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Abstract: The pathological diagnosis of benign and malignant follicular thyroid tumors remains
a major challenge using the current histopathological technique. To improve diagnosis accuracy,
spatially resolved metabolomics analysis based on air flow-assisted desorption electrospray ionization
mass spectrometry imaging (AFADESI-MSI) technique was used to establish a molecular diagnostic
strategy for discriminating four pathological types of thyroid tumor. Without any specific labels,
numerous metabolite features with their spatial distribution information can be acquired by AFADESI-
MSI. The underlying metabolic heterogeneity can be visualized in line with the cellular heterogeneity
in native tumor tissue. Through micro-regional feature extraction and in situ metabolomics analysis,
three sets of metabolic biomarkers for the visual discrimination of benign follicular adenoma and
differentiated thyroid carcinomas were discovered. Additionally, the automated prediction of tumor
foci was supported by a diagnostic model based on the metabolic profile of 65 thyroid nodules.
The model prediction accuracy was 83.3% when a test set of 12 independent samples was used.
This diagnostic strategy presents a new way of performing in situ pathological examinations using
small molecular biomarkers and provides a model diagnosis for clinically indeterminate thyroid
tumor cases.

Keywords: mass spectrometry imaging; tumor heterogeneity; tumor metabolism; molecular diagno-
sis model; in situ pathology diagnosis

1. Introduction

Thyroid cancer is a common type of endocrine cancer that occurs in the thyroid gland
at the throat’s base. Its global incidence has nearly doubled in the last three decades
and now accounts for 2% of all cancers [1–3]. Thyroid nodules are classified as benign
or malignant tumors according to their pathology. Follicular adenoma (FA) is a benign
neoplasm with no cancerization. Papillary thyroid carcinomas (PTC) and follicular thy-
roid carcinomas (FTC) are both well-differentiated carcinomas that represent 90% of all
thyroid malignancies [4]. Given that malignant tumors require more surgical intervention
than benign tumors, it is critical to perform a timely and precise thyroid tumor diagnosis
during surgery. The gold standard for thyroid tumor diagnosis is histopathology, and the
differential diagnosis between benign FA, PTC, and FTC highly depends on pathologists’
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experiences [5]. However, morphological evaluation alone, based on histological or cy-
tological patterns, is not necessarily accurate for detecting tumor types that have similar
characteristics. For example, the only distinction between FA and FTC is the capsular or
vascular invasion in FTC. Because of the limited materials and limited section quality, it is
difficult to observe clear capsular or vascular infiltration on a frozen tissue section. In addi-
tion, the encapsulated follicular variant of papillary thyroid cancer (fvPTC) is frequently
misdiagnosed as benign FA [6,7]. Therefore, conventional histopathological diagnosis
increasingly calls for the development of a novel pathological diagnosis method.

Metabolic alterations associated with diseased conditions provide important insights
into understanding etiological mechanisms and help the discovery of disease biomark-
ers [8,9]. Metabolomics was thus developed for the characterization of global or targeted
metabolite changes in response to pathological changes [10,11], environmental pollutants’
exposure [11], and pharmacological treatment [12], etc. Mass spectrometry imaging (MSI)
extends metabolomics by analyzing metabolites in situ on a tissue slice [13–16]. Without
labeling, the relative abundance and spatial distribution of endogenous metabolites can
be examined simultaneously. Because of its unique advantage of ionizing metabolites
from samples in an ambient environment with minimum pretreatment, the ambient mass
spectrometric technique has been rapidly developing in recent years [17,18]. Notably,
it has been successfully applied to many disease diagnoses through in situ lipid profil-
ing [19–21]. Our group reported an air-flow assisted desorption electrospray ionization
(AFADESI)-MSI method under ambient conditions. AFADESI improves in situ collection
and sampling of droplets by introducing high-rate air flow into a self-built ion source. As a
result, this method can globally map over 1500 endogenous metabolites from biotissue [22].
In addition, using high-throughput capture of metabolite distribution related to tissue
histological structure and bio-functions, we successfully discovered alterations in metabolic
pathway-related metabolites and metabolic enzymes [23].

In terms of thyroid tumor diagnosis, early studies focused primarily on peptides
and lipids as potential in situ biomarkers for distinguishing between PTC and normal
tissue, PTC and FA, undifferentiated and differentiated cancer, primary and metastatic
tumors, and medullary thyroid carcinoma and carcinoma deteriorated from follicular
epithelium [24–29]. In a recent study, DESI-MSI was used to diagnose thyroid carcinomas
and benign thyroid tissues based on the metabolic profiles obtained from fine-needle aspi-
ration (FNA) biopsy samples. It demonstrated the potential for small molecule metabolites
to aid in the diagnosis of thyroid tumors [30]. Thus, in situ profiling of a broader range of
endogenous metabolites would provide more chances for diagnosing various pathological
types of thyroid tumors, particularly the tough challenge of discriminating malignant FTC
from benign FA.

In this study, we propose a molecular pathological diagnosis method for thyroid tu-
mors based on spatially resolved metabolomics analysis using the AFADESI-MSI technique.
Tumor region-specific metabolite profiles in high MS resolution were first characterized for
each pathological type. Potential diagnostic biomarkers for discriminating between benign
follicular adenoma and malignant thyroid cancer were identified by completing multivari-
ate statistical analysis for in situ metabolomics data. Candidate metabolite biomarkers
showing high diagnostic accuracy were selected and combined as visual biomarker sets
to achieve a rapid diagnostic judgment for FA and PTC (classical and follicular variant of
papillary thyroid cancer, cvPTC and fvPTC), FA, and FTC. Next, we built a predictive model
analysis based on the metabolite profiles and pattern recognition for further diagnosis
validation. Given the difficulty of tumor heterogeneity, the diagnostic model can help
determine suspicious foci in some indeterminate cases. Pathologists can position these
suspicious foci from MSI images and make further observations in the overlaid H&E stain
micrograph during histopathology examination.
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2. Results
2.1. Spatially Resolved Metabolic Profiling

In the thyroid tumor tissue, tumor cells, normal follicular epithelial cells, and stromal
cells showed uneven distributions, as seen from H&E stain images (Figure 1A). In part
M, stromal cells densely distributed around the tumor cells in a mixed pattern. An image
overlay helped locate the microregions for each specific cell type and achieved precise mass
spectra extraction. In the average mass spectrum, metabolites below m/z 500 included
amino acids (tryptophan (M–H)– ion: m/z 203.0820), choline ((M+H)+ ion: m/z 104.1074),
carnitine ((M+H)+ ion: m/z 162.1123), fatty acids (arachidonic acid (M–H)– ion: m/z
303.2334), nucleotides, and peptides, while metabolites above m/z 500 were mostly lipids,
such as phosphatidylcholine (PC(34:2), (M+H)+ ion: m/z 758.5687), phosphatidylinositols
(PI(38:4), (M–H)– ion: m/z 885.5522), lysophospholipids (LysoPC(22:6), (M+H)+ ion: m/z
568.3387), and so on. Apart from the wide range of metabolite information, each cell type
also showed a characteristic metabolic profile (Figure 1B–D). The ion intensities of tumor
metabolites varied over a broad range from the level of 103 to 106. The good sensitivity of
AFADESI-MSI analysis allowed us to detect more metabolites that were in low abundance
but still specific for a particular region in the thyroid tumor samples. One benign tumor’s
representative metabolic profile showed global differences from that of one malignant
tumor (Figure 1E,F). Pairwise statistical classification models were then built for benign
and malignant thyroid tumor cells (FA vs. cvPTC vs. fvPTC; FA vs. FTC) and followed by
cross-validation (Figures S2–S4, Table S5).

Figure 1. Spatially resolved metabolic profiling of endogenous metabolites in thyroid tumors using
AFADESI-MSI. (A) H&E stain image of one thyroid tumor section and microscopy-MSI overlaid image.
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The healthy adjacent thyroid tissue was composed of colloid-filled follicles, which were lined by
normal follicular epithelial cells (N, normal follicular epithelial cell). The tumor region consisted of
compact small follicles with neoplastic epithelial follicular cells (T, tumor cell). Collagen fibrils in
mesh or bundles were seen in the stromal tissue (S, stromal cell). The fibrous stroma had epithelial
follicular cells entrapped or attached to the surface (M, mixed stromal cells with tumor cells). (B–D)
Representative mass spectra of different cell types (tumor cells, normal cells, and stromal cells), with
an enlarged view of intratumor cytomorphology. (E,F) Average mass spectra of one benign thyroid
tumor and one malignant tumor.

2.2. Biomarkers for Discriminating Benign FA from Malignant PTC

A discovery set and a validation set were designed to be analyzed time-independently
to explore reliable and reproducible diagnostic biomarkers between benign adenomas and
malignant papillary carcinomas. Differential variables discovered from both the discovery
set and the validation set were regarded as reproducible variables. The discovery set
included 12 FA, 13 cvPTC, and 11 fvPTC, while the validation set included 7 FA, 3 cvPTC,
and 8 fvPTC. Both analytical sets gained good classification between FA, cvPTC, and fvPTC
in the score plot based on the metabolome of each pathological type (Figures S2 and S3).
Finally, 73 reproducible variables between FA and cvPTC, 8 reproducible variables between
FA and fvPTC, and 2 reproducible variables between cvPTC and fvPTC were found as
potential biomarker candidates (Table S6), and parts of them with identified structures
were shown in Table S8.

The visualization of differential biomarkers helped to rapidly distinguish between be-
nign FA and two malignant PTC subtypes. A diagnostic biomarker panel composed of ten
representative differential ions was first determined for fast discrimination (Figure 2A). The
ion selection criteria include p-value below 0.05, fold change above 2 or below 0.5, good di-
agnostic efficacy as assessed by receiver operating characteristic (ROC) curve analysis, and
a qualitative visual assessment of clear tissue shape. In the positive-ion biomarker panel,
three compounds showed their capacity to simultaneously distinguish benign adenoma
from malignant papillary carcinoma, which were N-methylnicotinamide (N-methyl-VB3,
m/z 137.0711), unknown-1 (m/z 199.1440), and dimethylarginine (DMA, m/z 203.1503).
N-methyl-VB3 and DMA were significantly downregulated and barely visible in most FA,
while compound unknown-1 showed higher abundance in FA than in malignant tumors.
Besides, glutamylvaline (m/z 247.1289) showed a significant distinction between FA and
cvPTC, which was rather low or not even detectable in cvPTC. Butyrylcarnitine (m/z
232.1546) was an upregulated metabolite specifically for cvPTC compared with FA and
fvPTC. Similarly, in the negative-ion biomarker panel (Figure 2A), three compounds were
able to simultaneously distinguish FA from cvPTC, which were glutamine (m/z 145.0602),
histidine (m/z 154.0605), and unknown-2 (m/z 319.2274). Besides, compound unknown-3
(m/z 164.9552) was significantly upregulated in FA compared to fvPTC. Ascorbic acid (m/z
175.0233) showed the highest abundance in cvPTC. The validation set shared consistent
results with the discovery set (Figure S5).

To assist in resolving the uncertainty in clinical diagnosis, combined biomarker diag-
nostic sets were then determined for benign follicular adenoma (FA) and malignant pap-
illary thyroid cancer (cvPTC and fvPTC). The first diagnostic biomarker set consisting of
N-methylnicotinamide, unknown-1, and dimethylarginine showed good diagnostic capabil-
ities in distinguishing FA and PTC. The area value under its ROC curve analysis was high
at 0.874 (Figure 2B). Next, to determine the subtypes of malignant PTC, the combination of
butyrylcarnitine and ascorbic acid was able to differentiate between cvPTC and fvPTC with an
AUC value of 0.859 (Figure 2C). The diagnostic efficacy of combined markers was significantly
improved compared to that of a single biomarker (Table S10) [31]. The average diagnostic
sensitivity was greater than 75%, and the specificity was greater than 80%. Moreover, the
performance of the two diagnostic marker sets was repeatable, and the biological errors were
minimized with the help of an independent validation sample set.
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Figure 2. In situ visualization and statistical evaluation of biomarkers for discriminating benign
FA from malignant PTC. (A) The biomarker panel for differentiation among benign FA, malignant
cvPTC, and fvPTC in the discovery set. The upper part is the in situ visualization in three types of
thyroid tumor tissues, and the lower part is the statistical analysis of each biomarker in a box plot.
(*** p < 0.0005, ** p < 0.005, * p < 0.02) (B) ROC analysis of biomarker set_1 between FA and PTC. The
diagnostic sensitivity and specificity of the cut-off point were 78.3% and 97.5%, respectively. (C) ROC
analysis of biomarker set_2 between cvPTC and fvPTC. The diagnostic sensitivity and specificity of
the cut-off point were 79.1% and 82.9%, respectively.

2.3. Biomarkers for Discriminating Benign FA from Malignant FTC

As malignant follicular thyroid cancer is a clinically uncommon case, five FTCs were
finally collected and analyzed as a discovery sample set in our study. Good discrimination
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was observed between FA and FTC in the score plot (Figure S4). The cross-validated
predictive ability (Q2) of the model was over 50%, and the model passed 100 random
permutation tests, which suggested a good classification capacity without being overfitted.
A total of 85 differential ions were rigorously screened as potential biomarker candidates,
and finally, the structure of 20 metabolites was identified. (Tables S7 and S9). Nineteen
metabolites were significantly downregulated in FTC, while one metabolite, histamine,
was upregulated in FTC (Figure S6). Following that, a diagnostic biomarker set was then
determined for the clinical diagnosis of FA and FTC using the same selection criteria as
previously described. Three metabolites, 8,9-dihydroxynonanoic acid, citric acid, and
deoxy-5-methylcytidylate, showing good diagnostic efficacy (Table S10) together with a
standard p-value < 0.05, fold change > 2 or < 0.5, and a good visual effect, were finally
selected. The combined ROC curve analysis showed that this diagnostic biomarker set
achieved good diagnostic efficiency (Figure 3A). The AUC value was fairly high, above 0.9,
and resulted in 100% diagnostic sensitivity and 90.0% diagnostic specificity.

Figure 3. In situ visualization and statistical evaluation of biomarkers for discriminating benign FA
from malignant FTC. (A) The combined diagnostic biomarker set for benign FA and malignant FTC.
Merged visualization was performed by overlapping three ion images (8,9-dihydroxynonanoic acid,
citric acid, and deoxy-5-methylcytidylate) via a mixture of different ion channels in the MassImager
software (maximum intensity threshold of 100,000). ROC evaluation of this biomarker set between
FA and FTC showed the AUC value was 0.962. The diagnostic sensitivity and specificity of the cut-off
point were 100% and 90.0%, respectively. (B) The comparison of 12-oxo-20-trihydroxy-leukotriene B4
and 20-trihydroxy-leukotriene B4 expression among three thyroid tumor types, FA, FTC, and cvPTC
(*** p < 0.0005, ** p < 0.005). Tumor regions are outlined in red on the H&E slides.
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Interestingly, several eicosanoid metabolites were observed to have significantly higher
expression in benign FA than in malignant FTC and PTC. Two molecular ions were identi-
fied as 12-oxo-20-trihydroxy-leukotriene B4 (Ox20THLTB4) and 20-trihydroxy-leukotriene
B4 (20THLTB4), which were omega-oxides of leukotriene B4 (LTB4) [32,33]. Figure 3B
depicts in situ visualization of the two oxidative LTB4 metabolites in FA, FTC, and PTC.
They both had very low expression in malignant thyroid tumors and were barely visible in
PTC, but they had a relatively high abundance in FA.

2.4. Diagnostic Model and Discriminant Analysis

This section concentrates on modeling diagnosis based on the metabolic profile and
pattern recognized from various thyroid nodules and tumors in order to achieve rapid and
automatic evaluations of indeterminate samples. A supervised classification model was
constructed based on the metabolic profile extracted from 65 thyroid nodules representing
five pathological types, including 5 FTC, 16 cvPTC, 19 fvPTC, and 19 FA from discovery
and validation sets and 6 nodular goiters (NG, common benign thyroid lesion). Each type
was separated well in the score plot, and there was also a clear distinction between benign
nodules, adenomas, and malignant tumors (Figure 4A). Next, a test set consisting of 12 inde-
pendent samples was examined unbiasedly to assess the predictive ability of this diagnostic
model. Several sample points from the same tumor sample were positioned and extracted.
By importing each sample point into the model, the 12 test samples intuitively showed
their distributions closer to FA and fvPTC types in the predictive score plots (Figure 4A).
Meanwhile, the model output evaluated the probability of the possible pathological type
for each sample point, which was represented as an average predictive score from both
positive and negative models. A predictive score greater than 0.35 was used to determine
the final predictive class. The predictive results of 12 test samples were compared with
clinical judgments. (Figure S7) There were no errors in identifying malignant types in a
total of ten samples. In samples TC4, 5, 8, 9, and 12, benign adenomas were predicted
concurrently with malignant tumors. Two samples’ model predictions were inconsistent
with the clinical diagnosis. Although sample TC7 was diagnosed as fvPTC, the model
output indicated that it belonged to another PTC subtype, cvPTC. The histopathology of
sample TC11 showed no nipple-like structure, yet the model predicted it to be cvPTC. TC11
was diagnosed pathologically as a follicular neoplasm. Overall, the diagnostic model estab-
lished on the metabolic profiles of different thyroid tumor types showed a final predictive
accuracy of 83.3%.

The diagnostic model was further used to predict two atypical thyroid tumor cases.
For the first indeterminate case of TC13, the pathological type was diagnosed as thyroid
adenoma-like hyperplasia by the pathologist, and it was also consistent with an unde-
termined potential follicular tumor. It is necessary to confirm the possibility of an FTC
type. The histopathological examination excluded the possibility of PTC. With the H&E
stain image guidance, lesions of dense tumor cells A~L were selected (Figure 4B). The
corresponding mass spectral data were imported into the diagnostic submodel consisting
of FA and FTC. The model predictive score of suspicious foci in TC13 is shown in Table 1.
All sample lesions showed a high predictive score (>0.7) in class FA and a low predictive
score (<0.35) in class FTC. This case was finally predicted as FA by the diagnostic model.
For the second indeterminate case of TC14, the pathological type was determined as PTC
(classical and follicular variation), involving the capsule and surrounding soft tissue. It
was also observed that there was a coexistence of benign follicular epithelial cells within
the PTC tumor tissue. Likewise, mass spectral data of sample lesions were imported into
the submodel without nodular goiter according to histopathological judgment. The model
predictive score of all lesions in TC14 is shown in Table S11. More than half of the lesions
showed the possibility of PTC, and both cvPTC and fvPTC were identified in the model
prediction. Besides, there were two lesion points, B and J, identified as FA. Finally, TC14
was predicted as a papillary thyroid cancer with benign adenoma by the diagnostic model
(Figure S8). The predictive result agreed with the actual pathological diagnosis.
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Figure 4. Diagnostic model performance in the test sample set and indeterminate sample cases. (A,B)
Model predictive score plot of 12 test samples based on the mass spectral profile under positive ion
mode (A) and negative ion mode (B). (C). Model prediction analysis of indeterminate case TC13.
Micro-region with suspicious foci were delineated on an enlarged view of the H&E stain image.
Underneath is the MSI image. The integrated result of computational prediction from both positive
and negative models is shown on the right. The predicted value is below 0.35: it does not belong
to this classification; the predicted value is between 0.35~0.65: it may belong to this classification;
the predicted value is above 0.65: it belongs to this classification. Malignancy is the basic output if
having both benign and malignant predictions.
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Table 1. Predictive score results of suspicious focuses in indeterminate case TC13 based on OPLS-DA
model.

Positive Mode Negative Mode Computational Prediction

Class FA Class FTC Class FA Class FTC Class FA Class FTC

TC13-P-1-A 0.9262 0.0738 0.6859 0.3141 0.8060 0.1940

TC13-P-1-B 0.9632 0.0368 0.7837 0.2163 0.8735 0.1265

TC13-P-1-C 0.9195 0.0805 0.8438 0.1562 0.8817 0.1183

TC13-P-1-D 0.8737 0.1263 0.7340 0.2660 0.8038 0.1962

TC13-P-2-E 0.9160 0.0840 0.5535 0.4465 0.7347 0.2653

TC13-P-2-F 0.7397 0.2603 0.7103 0.2897 0.7250 0.2750

TC13-P-2-G 0.9898 0.0102 0.7180 0.2820 0.8539 0.1461

TC13-P-2-H 1.5810 −0.5810 0.6761 0.3239 1.1286 −0.1286

TC13-P-3-I 0.8098 0.1902 0.7215 0.2785 0.7656 0.2344

TC13-P-3-J 0.8937 0.1063 0.8215 0.1785 0.8576 0.1424

TC13-P-3-K 0.9020 0.0980 0.8260 0.1740 0.8640 0.1360

TC13-P-3-L 0.8442 0.1558 0.7925 0.2075 0.8183 0.1817

3. Discussion

Spatially resolved metabolomics analysis based on AFADESI-MSI showed several
advantages in investigating diagnostic metabolite features from various thyroid tumor
tissues. The advantages of high-throughput and high-sensitivity in metabolic profiling
allowed for a broader metabolite coverage without any specific labels. Multiple metabolite
classes were detected in thyroid tumor tissue, including amino acids, amines, carnitines,
fatty acids, nucleosides, nucleotides, lipids, and peptides. Besides, spatially resolved data
extraction reduced the risk of interfering metabolic profiles from nearby cell types and
guarantees the most representative metabolic profile from each specific tumor region. All
of these advantages contributed to the successful differentiation of benign and malignant
thyroid tumors with distinct metabolic compositions and abundances.

The discovery of metabolite biomarkers for discriminating between benign FA and
malignant PTC, FA, and malignant FTC also revealed that thyroid cancer undergoes ex-
tensive metabolic reprogramming (Tables S6–S9). Several metabolic alterations showed
that tumor cells seek to produce sufficient energy and synthetic building blocks for cellular
proliferation [34]. Our study found that essential amino acids phenylalanine and histidine
and nonessential amino acids serine, asparagine, glutamine, glutamic acid, and arginine
showed significant increases in thyroid classic papillary carcinoma. The higher abundance
of amino acids in PTC reflected more carbon sources demands as essential nutrients in
tumor metabolic remodeling [35,36]. Increased level of phosphatidylethanolamine (PE)
class, a major component of the cell membrane, were also observed in PTC, which co-
incided with the rapid proliferation of cancer cells. Most metabolic changes found in
FTC were different from those in PTC, which can be speculated about from their obvious
cytological distinction. Nevertheless, some common changes were observed in FTC and
PTC compared to FA. Several dipeptides showed low relative abundance in FTC, such as
glutamyl-glutamate and glutamyl-valine. The latter was also significantly downregulated
in PTC. Glutamyl dipeptides can accept a glutamyl moiety from glutathione degradation
via gamma-glutamyltransferase. The varied level of glutamyl dipeptides also indicated
an altered glutathione metabolism in follicular adenomas, follicular, and papillary carcino-
mas [37]. More interestingly, the significantly low expression of several eicosanoids was
observed in FTC and PTC compared to benign FA. It is well known that eicosanoids are
involved in diverse inflammatory metabolism processes in cells, either anti-inflammatory
or pro-inflammatory. Besides, eicosanoids can promote tumor growth by directly activating
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tumor epithelial cells, normal epithelial cells, or stromal cells [38,39]. It was observed
in FA that eicosanoids were distributed from tumor cells to stromal cells and to normal
cells. Previously published diagnostic investigations into thyroid tumors using mass spec-
trometry imaging technique found biomarkers mostly associated with lipids and peptides
(Table S12). Our study observed more dysregulations in amino acid metabolism, lipid
bio-synthesis, and signaling lipid pathways. This would provide more insights for future
study into constructing a comprehensive metabolic reprogramming map and would help
precisely identify diagnostic biomarkers, which might be metabolites or enzymes from
specific metabolic pathways.

From the discovered metabolic dysregulations in our study, representative differential
metabolites were selected and added into three diagnostic biomarker sets for fast in situ
visual discrimination between FA and PTC and FA and FTC. Combined biomarker sets
proved to significantly improve clinical diagnostic performance [31]. For uncertainty in
clinical diagnosis between benign FA and malignant PTC, the first diagnostic biomarker
set (N-methyl-VB3, unknown-1, and DMA) was able to identify PTC from FA. Next, to
determine the subtypes of malignant PTC, the second diagnostic biomarker set (butyryl-
carnitine, ascorbic acid) could identify cvPTC or fvPTC. The performance of the two
diagnostic marker sets was repeatable, and the biological errors were minimized with the
help of an independent validation sample set (seven FA, three cvPTC, eight fvPTC). To
tackle the challenging problem of differentiating between malignant FTC and benign FA,
the third diagnostic biomarker set (8,9-dihydroxynonanoic acid, citric acid, and deoxy-
5-methylcytidylate) was evaluated with high diagnostic sensitivity and specificity. The
performance of the third diagnostic marker set remains to be validated in a larger sample
set for further clinical application. Given the significant individual heterogeneity within an
uncertain tumor type, clinical discrimination between different thyroid tumor pathological
types using only metabolic biomarkers is insufficient. The application of the molecular
diagnostic model offers additional benefits in diagnosing indeterminate cases. On the one
hand, it showed good diagnostic ability, which was proven by the prediction test on 12
independent samples. On the other hand, model prediction combined with the overlaid
H&E stain image helped guide model adjustment by referring to the initial pathological
diagnosis. Moreover, for some controversial foci, it was possible to perform an in situ
recheck of the histopathological diagnosis after model prediction.

4. Materials and Methods
4.1. Sample Collection and Preparation

Thyroid tumor tissue samples were collected at Peking Union Medical College Hos-
pital. None of these patients received preoperative treatment. Patient information was
under privacy protection. Clinical characteristics of the collected thyroid tumor samples
are shown in Table S1. The samples included 22 FA, 5 FTC, 19 cvPTC, 28 fvPTC, 2 follicular
neoplasms, and 6 NG. Three samples were diagnosed as possessing two different patholog-
ical types. Nodular goiter (NG) is the most commonly encountered benign thyroid lesion
in clinics and is quite easy to identify. Except for NG, samples with distinct pathological
characteristics were classified into discovery set and validation set for biomarker discovery.
NG was additionally added for diagnostic model construction. The remaining samples
were used as a test sample set for model prediction. Tumor tissues were immediately
snap-frozen in liquid nitrogen after surgical resection and quickly stored at −80 ◦C until
the experiments. For each tissue sample, sections were consecutively cut into 8-µm slices at
−20 ◦C by a cryomicrotome (CM3050S; Leica, Wetzler, Germany) and thaw-mounted onto
the microscope glass slides (Superfrost Plus slides, Thermo Fisher Scientific, Waltham, MA,
USA). Pathological diagnosis was achieved by H&E staining on one adjacent cryosection.
The other sections were stored in a sealed container at −80 ◦C until analyzed in an ambi-
ent environment. Before AFADESI-MSI analysis, tissue sections were dried in a vacuum
desiccator from −20 ◦C to room temperature for 1 h.
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4.2. AFADESI-MSI Experiment

The AFADESI-MS imaging analysis was performed in both positive and negative
ion modes on adjacent tissue sections using a Q-Orbitrap mass spectrometer (Q Exactive,
Thermo Fisher Scientific, Waltham, MA, USA) equipped with a home-built AFADESI ion
source. The MSI data were acquired in full scan MS mode with m/z (mass-to-charge ratio)
ranging from 100 to 1000. The details of this imaging platform can be found in our previous
work [40,41]. The spray voltage was set at (±) 7000 V, and the transport tube voltage
was (±) 3000 V. Acetonitrile: water (8:2, v/v) was optimized as the spray solvent for MSI
acquisition. The solvent flow rate was 5 µL/min, and the extraction flow rate was 45 L/min.
For each sample analysis, a rectangular positioning frame was drawn on the back side
of the slide with the tissue section wholly enclosed in the frame (Figure S1). The entire
rectangular region, including the tissue surface and the background part, was continuously
scanned on a 2D computer-controlled platform at a horizontal velocity of 200 µm/s in the
x direction, followed by a 200-µm vertical step in the y direction. The scanning time for
each row was determined by dividing the length by the horizontal velocity, and the total
number of data rows was determined by dividing the width by the vertical step. More
details about the experimental parameters can be seen in Tables S2 and S3.

4.3. Data Processing

Raw data files were converted into .cdf format and imported into the self-developed
software MassImager for MSI image reconstruction [42]. An overlaid H&E stain image
was also imported to help with the precise delineation of interested cell type regions. The
average mass spectral profile was extracted from a specific tumor region associated with
different cell types and exported into a txt file as one mass spectral dataset. Multiple regions
can be extracted from each tissue sample. All mass spectral datasets were arranged together
into one 2D-matrix via MarkerView software 1.2.1 (AB Sciex, Framingham, MA, USA).
Observations (sample names) were in columns, and variables (m/z value) were in rows.
Pareto scaling was applied to the 2D-matrix to reduce the relative importance of large
values and keep the original data structure [43]. The scaled data matrix was introduced
into the SIMCA version 14.0.1 (Umetrics AB, Umea, Sweden) for multivariate statistical
analysis. Between FA, cvPTC, fvPTC, and FTC, pairwise orthogonal partial least squares
discriminant analysis (OPLS-DA) was performed to explore potential biomarkers. Differ-
ential variables were strictly screened step by step based on their respective classification
loadings, independent t-tests, anomalous change exclusion, and retrospective imaging tests
(details on each setup can be found in Supplementary Materials 1.3). Receiver Operating
Characteristic (ROC) curve analysis and the Student’s t-test analysis were performed using
SPSS version 17.0.1 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism version 7.0 (Graph-
Pad software Inc., San Diego, CA, USA). Using the OPLS-DA method, a diagnostic model
covering five pathological types was later constructed in SIMCA version 14.0.1. This model
included samples from the discovery and validation sets (FA, cvPTC, fvPTC, and FTC) and
six NG samples.

4.4. Metabolite Identification

Metabolite identification was performed using a liquid chromatography-tandem mass
spectrometry (LC-MS/MS) method. Thyroid tissue extracts were pooled together from
each tumor type (details on sample preparation can be found in Supplementary Materials
1.4). A Dionex UltiMate3000 HPLC system coupled to a Q-Orbitrap mass spectrometer
was used for targeted metabolite analysis (Supplementary Materials 1.5, Table S4) [44]. In
the acquired data results (Xcalibur 2.3 software, Thermo Fisher Scientific, Waltham, MA,
USA), the exact mass of the molecule and product ions can be matched with literature data
and online metabolite databases, such as HMDB, METLIN, and LIPID MAPS. Secondary
confirmation was used to match experimental retention time and fragment behavior using
readily available standard substances (Supplementary Appendix).
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5. Conclusions

In summary, our study successfully demonstrated the feasibility of the molecular
pathological diagnosis strategy to diagnose thyroid tumors by using spatially resolved
metabolomics analysis based on the AFADESI-MSI technique. Differentiated thyroid carci-
noma (FTC, cvPTC, and fvPTC) and benign follicular adenoma (FA) can be discriminated
visually by three biomarker sets. Additionally, because of the unique advantage of MSI
in preserving tissue morphology, the pathological type of the foci of interest in native
tumor tissue can be automatically predicted by the diagnostic model. Combining these
two approaches results in a new pathological diagnostic solution for thyroid tumor clinical
diagnosis based on small molecular biomarkers. Although only a small number of FTC
samples were investigated in the discovery sample set, the candidate biomarkers between
FA and FTC are still helpful for related studies due to the paucity of research to date. The
preliminary findings of dysregulation in several metabolic pathways help understand
the pathogenesis mechanisms of thyroid tumors. In future studies, more validation, in-
cluding a larger sample cohort, can be investigated to corroborate the reliability of the
significant biomarkers and the diagnostic model. Moreover, a quality-control system can
be implemented for the intraoperative thyroid tumor sample analysis, allowing for higher
comparability between samples examined at various measurement periods and an increase
in diagnostic accuracy.

Supplementary Materials: The following are available online. Figure S1: Illustration of drawing a
rectangular box to define the scan area of a tissue section. Figure S2: Model classification result of
discovery set. Figure S3: Model classification result of validation set. Figure S4: Model classification
result for FA and FTC. Figure S5: The biomarker panel for diagnosis between benign FA, malignant
cvPTC, and fvPTC in the validation set. Figure S6: Fold change of differential metabolites in
discriminating FA and FTC. Figure S7: Predictive analysis of each test sample based on the diagnostic
OPLS-DA model compared with clinical pathological diagnosis. Figure S8: Model prediction analysis
of indeterminate case TC14. Table S1: Clinical pathological information of collected thyroid tumors.
Table S2: Parameters of AFADESI-MSI platform for in situ analysis. Table S3: Acquisition parameters
of Q Exactive mass spectrometer. Table S4: Acquisition parameters of Q-Orbitrap spectrometer in
LC-MS/MS. Table S5: Model cumulative R2X, R2Y, and Q2(cum) and Intercepts of R2 and Q2 in one
hundred times permutations of each classification model between thyroid tumor subtypes. Table S6:
Reproducible differential variables for benign (FA) and malignant thyroid tumor (cvPTC, fvPTC).
Table S7: Reproducible differential variables for benign (FA) and malignant thyroid tumor (FTC).
Table S8: Identified biomarkers for diagnosis between benign (FA) and malignant thyroid tumor
(cvPTC, fvPTC). Table S9: Identified biomarkers for diagnosis between follicular adenoma (FA) and
follicular thyroid cancer (FTC). Table S10: Receiver operating characteristic curves (ROC) analysis
result of potential diagnostic biomarkers. Table S11: Predictive score results of suspicious focuses in
indeterminate case TC14 based on OPLS-DA model. Table S12: A summary of diagnostic studies
performed on thyroid tumor using mass spectrometry imaging technique. Figure S9, Figure S10,
Figure S11, Figure S12, Figure S13, Figure S14, Figure S15, Figure S16, Figure S17, Figure S18, Figure
S19, Figure S20, Figure S21, Figure S22, Figure S23, Figure S24, Figure S25, Figure S26, Figure S27,
Figure S28, Figure S29, Figure S30, Figure S31, Figure S32, Figure S33, Figure S34 and Figure S35:
Metabolite identification mass spectrum Appendix Figures. References [19,24–30,45,46] have been
cited in the Supplementary Materials.
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