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Abstract 

Background:  Esophageal microbiota may influence esophageal squamous cell carcinoma (ESCC) pathobiology. 
Therefore, we investigated the characteristics and interplay of the esophageal microbiota in ESCC.

Methods:  We performed 16S ribosomal RNA sequencing on paired esophageal tumor and tumor-adjacent samples 
obtained from 120 primarily ESCC patients. Analyses were performed using quantitative insights into microbial 2 
(QIIME2) and phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2). Species 
found to be associated with ESCC were validated using quantitative PCR.

Results:  The microbial diversity and composition of ESCC tumor tissues significantly differed from tumor-adjacent 
tissues; this variation between subjects beta diversity is mainly explained by regions and sampling seasons. A total of 
56 taxa were detected with differential abundance between the two groups, such as R. mucilaginosa, P. endodontalis, 
N. subflava, H. Pylori, A. Parahaemolyticus, and A. Rhizosphaerae. Quantitative PCR confirmed the enrichment of the 
species P. endodontalis and the reduction of H. Pylori in tumor-adjacent tissues. Compared with tumor tissue, a denser 
and more complex association network was formed in tumor-adjacent tissue. The above differential taxa, such as H. 
Pylori, an unclassified species in the genera Sphingomonas, Haemophilus, Phyllobacterium, and Campylobacter, also 
participated in both co-occurrence networks but played quite different roles. Most of the differentially abundant 
taxa in tumor-adjacent tissues were negatively associated with the epidermal growth factor receptor (EGFR), erb-b2 
receptor tyrosine kinase 2 (ERBB2), erb-b2 receptor tyrosine kinase 4 (ERBB4), and fibroblast growth factor receptor 1 
(FGFR1) signaling pathways, and positively associated with the MET proto-oncogene, receptor tyrosine kinase (MET) 
and phosphatase and tensin homolog (PTEN) signaling pathways in tumors.

Conclusion:  Alterations in the microbial co-occurrence network and functional pathways in ESCC tissues may be 
involved in carcinogenesis and the maintenance of the local microenvironment for ESCC.
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Introduction
Esophageal cancer is a malignant cancer and contributes 
to disease burden, especially in developing countries. In 
2020, there were 604,100 new cases of esophageal can-
cer globally [1]: China had the highest number of inci-
dent cases, accounting for up to 53% of new cases [2]. 
There are two main histological subtypes of esophageal 
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cancer, esophageal squamous cell carcinoma (ESCC) and 
esophageal adenocarcinoma (EAC), among which ESCC 
accounts for more than 85% of global esophageal cancer 
cases [3]. ESCC develops from the squamous epithe-
lial cells that make up the inner lining of the esophagus. 
The etiology of ESCC is multifactorial and still not well 
elucidated, which restricts the effective prevention of 
this disease. Thus, there is an urgent need to clarify the 
pathogenesis of ESCC and to explore new diagnostic and 
therapeutic possibilities.

The microbiome is an emerging area in the etiological 
exploration of various diseases. A balance of the micro-
biome is strongly associated with a variety of human 
diseases: the gastrointestinal microbiota plays an indis-
pensable role in maintaining the health of humans [4]. 
The normal microenvironment is conducive to maintain-
ing the steady state of the esophagus, and dysbiosis of the 
microbiota can lead to the occurrence and development 
of ESCC [5, 6]. However, there are insufficient studies on 
the changes in esophageal microbiota in ESCC, and the 
findings of these studies are also inconsistent [7, 8]. The 
earliest findings are that lower microbial richness in the 
upper digestive tract is independently associated with 
esophageal diseases [9]. However, these upper digestive 
microbiota may not colonize the esophagus. Then, Yang 
investigated the differences in esophageal microbiota in 
ESCC (n = 18) and patients with physiologically normal 
esophagus (n = 11) by 16S rRNA profiling [8]. In our 
previous studies, we detected the esophageal microbiota 
associated with alcohol consumption (a well-known risk 
factor for ESCC) [10] and prognosis [11] in ESCC. Shao 
characterized the microbial communities of paired tumor 
and nontumor samples from only 67 patients with ESCC 
in northern China [7]. Though the above studies explored 
the esophageal microbiota, the sample sizes were too 
small to find differences in diversity with adequate power 
[12] and did not take other factors that influenced the 
microbiota into consideration, including different regions 
and sampling seasons.

Recently, factors, including the region [13], sampling 
season [14], and interactions between microbes [15], 
have been shown to influence microbiota composi-
tion. He et  al. determined that host location showed 
the strongest associations with microbiota variations 
[13]. Moreover, there are significant shifts in human 
microbiome composition across different seasons [14]. 
In addition, microbes involved in a variety of behaviors 
involving complex cooperation and communication may 
be involved in the development of human diseases, and 
no studies have reported the interaction network of the 
esophageal microbiota thus far. Hence, it is essential to 
consider these factors in microbiome studies.

Therefore, to identify the impact of different regions 
and sampling seasons on the esophageal mucosal micro-
biota of ESCC, we conducted a study and performed 
high-throughput profiling of the esophageal mucosal 
microbiota in paired tumor and tumor-adjacent tissues 
in the same ESCC cases. Additionally, we detected the 
microbial interactions by co-occurrence networks and 
their functional effects on the host.

Methods
Study population
We performed a hospital-based retrospective study of 
120 patients pathologically diagnosed with primary 
ESCC between February 2013 and October 2017 at Fujian 
Provincial Cancer Hospital and Zhangzhou Municipal 
Hospital (Supplementary file  1). Subjects were chosen 
according to the following criteria. Inclusion criteria: (a) 
underwent esophagectomy surgery; (b) pathologically 
diagnosed with primary ESCC; (c) tumor stage clarified 
with number of harvested lymph nodes (HLN) ≥ 20; (d) 
undergoing neither preoperative radiotherapy nor chem-
otherapy; (e) no antibiotic use through preoperative two 
months; (g) no record of other infectious diseases; and 
(h) resident of Fujian Province for more than 10 years. 
Exclusion criteria: (a) incomplete clinicopathological 
data and nonavailability of tissue samples; (b) metastatic 
malignancy or recurrent esophageal cancer; (c) received 
pharmacotherapy (such as oral, intramuscular, and intra-
venous antibacterial drugs, various probiotics or other 
drugs affecting the microbiota) within a month. Written 
informed consent was obtained from all the patients. The 
study was approved by the Ethics Committee of Fujian 
Medical University (approval no. 201495).

Demographic and clinical information
Basic information for all the participants was collected 
through a detailed questionnaire that included sociode-
mographic status, dietary habits, daily physical activity, 
smoking status, alcohol consumption, family history of 
cancer and gastrointestinal symptoms. Clinicopathologi-
cal features including tumor location, and tumor, node, 
and metastasis (TNM) stage for each patient were also 
collected from their respective medical records.

Sample collection and preservation
Paired tumor and tumor-adjacent tissue samples were 
obtained from each patient immediately after surgical 
resection in the operating room. The tumor-adjacent 
tissue samples were from an area at a distance of 3 cm 
from the tumor tissue. The tissue samples were cut into 
small pieces, placed in autoclaved cryovials, stored in 
liquid nitrogen for 1 h, and, then transferred to a − 80 °C 
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refrigerator for storage. All samples were evaluated by 
pathological hematoxylin-eosin (HE) staining.

Bacterial DNA extraction and 16S rRNA sequencing
The sodium dodecyl sulfate (SDS) method was used to 
extract bacterial DNA from the samples. The extracted 
DNA was quantitatively detected by a Qubit fluorometer 
(Invitrogen, America), and the results were acceptable. 
Each extraction was performed with a blank buffer con-
trol to detect contaminants from either reagents or other 
unintentional sources. However, the negative controls 
detected too little DNA to prepare the library and hence 
were not sequenced.

Amplification of the 16S ribosomal RNA (rRNA) gene 
used primers targeting regions V3–V4, which included a 
forward primer (341F: 5′-CCT​AYG​GGRBGCASCAG-3′) 
and reverse primer (806R: 5′-GGA​CTA​CNNGGG​TAT​
CTAAT-3′). The sequencing platform was the HiSeq2500 
PE250 (Illumina, America).

Quantitative PCR (qPCR) validation
DNA from samples was diluted 10- and 100-fold, respec-
tively, in PCR grade water to facilitate downstream 
analysis. Relative abundance was calculated by the ΔCt 
method. The cycle threshold (Ct) values for P. endodon-
talis and H. pylori were normalized using a primer set 
for the total bacteria. The primer sequences for each 
assay were as follows: P. endodontalis forward primer, 
5′-CGG​TAA​TAC​GGA​GGA​TAC​G-3′; P. endodontalis 
reverse primer, 5′-TTC​AAC​GGC​AAG​ACT​ACA​-3′; H. 
pylori forward primer, 5′-GGT​GAG​TAA​CGC​ATA​GGT​
-3′; H. pylori reverse primer, 5′-CTG​ATA​GGA​CAT​AGG​
CTG​AT-3′; Eubacteria 16S forward primer, 5′-GGT​GAA​
TAC​GTT​CCCGG-3′; Eubacteria 16S reverse primer, 5′- 
TAC​GGC​TAC​CTT​GTT​ACG​ACTT-3′. The fold differ-
ence (2-ΔΔCt) in P. endodontalis and H. pylori abundance 
in tumor versus tumor-adjacent tissue was calculated by 
subtracting ΔCttumor from ΔCttumor-adjacent, where ΔCt 
is the difference in threshold cycle number for the test 
and reference assay. Amplification was performed with 
the ABI QuantStudio™ 5 RealTime PCR system (Applied 
Biosystems) using the following reaction conditions: 
30 sec at 95 °C, and 40 cycles of 5 sec at 95 °C and 30 sec 
at 60 °C.

Total RNA was extracted using TRIzol total RNA 
isolation reagent (ACC​URA​TE BIOTECHNOLOGY, 
HUNAN,Co.,Ltd). RNA was used to reverse tran-
scribe cDNA using an Evo M-MLV RT Kit with gDNA 
Clean for qPCR (ACC​URA​TE BIOTECHNOLOGY, 
HUNAN,Co.,Ltd). Phosphatase and tensin homolog 
(PTEN) (forward primer, 5′- GAG​GGC​CAG​GTC​ATA​
AAT​AA-3′, reverse primer, 5′- ACC​ATA​AAA​TGT​
AAG​CAA​GGC-3′) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (forward primer, 5′-GCA​CCG​
TCA​AGG​CTG​AGA​AC-3′, reverse primer, 5′-TGG​TGA​
AGA​CGC​CAG​TGG​A-3′) mRNA levels were determined 
using quantitative reverse transcription PCR (qRT-PCR).

Sequence data processing
Raw sequencing data from patients with ESCC were 
imported into quantitative insights into microbial ecol-
ogy (QIIME2–2020.02) [16] and processed using the 
DEBLUR algorithm to denoise and then to infer exact 
amplicon sequence variants (ASVs). The detailed analysis 
workflow is presented in Supplementary file  1. To pro-
vide better resolution and limit the false discovery rate 
(FDR) penalty on statistical tests, the low abundance fea-
tures (with total ASV counts less than 100 or detected in 
less than 20 samples) were filtered before the differential 
abundance analysis (955 features left) (Table S1).

Statistical analysis
Questionnaires and clinicopathological data were dou-
ble-entered into EpiData (version 3.1, Denmark). The 
demographic and baseline clinical features were dis-
played using n (%). The individuals’ risk index of ESCC 
was calculated by variables including age, smoking, 
drinking, eating speed, hot food, pickled food, and fruit 
from the questionnaire (Supplementary file 2). All statis-
tical analyses were evaluated using R software (R version 
4.0.2), and a two-tailed P < 0.050 was considered statisti-
cally significant.

The detailed analyses of microbial diversity are shown 
in Supplementary file  1. The analysis of composition of 
microbiomes 2 (ANCOM2) tests [17] were performed 
to detect the differential abundance in different tissue 
groups. For the functional prediction, the phylogenetic 
investigation of communities by reconstruction of unob-
served states 2 (PICRUSt2) [18] pipeline was used to gen-
erate predictions for EC numbers and MetaCyc pathways. 
The strength of the edges of the microbial co-occurrence 
network was assessed by the SparCC algorithm [19], and 
the interaction network diagram was visualized with 
Cytoscape [20]. The top hub taxa were assessed by the 
plugin cytoHubba [21] in Cytoscape. Then, we selected 
four well-established pathogenesis enzyme genes in 
ESCC according to Lin [22] from the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database [23]. Then, the 
Spearman correlation was performed to explore the asso-
ciation between the differential taxa and four enzyme 
genes. The DESeq algorithm [24] was applied to calcu-
late the differential MetaCyc pathways and visualized by 
volcano plot. Then, the Spearman correlation between 
differential taxa and differential MetaCyc pathways was 
calculated.
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Results
Basic characteristics of all participants
The demographic and clinical data of the study popu-
lation are reported in Table S2. A total of 120 ESCC 
patients were recruited from two independent clinical 
centers. There were 89 males and 31 females. The median 
age was 61 years. The majority of the tumors originated 
from the middle (n = 57) and lower (n = 52) esopha-
gus. Most of the patients had advanced tumors (n = 72). 
Approximately 85 cases had a high risk index.

Esophageal microbial diversity analysis
For alpha diversity, four characteristic metrics were 
evaluated. The alpha diversity in tumor-adjacent tis-
sue was significantly higher than that in tumor tissue, 
except for Pielou evenness index (Faith’s phylogenetic 
diversity P < 0.001, observed ASVs P < 0.001, Shannon 
index P = 0.027) (Fig. 1A). The difference in alpha diver-
sity between paired tumor and tumor-adjacent tissue was 
only observed in regions (Faith’s phylogenetic diversity 

P < 0.001, observed ASVs P < 0.001) and sampling seasons 
(Faith’s phylogenetic diversity P < 0.001, Observed ASVs 
P = 0.003) (Fig. 1B).

In the multivariate Adonis test, the beta diversity of 
tumor tissue was significantly different from that of 
tumor-adjacent tissue, as measured by Jaccard distance 
(P = 0.004), unweighted UniFrac distance (P = 0.004) or 
weighted UniFrac distance (P = 0.028) (Fig.  2A). About 
1–2% of the variance in beta diversity was explained by 
tissue type. Moreover, the differences in beta diversity 
between within paired tumor and tumor-adjacent tissue 
were associated with regions (P = 0.032) and sampling 
seasons (P = 0.042) based on unweighted UniFrac dis-
tance (Fig. 2B).

Microbial composition analysis
Pairwise Principal coordinate analysis (PCoA) results 
are displayed in Fig.  3A. Based on Bray Curtis, Jac-
arrd, and unweighted UniFrac distance, the microbiota 
from the two tissue types were separated into clusters. 
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Fig. 1  Microbial comparison for alpha diversity between tumor and tumor-adjacent tissues. A Alpha diversity based on the Pielou evenness index 
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A total of 9453 features were found after the sequence 
was denoised in all samples (Supplementary file  1). 
More taxa were observed in tumor-adjacent tissue than 
in tumor tissue (8133 vs. 6533) and approximately 5213 
taxa were detected in both tissues (Fig. 3B). The compo-
sition of the esophageal microbiota between tumor and 
tumor-adjacent tissue at the phylum and genus levels is 
shown in Fig.  3C and Fig. S1, respectively. To elucidate 
the phylogenetic relationship of the tumor and tumor-
adjacent microbiota, the heat trees of microbiota (relative 
abundance > 0.1%) were plotted, as shown in Fig. 3D. The 

relative abundance of corresponding branches of bacteria 
in the phyla Proteobacteria, Bacteroidetes, Fusobacteria 
and Firmicutes was similar between tumor and tumor-
adjacent tissue. However, some bacteria were enriched 
in different tissues (Fig.  3E). In class Alphaproteobac-
teria, the branches of bacteria of order Rhizobiales and 
Sphingomonadales were enriched in tumor tissue, while 
order Rhodospirillles was higher in tumor-adjacent tis-
sue. Most bacteria of the class Alphaproteobacteria and 
its branch were enriched in tumor tissue, except for the 
family Klebsiella. Moreover, the microbiota from phylum 
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Fig. 3  The profile of esophageal microbiota between tumor and tumor-adjacent tissues. A PCoA plots based on four distances between tumor 
and tumor-adjacent tissues. B The overlap of microbiota features between tumor and tumor-adjacent tissues. C Microbial relative abundances at 
the phylum level in tumor and tumor-adjacent tissues. D Heat tree plot of the relative abundance (higher than 0.1%) of microbiota in tumor and 
tumor-adjacent tissues. E The heat trees of microbiota for log2 ratio of median relative abundance between tumor and tumor-adjacent tissues by 
univariate Wilcoxon rank sum test. F The differentially abundant taxa between cancer and para-cancer in all regions (Panel A), Zhangzhou city (Panel 
B) and other regions (Panel C) after multivariate adjustment using ANCOM2. G Heatmap of the relative abundance of differential microbiota (the 
red words on the right side of the heatmap are enriched differential taxa in tumor tissue, and the green words are enriched that in tumor-adjacent 
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Fig. 3  (See legend on previous page.)
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TM7 and its branches of bacteria, class Bacilli, family 
Helicobacteraceae and its genus Helicobacter and its spe-
cies pylori were higher in tumor-adjacent tissue.

Differential abundance analysis
A total of 56 differential taxa were selected by the 
ANCOM2 algorithm (Fig.  3G). As the host region 
exerted the strongest effect on the microbiota, we divided 
all participants into the Zhangzhou group and other 
regions group (Table S3). There were 32, 36, and 16 dif-
ferentially abundant taxa between tumor and tumor-
adjacent tissue in the all regions group, the Zhangzhou 
group and other regions group, respectively (Fig.  3F). 
There were only three shared differential bacteria in 
tumor and tumor-adjacent tissue from different regions, 
named family Enterobacteriaceae, unclassified species 
from genus Sphingomonas and genus Phyllobacterium 
(Fig. 3G). It was clearly ascertained that differential bac-
teria in the phyla Firmicutes and Proteobacteria were 
enriched in tumor-adjacent tissue from Zhangzhou city. 
Moreover, we observed an interesting alteration in which 
the unclassified species in the genus Mycoplane was 
enriched in tumor tissue from other regions but enriched 
in tumor-adjacent tissue from Zhangzhou city. Sampling 
seasons were another powerful factor that influenced 
host microbiota (Fig. 3G). The microbiota in the phylum 
Cyanobacteria in tumor tissue sampled in summer had 
a higher relative abundance. The relative abundance of 
bacteria in the phylum Proteobacteria was significantly 
enriched in tumor-adjacent tissue when sampled in 
spring and summer from Zhangzhou city.

Hence, the dominant candidate differential taxa 
(Table 1) between tumor and tumor-adjacent tissue were 
selected according to the grand means of relative abun-
dance that exceeded 0.1% from the above 56 differential 
taxa. They were species R. mucilaginosa, P. endodontalis, 
unclassified species in the genus Leptotrichia, unclas-
sified species in the genus Phyllobacterium, and unclas-
sified species in the genus Sphingomonas, which were 
enriched in tumor tissue. On the other hand, class Bacilli, 
N. subflava, H. pylori, A. parahaemolyticus, A. rhizos-
phaerae, unclassified species in the genus Campylobacter 
and unclassified species in the genus Haemophilus were 
enriched in tumor-adjacent tissue. Next, to explore the 
confounding effect of regions, sampling seasons, tumor 
location and risk index on host microbiota, we added 
these four covariates into the ANCOM2 analysis. The 
results showed that the relative abundance of unclassified 
species in the genus Leptotrichia, unclassified species in 
the genus Sphingomonas, and A. rhizosphaerae could be 
influenced by region; the relative abundance of unclassi-
fied species in the genus Campylobacter could be influ-
enced by sampling season and tumor location. However, 

none of the differential taxa were significantly different in 
either the low- or high-risk indices in ESCC.

qPCR validation of esophageal species differential 
abundance
To validate the species we identified as differentially 
abundant in ESCC from our 16S rRNA-based micro-
biome analyses, we used qPCR to quantify the pres-
ence of P. endodontalis and H. pylori. Fold changes of 
qPCR abundances in tumor versus tumor-adjacent tis-
sue are shown in Fig. 3H. We measured an increase for 
P. endodontalis (P = 0.320) and a decrease for H. pylori 
(P = 0.160) in tumor-adjacent samples, demonstrating 
consistency with the result of the altered abundance of 
these species based on 16S rRNA-based analyses.

Microbial co‑occurrence networks
To understand the interaction among esophageal micro-
biota in tumor and tumor-adjacent tissue, we illustrated 
the microbial co-occurrence networks of the two groups. 
There were 3089 positive and 348 negative correlations in 
the tumor tissue, while the tumor-adjacent samples had 
3761 positive and 355 negative correlations. Obviously, 
the microbial co-occurrence networks were distinct 
between the tumor and tumor-adjacent tissue (Fig. 4A). 
However, wide correlations were investigated in the fam-
ily Lachnospiraceae, species C. aerofaciens and unclassi-
fied species in the genus Blautia in both tissue types.

To quantify such differences, we counted the number 
of nodes and their centrality in the microbial networks in 
different tissue types. As expected, the numbers of inter-
acting microbiota constituents in tumor-adjacent tissue 
(273 nodes) were higher than those in tumor tissue (201 
nodes) (Fig.  4A and B). The centrality of co-occurrence 
networks was described with three dimensions: degree, 
betweenness, and closeness centrality. Interestingly, the 
degree and closeness of shared nodes between tumor 
and tumor-adjacent tissue were quite different. Next, the 
edges of the networks were evaluated (Fig. 4C). Despite 
having a few overlapping edges, the distribution of the 
rank of overlapping edges varies in the tumor and tumor-
adjacent tissue.

To show the importance of the above candidate dif-
ferential taxa in the network, the heatmap is shown in 
Fig.  4D. Most of the differentially abundant taxa in the 
network were from the phylum Proteobacteria, and cer-
tain differentially abundant taxa did not emerge in the 
co-occurrence networks. The roles of differential taxa 
in different networks (tumor vs. tumor-adjacent tissue) 
also varied. The discrepancies in microbial co-occurrence 
networks in the two groups may be attributed to the spe-
cific metabolism in different tissue types.
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The association between esophageal microbiota 
and predicted function
Most of the differentially abundant taxa in tumor-adja-
cent tissue were negatively associated with EC 2.7.10.1, 
which regulated the epidermal growth factor recep-
tor (EGFR), erb-b2 receptor tyrosine kinase 2 (ERBB2), 
erb-b2 receptor tyrosine kinase 4 (ERBB4), and fibro-
blast growth factor receptor 1 (FGFR1) signaling path-
ways. In contrast, the differentially abundant taxa in 
tumor were positively associated with EC2.1.1.107 and 
EC3.1.3.16 in the MET proto-oncogene, receptor tyros-
ine kinase (MET) and PTEN signaling pathways respec-
tively (Fig.  5A). Moreover, the expression of PTEN by 
qRT-PCR was positively correlated with the abundance 
of unclassified species in genus Phyllobacterium in both 
tumor (R = 0.22, P = 0.180) and tumor-adjacent tissues 
(R = 0.37, P = 0.029), which was in line with the predicted 

results (Fig.  5B). Among the eight MetaCyc metabolic 
pathways that were significantly different between 
tumor and tumor-adjacent tissues (Fig.  5C, Table S4), 
the relative abundance of PWY-3661 and PWY-7431 was 
increased in the tumor tissue, and six other pathways 
(PWY-1882, PWY-5265, PWY-6565, PWY-6731, PWY-
6906, and PWY-7391) were enriched in tumor-adjacent 
tissue. Notably, the differentially abundant taxa played 
various roles in different tissues (Fig. 5D-E). For example, 
unclassified species from the genera Phyllobacterium and 
Sphingomonas were positively associated with PWY-6906 
and PWY-1882 in tumors but negatively with PWY-6731 
and PWY-6565 in tumor-adjacent tissue. Similarly, the 
correlation was demonstrated between taxa that were 
A. parahaemolyticus and A. rhizosphaerae and pathways 
including PWY-7431, PWY-7391, PWY-6731, and PWY-
1882 in tumor tissue, but PWY-6565 in tumor-adjacent 
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Fig. 5  The association between esophageal microbiota and predicted function. A The association between the differential microbiota and 
ESCC-related functional enzymes. B The correlation between the expression of PTEN by qRT-PCR and the abundance of unclassified species in 
the genus Phyllobacterium. C Volcano plot shows the differential MetaCyc metabolic pathways between tumor and tumor-adjacent tissues. The 
X-axis indicates the log2(fold change), and the Y-axis indicates -log10(FDR). The significant pathways enriched in tumor tissue (FDR < 0.05 and log2 
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dots. D, E The heatmap indicates the association between the differential MetaCyc metabolic pathways and microbiota in tumor tissue (D) and 
tumor-adjacent tissue (E)
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tissue. In addition, the unclassified species in the genus 
Haemophilus was only associated with the pathways in 
tumors.

Discussion
To characterize the esophageal microbiota in ESCC, we 
compared the microbial diversity and composition of 
paired tumor and tumor-adjacent tissues for ESCC in this 
study. Moreover, 56 candidate differential taxa were iden-
tified, of which 13 taxa were more abundant. In addition, 
we suggested that the microbial co-occurrence network 
was another critical aspect of the microbial community. 
Furthermore, the relationship between differential taxa 
and predicted functional ESCC-related gene pathways 
was investigated.

We observed differences in microbial diversity between 
the tumor and tumor-adjacent tissues for ESCC, which 
was similar to the findings of Yang [8] and Yu [9]. The 
microbial structure is modified due to the altered esoph-
ageal microenvironment in the progression of carcino-
genesis. Interestingly, in the general linear regression 
model, the within-pair differences in microbial diversity 
were only impacted by regions and sampling seasons, 
which was possibly attributed to regions and sampling 
seasons explaining most of the observed variations in the 
diversity measures of esophageal microbiota (Fig.  2A). 
This is in agreement with many studies that environmen-
tal factors including sampling regions or seasons are the 
relevant factors affecting microbiota [13, 25]. In addition, 
the microbiota composition varies in response to other 
factors [26], such as age, sex, diet, nutritional status, envi-
ronmental factors, lifestyles, and medications. According 
to Gupta [27], the important role of regions and seasons 
in microbiota diversity has been attributed to differences 
in host genetics or other host-specific factors such as 
innate/adaptive immunity, diet, and environmental expo-
sure. Therefore, further studies involving microbiomics 
are needed to consider the effect of these factors on the 
microbiota to ensure generalizability.

Several differential bacteria were detected in tumor-
adjacent tissue for ESCC. Of note, it has been reported 
that R. mucilaginosa upregulated TNF-α, and the upreg-
ulation of CD36 in all cell lines in cocultures [28] and 
the increased abundance of R. mucilaginosa exhibits 
the ability to produce acetaldehyde [29, 30]. The above 
results could explain the findings of the present study of 
a higher R. mucilaginosa in esophageal tumor tissue than 
that in tumor-adjacent tissue. In accordance with our 
results, Richard et al. [31] and Liu [32] identified that the 
tumor mucosal genus Sphingomonas had a particularly 
high prevalence in colitis-associated and bladder can-
cer. If the microbiota is involved in carcinogenesis, we 
can expect that it will be enriched in the tumor-adjacent 

tissue according to Wang’s hypothesis [33]. Many stud-
ies have indicated N. subflava is significantly more abun-
dant in healthy controls, as found in our study [34, 35]. 
In addition, similar observations previously reported that 
H. pylori was increased in adjacent compared to tumor 
tissues for gastric cancer, which is in line with our results 
[36, 37]. Sandra investigated Campylobacter species that 
appear to be more prevalent and abundant in the esoph-
agus of patients in Barrett’s esophagus [38], but their 
abundance decreased with the progression to EAC [39]. 
Our current study proved this finding in ESCC. Further-
more, we used species-specific qPCR to validate our 16S 
rRNA-based findings of enrichment of P. endodontalis 
and reduction of H. pylori in tumor-adjacent tissue, thus 
providing confidence for our results. At present, there is 
no other study of esophageal microbiota in ESCC that 
has taken this additional step of qPCR to corroborate 16S 
rRNA-based results.

A disease-associated microenvironment could be 
affected by a specific microbial network. Several studies 
have shown ecological interaction networks of microbi-
ota in tumor and adjacent mucosal tissues in gastric [37] 
and colorectal cancer [33]. The esophagus is a part of the 
gastrointestinal tract, and we highlight the esophageal 
microbial co-occurrence network for ESCC to extend 
digestive research. Our microbial co-occurrence network 
analysis suggests that bacterial compositions in different 
sample types show specific correlation patterns. Interest-
ingly, strong co-occurrence interactions formed by the 
family Lachnospraceae, C. aerofaciens, and undefined 
species from the genus Blautia showed the centralities 
of these taxa in both networks. This suggests that hub 
taxa may have a predominant impact on the structure of 
the microbiota in ESCC patients, which deserves further 
investigation. Notably, the above differentially abundant 
taxa also participated in the co-occurrence network and 
had various degrees of importance. It is implied that the 
microbial interaction is complex, and full consideration 
of the microbial interaction network should be taken in 
further microbiome studies.

We have preliminarily revealed differences in the pre-
dicted microbiota functions in tumor and tumor-adja-
cent tissues. Interestingly, regardless of the presence or 
absence of mutations in these genes in ESCC, their prod-
ucts (ERBB2 and MET) are often overexpressed in tumor 
tissues, indicating their vital carcinogenic role in ESCC 
[22]. It is possible that the abnormal profiled abundance 
of differential bacteria causes changes in the expression 
of PTEN, ERBB2, ERBB4, and MET and stimulates tumor 
growth. Additionally, the enriched differential MetaCyc 
pathways in tumors are linked to amino acid degrada-
tion. It has been implicated that microbiota in dysplasia 
tissues perturbed amino acid metabolism that is probably 
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involved in the process of tumor development [40]. On 
the other hand, a large proportion of increased pathways 
in tumor-adjacent tissue are associated with bacteria-
related biomolecule synthesis. This could explain why 
the more abundant microbiota were detected in tumor-
adjacent samples. We found that H. pylori was negatively 
associated with polyamine biosynthesis, which was in 
line with Takashima [41], who found investigation that 
H. pylori significantly inhibited the proliferation of poly-
amine biosynthesis enzymes in cells. Moreover, Rousseau 
[42] found that Haemophilus in animals created changes 
in peptidoglycan metabolism, which is also consistent 
with our results. To develop a deeper understanding of 
esophageal carcinogenesis, further studies are needed to 
examine the significance of microbial functional varia-
tions in the ESCC microenvironment.

Association-based research provides limited insight into 
the role of microbiota in cancer. The microbial commu-
nity in patients with cancer interacts with their hosts and 
influences tumor development by a variety of mechanisms. 
Unraveling the causal relationships between microbiota 
and cancer, as well as understanding the underlying mecha-
nisms, has become the focus of future research.

In this study, esophageal mucosa samples were 
obtained from ESCC patients undergoing surgery, thus 
avoiding possible oral microbial contamination that 
may occur during upper digestive endoscopy sampling. 
Our work provides insights into the composition, func-
tion and interaction network of the mucosa-associated 
bacterial community in the tumor microenvironment 
in ESCC. However, our study had certain limitations. 
First, our experimental protocol for extracting the DNA 
of bacteria did not include a bead-beating step. This 
could lead to an overestimation of the proportion of 
Gram-negative bacteria in the results. Additionally, this 
study did not include esophageal tissues from individu-
als without ESCC for comparison, and the application of 
these results is limited. In addition, 16S rRNA sequenc-
ing only amplified the 16S rRNA-specific region and was 
less sophisticated than metagenomic sequencing. This is 
another limitation of the current study.

Conclusion
Compared with tumor-adjacent tissues, the microbiota 
in tumor tissues showed significant differences in diver-
sity and composition. Alterations in the microbial co-
occurrence network and functional pathways in ESCC 
tissues may be involved in carcinogenesis and the main-
tenance of the local microenvironment for ESCC. These 
discoveries of the esophageal microbiota for ESCC 
patients may contribute to the etiology for ESCC pre-
vention, diagnosis, early intervention, and treatment.
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