral trans-tibial amputees,

lower limb prosthesis, reported analysis of ankle power during walking. Data extracted from

the included studies were clinical population, type of the prosthetic ankle-foot units (SACH,

ESAR, PWR), walking speed, and peak ankle power. Linear regression was used to deter-

mine whether the push-off power of different prosthetic ankle-foot units varied regarding

walking speed. Push-off power of the different prosthetic ankle-foot units were compared

using one-way between subjects’ ANOVAs with post hoc analysis, separately for slower

and faster walking speeds.

Results

474 publications were retrieved, 28 of which were eligible for inclusion. Correlations

between walking speed and peak push-off power were found for ESAR (r = 0.568, p =

0.006) and PWR (r = 0.820, p = 0.000) but not for SACH (r = 0.267, p = 0.522). ESAR and
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PWR demonstrated significant differences in push-off power for slower and faster walking

speeds (ESAR (p = 0.01) and PWR (p = 0.02)).

Conclusion

Push-off power can be used as a selection criterion to differentiate ankle-foot units for pros-

thetic users and their bandwidth of walking speeds.

Introduction

The total number of individuals with lower extremity amputations in the US is expected to

increase up to 3.6 million by 2050 and it is estimated that 38% of all amputations will be major

lower limb amputations [1]. As a result, the pursuit for an adequate replacement of the missing

structures led to the development of a variety of different ankle-foot units covering and reflect-

ing the manifold needs and applications given by the end users daily life/routines.

The positive power burst generated during the step-to-step transition is defined as push-off

power [2] generated by the plantar flexors in non-amputee level walking. Push-off occurs dur-

ing the first half of double-support stance phase and throughout the latter half of double-sup-

port stance when the weight-accepting foot is being lowered to the ground. In the final stage of

push-off weight shifts to under the toes [3]. A weaker push-off results in a longer double-sup-

port stance time and is therefore, relevant to balance and dynamic stability [4] a specific chal-

lenge for individuals with lower limb amputation [5]. When walking at higher speeds, the

ankle provides net positive work during push-off accounting for approximately half of the

total mechanical work that is performed by the joints of the lower limb in the sagittal plane

during a step [6]. Concerning the role of push-off work of the ankle, it has been debated

whether it contributes primarily to leg swing or centre of mass (COM) acceleration. Zelik and

Adamczyk [2] advocated that interpretations of ankle mechanics should abandon a contrasting

view of leg swing versus COM acceleration and that ankle push-off should be perceived in a

unified way with the effects being mutually consistent, thus underlining the importance of

push-off power during human prosthetic locomotion.

In contrast to non-amputee subjects, unilateral lower-limb amputees exhibit reduced push-

off which causes asymmetrical gait and increases load on the contra-lateral side [7–10]. The

increased loading of the sound side is indicated by an increase of the magnitude of the first

peak of the ground reaction force, the increased loading rate of the vertical ground reaction

force in early stance and the first peak of the external knee adduction moment. These factors

may accelerate the development of e.g. joint osteoathritis [11,12].

The evolution of prosthetic ankle-foot units has undergone impressive developments in

recent decades, mainly focused on the generation of adequate push-off power in functional

performance. State-of-the art Energy Storing And Return (ESAR) ankle-foot units, i.e. Ossur’s

Flex-Foot and Seattle Light generated almost 3 respectively 2 times greater energy when com-

pared to the early Solid Ankle Cushion Heel (SACH) ankle-foot units [13]. Other studies com-

paring these designs showed that increased push-off power contributed to a reduction of

metabolic cost with a prototype of a controlled ESAR [14] and increased self-selected walking

speeds with an advanced ESAR, i.e. Ossur’s Flex-Foot [15].

Further technological advancements include the powered (microprocessor controlled)

ankle-foot unit (PWR) which is also associated with an increased peak ankle power [16,17]

and a reduction in metabolic cost [17–19]. However, the relationship between metabolic
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energy and mechanical work is a complex one and the results of other studies have shown that

powered ankle-foot units do not necessarily reduce metabolic cost, despite increased ankle

push-off work [20].

In healthy non-amputee subjects, the level of ankle push-off power increases with walking

speed [21]. Similar to non-amputee control subjects, unilateral lower-limb amputees exhibit

increased push-off ankle power with increasing walking speed [22–24]. For example, when

walking with the iWalk’s Power Foot BiOM (the only type of commercial powered prosthetic

foot in the market at this time) peak ankle power increases from about 1.3 W/kg at 0.75 m/s

walking speed to about 4.2 W/kg at 1.75 m/s [23]. However, corresponding experiments with

ESAR or SACH ankle-foot units are not known to us. Moreover, there seems to be no studies

comparing the push-off power of the three different ankle-foot units (SACH, ESAR, PWR) at

various walking speeds.

Thus, the objective of this systematic review was to identify push-off power differences and

their relation to walking speeds in three types (SACH, ESAR and PWR) of both pre-market

(prototypes) and commercial ankle-foot units. The secondary objective was to evaluate if the

push-off power differs among prosthetic ankle-foot types when walking speed increases.

Materials and methods

This review was performed in compliance with the preferred reporting items for systematic

review and meta-analysis protocols [25]. For the literature search the databases of Web of Sci-

ence, PubMed, IEEE xplore and Google Scholar were accessed from the initiation of the data-

bases up to June 17th, 2019. The used search term was: ‘ampu�’ AND ‘prosth�’ AND ‘ankle-

power’ AND ‘push-off’ AND ‘walking’. Only journal papers and extended conference proceed-

ings (e.g., IEEE) in the English language were considered.

After removing duplicates, two reviewers (R.M. and K.L.) independently reviewed the

remaining publications for eligibility based on the title and abstract. The following topics led

to the inclusion of a publication: 1) unilateral trans-tibial amputees with lower limb prosthesis

and 2) reported analysis of ankle power during level walking (also case studies). Exclusion cri-

teria were: 1) purely theoretical concepts, 2) robotics, 3) non-amputees with simulated ampu-

tation (e.g. wearing an ankle-foot prosthesis emulator), 4) non-amputees walking with an

ankle-foot-orthosis or an ankle exoskeleton, 5) partial foot amputees, 6) pediatric amputees, 7)

trans-femoral or bilateral trans-tibial amputees and 8) running or jumping. After the first

screening of the title and abstract, full texts were obtained for publications considered poten-

tially eligible. The flow diagram in Fig 1 depicts the review process.

Data extraction from the included publications was completed by one of two reviewers (R.

M.), with a third reviewer (L.T.) checking the extracted data for accuracy and completeness.

Any identified discrepancies were discussed by all three reviewers to ensure the accuracy of

the extracted data.

The data extracted from the included studies were: 1) the clinical population examined

(number of subjects, age, weight, height), 2) the type of the prosthetic ankle-foot units (SACH,

ESAR, PWR; see below), 3) walking speed, 4) peak ankle power together with 5) walking ter-

rain (treadmill or over ground) and the used calculation method.

The ISO standard (13405–2:2015(E)) provides a classification and description of prosthetic

components related to their motion, activation and controls without any attempt to categorize

performance levels [26]. However, identifying selection criteria for prosthetic ankle-foot units

with regard to performance levels and intended use appears to be difficult because of con-

founding factors (users´condition, capacity and anthropometrics, prosthetic alignment, inter-

face-fit). Thus, a multifactoral modelling approach would be underpowered because the
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sample sizes in the existing literature are too small. Cherelle et al. [26] selected prosthetic

ankle-foot units based on the historical design development a) conventional feet (SACH), b)

early (i.e. SAFE Foot), advanced (i.e. Ossur’s Flex-Foot) and articulated ESR feet (ESAR), and

c) bionic feet (i.e. iWalk’s Power foot BiOM and several prototypes). Unlike Cherelle et al. [26]

we assigned the articulated ESR feet (i.e. prototype of a controlled ESAR) as PWR because they

make use of electronics and small servomotors to engage or disengage locking mechanisms.

Statistical analysis (SPSS 20; Chicago, IL, USA) was performed using linear regression to

determine whether the ankle push-off power of different types (SACH, ESAR, and PWR) of

pre-market (prototypes) and commercial ankle-foot units varied with regard to walking speed.

Pearson correlation coefficients were used to determine the association between walking speed

and the different types of the prosthetic ankle-foot units (SACH, ESAR, and PWR). To com-

pare the push-off power of the different prosthetic ankle-foot units, a median split on walking

speed was implemented.

Based on the median split, we employed two one-way between subjects ANOVAs (sepa-

rately for slower and faster walking speeds) with Post-hoc analysis (Tukey HSD) to compare

the push-off power between the prosthesis and non-amputated controls (NA). To compare the

push-off power for slower and faster walking speed we performed a one-way ANOVA, sepa-

rately for SACH, ESAR, PWR and NA. The significance level was set at p< 0.05.

Fig 1. Flowchart showing the inclusion process.

https://doi.org/10.1371/journal.pone.0225032.g001

Prosthetic push-off power in trans-tibial amputee walking

PLOS ONE | https://doi.org/10.1371/journal.pone.0225032 November 19, 2019 4 / 15

https://doi.org/10.1371/journal.pone.0225032.g001
https://doi.org/10.1371/journal.pone.0225032


Results

The search retrieved a total of 474 publications across the four selected databases. 88 of them

were classified as potentially eligible on preliminary screening. Assessment of full texts resulted

in 31 publications meeting the quality criteria. In three cases, two publications appeared to be

related to the same dataset (Fig 1). Thus, 28 publications were rated eligible for inclusion in the

systematic literature review.

Of the 28 studies shown in Table 1, seven investigated the push-off power in SACH (earliest

included study was published in 1993 [27]), 18 examined the push-off power in ESAR (earliest

included study was published in 1995 [28]) and 14 the push-off power in PWR ankle-foot

units (earliest included study was published in 2011 [29]). Three of the 28 studies compared

SACH with ESAR [28,30,31] and eight publications compared ESAR with PWR. Comparison

between non-amputees (NA) and different prosthesis were found in five publications, namely:

one publication compared NA with SACH [27], two compared NA with ESAR [32,33], one

compared NA with PWR [23], and one compared NA with ESAR and PWR ankle-foot pros-

theses [17]. None of the 28 studies compared all three different ankle-foot units.

The sample sizes differed between publications and ranged from one [28,30,34–37] and 22

participants [38]. In total, 192 trans-tibial amputees were included in our statistical analysis.

The methods for calculating the push-off power varied between publications (Table 1): 13

publications reported to have made a rigid foot segment (RFS) assumption; three [32,38,39]

used the UD model (UD) and the method in five publications is described as segmentally-

agnostic (SA) [40]. Additionally, four studies [24,34,36,41] determined push-off power directly

from parameters given by the powered device or applied individual calculations (other) and

three studies [30,35,42] did not specify details of push-off power calculations.

The investigated walking speed ranged from 0.8 [43] to 1.84 m/s [27], from 0.85 [38] to 1.39

m/s [28,32] and from 0.5 [24] to 1.75 m/s [23] for the SACH, ESAR, and PWR ankle-foot units

(Fig 2). Furthermore, the results of the peak ankle push-off power ranged from 0.2 [30] to 1.01

W/kg [27], from 0.71 [37] to 2.89 W/kg [32], and from 0.88 [24] to 4.2 W/kg [23] for the

SACH, ESAR and PWR ankle-foot units (Fig 2). Positive correlations between walking speed

and peak push-off power were found for ESAR (r = 0.568, p = 0.006) and PWR (r = 0.820,

p = 0.000) but not for SACH (r = 0.267, p = 0.522).

For slower walking speeds, significant differences in the push-off power were established

between SACH (0.61 ± 0.31 W/kg) and PWR (1.99 ± 0.87 W/kg), SACH and NA (1.97 ± 0.49

W/kg), and ESAR (1.16 ± 0.23 W/kg) and PWR (Fig 3). For faster walking speeds, significant

differences in the push-off power were found between SACH (0.70 ± 0.27 W/kg) and ESAR

(1.84 ± 0.54 W/kg), SACH and PWR (3.16 ± 0.68 W/kg), SACH and NA (3.58 ± 0.75 W/kg),

ESAR and PWR, and ESAR and NA (Fig 3). Additionally, when comparing the push-off

power for slower and faster walking speeds significant differences were identified for ESAR

(p = 0.01), PWR (p = 0.02), and NA (p = 0.01).

Discussion

To our knowledge, this paper is the first to compare the push-off power of three different

kinds of prosthetic ankle-foot units (SACH, ESAR, and PWR) at different walking speeds. The

results of our analyses demonstrated that a positive correlation between walking speed and

push-off power can be found when walking with the PWR or ESAR but not for SACH feet.

Furthermore, we found that for higher walking speeds (> 1.21 m/s), push-off power perfor-

mances among the different types increased whereas at lower walking speed (� 1.21 m/s) the

differences in push-off power performance were lower. Thus, push-off power can be used as a
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Table 1. Studies included in systematic review.

Articles N Age

[years]

Weight

[kg]

Height

[cm]

Prosthesis Walking speed

[m/s]

Peak power

[W/kg]

Terrain Methods

Realmuto et al., 2019 [37] 1 50 82 180 ESAR 1.0 0.71 treadmill RFS

Heitzmann et al., 2018 [32] 11 40±12 81±17 180±9 ESAR 1.33–1.39 1.48–2.89 ground UD

11 37±11 76±12 179±8 NA 1.44 4.33 ground

Houdijka et al., 2018 [44] or Wezenberger et al. 2014

[47]

15 56±11 86±13 174±4 SACH 1.22 0.6 ground SA

ESAR 1.22 1.7

Childers & Takahashi, 2018 [39] 5 44±14 81±14 173±8 ESAR 1.1 0.75–1.1 treadmill UD

Tahira et al., 2018 [22] 2 35±1 96±19 183±2 PWR d 0.75–1.65 1.1–3.3 ground RFS

Rayc et al., 2018 [38] 22 53±12 102±19 178±8. ESAR 0.85 1.0 ground UD

Grimmer et al., 2017 [34] 1 17 55 - ESAR 1.1 1.38 treadmill other

PWR g 1.1 1.71

Weinert-Aplinc et al., 2017 [33] 10 28±4 90±14 182±5 ESAR 1.36 2.26 ground RFS

10 30±6 78±8 182±5 NA 1.29 3.12 ground

Jeffers & Grabowskia, 2017 [64] or Montgomery &

Grabowski, 2018 [56]

10 42±11 77±15 170±8 ESAR 1.25 2.05 treadmill RFS

PWR d 1.25 2.05

Feng & Wang, 2017 [24] 3 47±11 69±13 171±1 PWR h 0.5–1.1 0.88–2.0 treadmill other

Esposito et al., 2016 [17] 6 29±6 93±6 181±10 ESAR 1.24 1.9 ground RFS

PWR d 1.24 2.95

6 23±5 91±12 179±11 NA 1.21 2.3 ground

Quesadaa et al., 2016 [20] 6 47±6 88±9 179±4 PWR i 1.25 2.95 treadmill RFS

Huanga et al., 2015 [41] 5 55±19 - - ESAR 1.0 1.35 treadmill other

PWR f 1.0 3.1

Doyle et al., 2014 [42] 10 36±8 88±18 176±7 ESAR 1.29 2.2 ground ns

Huang et al., 2014 [35] 1 57 90 188 ESAR 1.0 1.25 treadmill ns

PWR f 1.0 3.0

Pickleb et al., 2014 [65] 9 30±6 95±8 180±10 ESAR 1.25 1.48 ground RFS

PWR d 1.25 3.29

Zhu et al., 2014 [36] 1 - 70 - PWR j 1.25 3.3 ground other

Grabowski & D’Andrea, 2013 [23] 7 45±6 100±10 181±8 PWR d 0.75–1.75 1.3–4.2 treadmill RFS

7 48±7 98±12 186±6 NA 0.75–1.75 1.4–4.2 treadmill

Hill & Herr, 2013 [48] 2 34±8 71±2 174±1 PWR d 1.25 4.0 ground RFS

De Ashaa et al., 2013 [66] 8 45±11 83±19 177±5 ESAR 0.93–1.38 1.2–1.05 ground SA

Yeunga et al., 2013 [30] 1 47 75 170 SACH 1.14 0.2 ground ns

Segal et al., 2012 [46] or Morgenroth et al., 2011 [10] 7 52±12 81±10 185±5 ESAR 1.14 1.4 ground SA

PWR e 1.14 3.2

Venturaa et al., 2011 [31] 12 49±17 82±13 178±6 SACH 1.2 0.4 ground RFS

ESAR 1.2 1.25

Zelika et al., 2011 [29] 5 50±13 77±3 - ESAR 1.14 1.36 ground SA

PWR e 1.14 3.1

Prince et al., 1998 [67] 5 42±14 80±2 175±7 SACH 1.15 0.65 ground SA

Allard et al., 1995 [28] 1 24 - - SACH 1.21 0.99 ground RFS

ESAR 1.39 1.36

Hubbard & McElroy, 1994 [43] 20 - - - SACH 0.8 0.8 ground RFS

(Continued)
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selection criterion to differentiate between ankle-foot units for prosthetic users with regard to

their bandwidth of walking speeds.

Different levels in push-off power

With the objective to compare the push-off power of three different kinds of prosthetic ankle-

foot units (SACH, ESAR, and PWR) it was demonstrated that their push-off power perfor-

mance progresses differently at different walking speeds. In able-bodied individuals positive

peak ankle push-off power increases with walking speed [21]. To mimic human gait, PWR

ankle-foot units adjust push-off power based on walking speed, i.e. push-off power increases

with walking speed [22–24]. This has already been proven in the literature and can also been

seen in Fig 2 (similar slopes of the PWR and NA regression lines) and Fig 3 (no significant dif-

ferences of peak push-off power for slower and faster walking speeds).

A positive correlation between walking speed and push-off power can also be found when

walking with the ESAR (Fig 2), but with a flatter slope of the regression line when compared to

the PWR (PWR slope: 2.73, ESAR slope: 1.92). With the SACH ankle-foot unit, the push-off

power does not increase with walking speed (Fig 2). Shorter step length, lower gait symmetry

[44], increased sound limb loading [15], increased energy cost, reduced gait efficiency in

declines and inclines at higher speeds [45] are the results in comparisons when push-off power

increased in prosthetic ankle-units.

The differences in push-off power between the prosthetic ankle-foot units became larger

with increased walking speed (Figs 2 and 3). For slower walking speeds (< 1.22 m/s), signifi-

cant differences in the push-off power were present between SACH and PWR, and ESAR and

PWR (Fig 3). No significant differences were found between SACH and ESAR. For faster walk-

ing speeds, significant differences in the push-off power can be found between SACH and

ESAR, SACH and PWR, and ESAR and PWR (Fig 3). Thus, the benefit of push-off power in

the PWR compared to ESAR and SACH, and respectively ESAR to SACH, was more pro-

nounced at faster walking speeds.

Table 1. (Continued)

Articles N Age

[years]

Weight

[kg]

Height

[cm]

Prosthesis Walking speed

[m/s]

Peak power

[W/kg]

Terrain Methods

Prince et al., 1993 [25] 6 20±6 61±10 168±7 SACH 1.49–1.84 0.5–1.01 ground RFS

5 19±8 58±15 166±13 NA 1.54–1.9 2.71–4.5 ground

UD = UD model [50]; AS = segmentally-agnostic [40], no assumptions are made about the foot rigidity [49]; RFS = rigid foot segment model, foot assumed as rigid-

segment; other = individual calculation performed, or different model applied; ns = foot model not specified.
a Peak power values are estimated from published figures.
b The author provided additional data not mentioned in the publication.
c Missing parameters were retrieved from a previously published study using the same data set.
d PWR = BIOM (iWalk, USA).
e PWR = CESR (prototype, USA).
f PWR = powered ankle-foot with pneumatic artificial muscles (prototype, USA).
g PWR = Walk-Run Ankle (pre-market ankle-foot unit, SpringActive, USA).
h PWR = PKU-RoboTPro-II (prototype, Peking University, China).
i PWR = Powered ankle-foot prosthesis emulator (prototype, University of Pittsburgh, USA).
j PWR = PANTOE (prototype, Peking University, China).

https://doi.org/10.1371/journal.pone.0225032.t001
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Prosthetic ankle-foot designs

During push-off the ESAR ankle-units deliver less power than the PWR [10,17,29,46] but

more power than the SACH [28,31,44,47]. SACH ankle-units are composed out of a solid core

and resilient material. Their dynamics rely on the recoil of the resilient material both in the

heel and the toe. A typical ESAR foot with a direct bolt-on heel to toe blade stores energy

within the composite material by deformation during early to mid-stance and then allows

those elastic structures to recoil and release the energy to provide energy for propulsion con-

tributing to push-off during pre-swing. Within the ESAR, the Pro-Flex showed distinct push-

off power performance (Table 1 and Fig 2). The Pro-Flex delivered similar peak ankle power

during push-off as the PWR ankle-foot units and more energy during push-off when

Fig 2. Linear regression between walking speed and peak ankle push-off power for different ankle-foot units and non-amputees. Regression lines

represent the data of the included studies independent of the sample size. The equation of regression are given for different ankle-foot units (SACH, ESAR, and

PWR) and non-amputees (NA).

https://doi.org/10.1371/journal.pone.0225032.g002
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compared to the Vari-Flex (ESAR) ankle-unit [32]. The 3 blade-linkage system on the Pro-

Flex Foot is designed to pivot the shank section faster over the foot section and increases

Fig 3. Peak ankle push-off power for different types of ankle-foot units and non-amputees. Mean scores of peak ankle push-off power between different

types of ankle-foot units (SACH, ESAR, and PWR) and non-amputees (NA), separated for slower (0.5–1.21 m/s) and faster (1.22–1.9 m/s) walking speeds.

Error bars represent standard errors. Significant differences are indicated with ‘�’ (p< 0.05), ‘��’ (p< 0.01), and ‘���’ (p< 0.001), respectively.

https://doi.org/10.1371/journal.pone.0225032.g003
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progressively the stiffness at terminal stance. In consequence the forefoot section is loaded

more rapidly at initial stance and allows for more prosthetic foot dorsiflexion at late stance

[39]. More dorsiflexion results in more energy stored in the forefoot section which increases

the energy returned during push-off. The PWR add external power generation (e.g. by using a

serial elastic actuator [48]) into the kinetic chain and thereby increase the potential energy

available at pre-swing.

Push-off power modelling approaches

The approaches for calculating the push-off power vary between studies. In most studies the

data for push-off power calculations were collected via 3D motion analysis. The conventional

models were based on the assumptions that the foot is a rigid body segment (RFS) and has a

defined joint articulation point. Both assumptions are violated when measuring prosthetic feet

with flexible keels and no articulation point [40,49]. The method of Prince et al. [49] defines

net prosthetic power as sum of rotational and translational power. The necessary parameters

are determined at a rigid part at the distal end of the prosthetic leg. The method does not rely

on the previously mentioned assumptions and can be described as segmentally-agnostic [40],

neither does the UD model which provides an estimate for below-knee structures but without

determining an ankle joint center or foot segment [50]. The model combines rigid and

deformable model components. Zelik et al. [40] showed that the conventional 3 DOF ankle

power, defining the foot as single rigid body, tends to overestimate the net power compared to

ankle foot power calculations without a single rigid body assumption or models that relax this

assumption by a different segmentation of the foot. Besides the used marker model, marker

placement and shoes impact the measurements of push-off power [51,52]. Due to the wide var-

iance in shoe characteristics, shoe wear is hardly controllable and has therefore not been con-

sidered within the underlying review. Same holds true for marker placement, e.g. the position

of the ankle marker from the Plug-in Gait model may be difficult to define precisely as no obvi-

ous joint center may exist depending on the foot design and is usually subject to individual

estimation of the tester. The significance of the selected measurement methodology should be

considered when examining ankle power results of prosthetic feet.

Clinical outcomes

Key factors limiting the ability of lower limb prosthetic users are associated with increased risk

of falls, risk of osteoarthritis, occurrence of lower back pain and skin injuries [53–56]. The

influence of push-off power has not been linked to risks within this literature review.

Gait after unilateral lower limb amputation is reported to be asymmetrical and it is thought

that the asymmetrical limb loading may lead to the majority of the above-mentioned limita-

tions. Within the included publications, the definition of symmetry was based on many differ-

ent parameters. Step length symmetry was reported to improve when comparing SACH versus

ESAR [44]. However, during level walking PWR and ESAR provided similar symmetry results

[57].

Grabowski et al. found a reduction of 20% in external knee adduction moment (EAM) on

the sound side when using a powered ankle-foot prosthesis [23]. Morgenroth et al. reported

similar results, namely, that EAM was reduced by 26% on the sound side when using a PWR

compared to a conventional ankle-foot unit (i.e. Seattle Light 2). Even though the ankle push-

off power of the PWR was significantly higher than ESAR, differences in EAM were not statis-

tically significant between these two foot types [10]. In literature an increased EAM is believed

to contribute to the development of osteoarthritis [58,59].
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Additionally, metabolic cost has been frequently investigated in relation to prosthetic push-

off power but results are inconclusive. Five publications [17,19,60–62] report on reduced met-

abolic cost resulting from the presence of active push-off in prosthetic foot-ankle units how-

ever, these publications did not report the push-off power values. In contrast, three

publications included in the present systematic review reported that increased push-off power

work did not reduce metabolic cost in trans-tibial amputees during level walking [20,46,57].

In summary, none of the publications included in this paper established a direct link

between increased push-off power and clinical outcomes. More research is needed in the

future to link the specific performance of a device to a particular clinical outcome due to the

fact that confounding factors are manifold and cannot be excluded. Typical limitations con-

cerned with prosthetic research studies is the absence of clinically authoritative differences due

to the sensitivity of the outcome measures and their sparse validation. However, future

research is needed to reveal whether physiological ankle push-off power has a positive effect to

mitigate comorbidities such as osteoarthritis or lower back pain. Future research might

observe prosthetic users during their daily routine (e.g. when descending curbs [63]) in order

to gain more insightful knowledge regarding potential clinical benefits of push-off power.
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