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Abstract: Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle
health and function is essential for the entire body in order to counteract chronic diseases such as type
II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the
elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life,
physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of
the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX
overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle
atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears
to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy,
ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if
combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review
hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that
of spermidine in muscle atrophy. The identification of new molecular pathways involved in the
maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead
compounds to treat muscle atrophy.

Keywords: aging; atrophy; autophagy; oxidative stress; polyamines; skeletal muscle; spermidine;
spermine oxidase; transgenic mouse

1. Introduction

Skeletal muscle is the largest tissue of the human body and represents 40–50% of body weight,
varying according to physiological and pathological conditions [1]. Skeletal muscle atrophy is a
frequent and disabling condition. It involves different molecular mechanisms that occur during
pathogenesis, hence knowledge of the cellular signal pathways that mediate muscle atrophy is still
limited [2].

Polyamines (PAs) are essential for normal cell growth, proliferation, and differentiation, and the
tissue levels of individual PAs are maintained and buffered via complex regulatory mechanisms [3,4].
The functional roles of the natural PAs, putrescine (Put), spermidine (Spd), and spermine (Spm), are
under active investigation in broad research areas, from neuroscience to cancer and biochemistry [5–9].
Two key enzymes, ornithine decarboxylase and S-adenosylmethionine decarboxylase, control PA
biosynthesis. PA catabolism is finely regulated by the enzymes N1-acetyltransferase, polyamine
oxidase, and spermine oxidase (SMOX) (Figure 1).
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Polyamine levels can be altered by physiological stimuli or by inhibitors or inducers of PA 
metabolic enzymes. Animal models with genetically altered PA synthesis or catabolism offer a 
versatile way to affect PA homoeostasis in different tissues and for a prolonged period. These models 
help to define the physiological importance of PAs by offering tools to develop treatment therapies 
for pathophysiological conditions derived from deregulated PA homeostasis [10]. Given the role of 
PAs in the development of many tissues, numerous studies have examined the relation between PAs 
and skeletal muscle atrophy and hypertrophy. The importance of PAs in muscle disease is 
highlighted by an alteration of their levels in muscular fibers undergoing degeneration and 
regeneration [10]. Altered PA levels are present in muscles of patients suffering from Duchenne 
muscular dystrophy, a pathology characterized by muscle fiber atrophy [11]. Limb girdle dystrophy 
patients, who display weakness and wasting of the muscles in the arms and legs, show higher levels 
of PAs in skeletal muscle [11,12]. Similarly, in mouse and hamster models of muscle dystrophy, PA 
content is altered compared to control muscles [12]. Although the strong association between PA 
levels and muscle mass is evident, the potential mechanism by which PAs regulate muscle growth is 
still unclear [10]. This review focuses on the role of SMOX in skeletal muscle pathophysiology, 
underlining its role in myogenesis and muscle atrophy. The use of a Total-SMOX animal model could 
help to find new therapies able to counteract physiological atrophy due to aging and pathology. 

 
Figure 1. Polyamine metabolism. Schematic representation of mammalian polyamine metabolism 
showing enzyme network and substrate interconversion pathways. ODC: ornithine decarboxylase; 
SSAT: spermidine/spermine N1-acetyltransferase; PAOX: polyamine oxidase; SMOX: spermine 
oxidase; SPMS: spermine synthase; SPDS: spermidine synthase. 

Figure 1. Polyamine metabolism. Schematic representation of mammalian polyamine metabolism
showing enzyme network and substrate interconversion pathways. ODC: ornithine decarboxylase;
SSAT: spermidine/spermine N1-acetyltransferase; PAOX: polyamine oxidase; SMOX: spermine oxidase;
SPMS: spermine synthase; SPDS: spermidine synthase.

Polyamine levels can be altered by physiological stimuli or by inhibitors or inducers of PA
metabolic enzymes. Animal models with genetically altered PA synthesis or catabolism offer a
versatile way to affect PA homoeostasis in different tissues and for a prolonged period. These models
help to define the physiological importance of PAs by offering tools to develop treatment therapies for
pathophysiological conditions derived from deregulated PA homeostasis [10]. Given the role of PAs
in the development of many tissues, numerous studies have examined the relation between PAs and
skeletal muscle atrophy and hypertrophy. The importance of PAs in muscle disease is highlighted by
an alteration of their levels in muscular fibers undergoing degeneration and regeneration [10]. Altered
PA levels are present in muscles of patients suffering from Duchenne muscular dystrophy, a pathology
characterized by muscle fiber atrophy [11]. Limb girdle dystrophy patients, who display weakness
and wasting of the muscles in the arms and legs, show higher levels of PAs in skeletal muscle [11,12].
Similarly, in mouse and hamster models of muscle dystrophy, PA content is altered compared to
control muscles [12]. Although the strong association between PA levels and muscle mass is evident,
the potential mechanism by which PAs regulate muscle growth is still unclear [10]. This review focuses
on the role of SMOX in skeletal muscle pathophysiology, underlining its role in myogenesis and muscle



Med. Sci. 2018, 6, 14 3 of 15

atrophy. The use of a Total-SMOX animal model could help to find new therapies able to counteract
physiological atrophy due to aging and pathology.

2. Skeletal Muscle Differentiation

Skeletal muscle differentiation (myogenesis) is a finely regulated process involving a cascade of
muscle-specific genes whose expression is coordinated in a timely manner to cell cycle withdrawal and
synthesis of muscle contractile proteins. During embryogenesis, muscle fibers are established through
a highly ordered multistep process leading from mononucleated-undifferentiated cells (myoblasts) to
polynuclear cells (myotubes) [13]. The process is predominantly regulated by myogenic regulatory
factors (MRFs) of the basic helix-loop-helix family of transcription factors including MyoD, Myf5,
myogenin, and MRF4, together with other transcription factors such as paired box 3 (Pax3) and paired
box 7 (Pax7) [14]. MyoD and Myf5, expressed before the onset of myogenic differentiation, promote
proliferation and differentiation of myogenic progenitor cells into myoblasts [15], while myogenin
plays an important role in the differentiation of myoblasts into myotubes and MRF4 participates in
differentiation and cell fate determination [16] (Figure 2).
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regulatory factor 4; MHC: myosin heavy chain. 

It must be pointed out that exiting from the cell cycle is a critical regulatory event for successful 
myogenic differentiation. The elevation of MyoD expression in proliferating myoblasts induces 
transcriptional upregulation of cell-cycle inhibitors, such as the cyclin-dependent kinase inhibitor 
p21, that play a fundamental role in establishing the post-mitotic state in skeletal muscle, completing 
the differentiation process [17,18]. After cell cycle arrest, late differentiation markers such as myosin 
heavy chain (MHC) are induced [19] (Figure 2). 

During adulthood, constant muscle remodeling is possible due to the presence of a specialized 
population of myogenic progenitors, the satellite cells, placed underneath the myofiber basal lamina. 
These cells, mitotically quiescent, act as muscle stem cells, allowing the repair and maintenance of 
myofibers. Upon damage or stress, satellite cells divide asymmetrically: some of them reconstitute 
the pool of quiescent satellite stem cells and others differentiate into myoblasts. Finally, they fuse 
together to form new myotubes or fuse with damaged myotubes to repair them [19]. The mouse 
C2C12 muscle cell line is a useful model system to study the differentiation process. In vitro, 
myogenic differentiation can be obtained by serum deprivation from myoblast cultures. In high 
serum, myoblasts proliferate, while after serum removal, they go into an early differentiation stage. 
Later, cells begin to fuse, forming multinucleated myotubes positive for the characteristic muscle-
specific protein MHC [20–22].  

Figure 2. Schematic illustration of the skeletal muscle differentiation process. During myogenesis, Pax3
and Pax7 are activated in quiescent progenitors. Then, progenitor cells differentiate into proliferating
muscle precursor cells (myoblasts) and Myf5, MyoD, and myogenin expression stimulates myoblasts
to differentiate into myotubes. The terminal stage of differentiation is mediated by the activation of
genes responsible for muscle fiber (myofiber) architecture and functionality such as MHCs. Pax: paired
box; Myf5: myogenic factor 5; MyoD: myogenic factor 3; MRF4: myogenic regulatory factor 4; MHC:
myosin heavy chain.

It must be pointed out that exiting from the cell cycle is a critical regulatory event for successful
myogenic differentiation. The elevation of MyoD expression in proliferating myoblasts induces
transcriptional upregulation of cell-cycle inhibitors, such as the cyclin-dependent kinase inhibitor p21,
that play a fundamental role in establishing the post-mitotic state in skeletal muscle, completing the
differentiation process [17,18]. After cell cycle arrest, late differentiation markers such as myosin heavy
chain (MHC) are induced [19] (Figure 2).

During adulthood, constant muscle remodeling is possible due to the presence of a specialized
population of myogenic progenitors, the satellite cells, placed underneath the myofiber basal lamina.
These cells, mitotically quiescent, act as muscle stem cells, allowing the repair and maintenance of
myofibers. Upon damage or stress, satellite cells divide asymmetrically: some of them reconstitute the
pool of quiescent satellite stem cells and others differentiate into myoblasts. Finally, they fuse together
to form new myotubes or fuse with damaged myotubes to repair them [19]. The mouse C2C12 muscle
cell line is a useful model system to study the differentiation process. In vitro, myogenic differentiation
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can be obtained by serum deprivation from myoblast cultures. In high serum, myoblasts proliferate,
while after serum removal, they go into an early differentiation stage. Later, cells begin to fuse, forming
multinucleated myotubes positive for the characteristic muscle-specific protein MHC [20–22].

Many molecules are highly regulated during the phenotypic conversion of rapidly dividing
C2C12 myoblasts into fully differentiated post-mitotic myotubes. Among them, SMOX, the most
recently characterized polyamine catabolic enzyme [23], has been shown to be modulated during
C2C12 differentiation [24].

3. Spermine Oxidase and Muscle Tissue

In animal cells, SMOX can be considered a multitasking enzyme, primarily involved in controlling
PA metabolism, and its substrate Spm and reaction product Spd are ubiquitous polycations that have
several important control functions in cells, ranging from basic DNA synthesis to regulation of cell
proliferation and differentiation [25].

The SMOX gene is highly expressed in muscle tissue, as demonstrated by Cervelli et al. [26],
who reported a high level of both transcript and enzymatic activity. Interestingly, in C2C12 myoblast
cultures, after serum removal, SMOX messenger RNA (mRNA) activity was downregulated in the
early stage of differentiation. Successively, SMOX was induced in a time-dependent manner, at the
level of both transcription and enzymatic activity. Overall, the pattern of SMOX expression profile in
the C2C12 muscle cell line showed high levels in proliferating myoblasts followed by low levels in
differentiating myoblasts and high levels again in myocytes/myotubes [24].

The relatively high expression levels of SMOX in proliferating cells could promote cell expansion
and/or survival. It is known that SMOX can be rapidly induced in response to stress and is responsible
for H2O2 production in different cell lines and malignant tissues [27]. Thus, a decrease in its activity,
and possibly a reduction in the level of H2O2, could allow for subsequent cell differentiation, with
fully differentiated cells resuming its expression and activity. A failure of SMOX downregulation
might result in defective differentiation and potentially contribute to neoplastic transformation. It is
interesting that SMOX expression levels are high in several tumor cell types [28,29]. Hence, there needs
to be investigation of mechanisms through which SMOX expression can be re-established, as occurs
at the end of the differentiation process. Interestingly, a recent study suggested that muscle atrophy
induced by limb immobilization, fasting, muscle denervation, and aging could be related to a significant
reduction of SMOX expression, while on the other hand, when SMOX was overexpressed, muscle fiber
size increased. Furthermore, SMOX overexpression resulted in a decrease of the genes that promote
muscle atrophy and, conversely, an increase in the expression of genes that help to maintain muscle
mass [30]. Overall, these results highlight the importance of SMOX in the pathophysiology of skeletal
muscle. Remarkably, involvement of p21 has been observed in atrophy conditions: the induction of
p21 actively promotes muscle atrophy, leading to reduced SMOX expression; on the other hand, a
relatively low level of p21 allows a higher level of SMOX expression, which helps to maintain basal
skeletal muscle gene expression and fiber size [30]. It has been reported that p21 plays an important
role in the in vivo healing process in muscular injury [31], and moreover, it has been shown that p21
protein is modulated during C2C12 differentiation: it increases at cell cycle exit and entrance into
differentiation and declines in a time-dependent manner thereafter [32].

In Figure 3, a hypothetical scheme shows the possible relation between SMOX and p21
during myogenesis.
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The reactive oxygen species (ROS) H2O2 produced by SMOX is a two-electron, nonradical 
oxidant molecule that is stable and freely diffuses within and between cells, and therefore acts as a 
signaling molecule. Numerous studies on myogenesis have indicated that muscle development is 
particularly sensitive to environmental and endogenous H2O2 levels. On the whole, H2O2 is directly 
engaged in modulating the expression of several enzymes related to the cellular redox state and plays 
a wide range of important roles in a variety of cells in a concentration-dependent manner [33–36]. It 
is to be noted that at low concentrations, H2O2 can activate various enzymes, such as phosphatases, 
modulating cell signaling; on the other hand, at high concentrations, it causes oxidative stress, leading 
to irreversible cell damage [37].  

Some studies, conducted by treating cells with H2O2 exogenously, provide evidence for its 
negative effect on myoblast differentiation. Treatment with H2O2 slowed differentiation [38] and 
reduced myogenin and MHC protein content and creatine kinase activity, as well as troponin I gene 
transcription, in a dose-dependent manner [39]. The inhibition of myotube formation was reversible 
when the powerful antioxidant N-acetylcysteine had been previously added to the culture medium 
[39]. It was also reported that H2O2 administration markedly reduced Myf5, MRF4 gene, and 
myogenin expression [40]. Another study showed that during the early stages of C2C12 myoblast 
differentiation, mildly toxic treatment with H2O2 resulted in the depletion of glutathione (GSH), the 
main thiol antioxidant, leading to further intracellular accumulation of ROS. The oxidative 
environment favored the activation of nuclear factor-kappa B (NF-κB), a redox-sensitive transcription 
factor, thus contributing to the lower expression of MyoD and impaired myogenesis [41].  

Figure 3. Hypothetical representation of SMOX regulation during myogenesis. During the early stage
of muscle differentiation, p21 expression increases, leading to reduced SMOX expression. During the
differentiation process, p21 declines in a time-dependent manner, allowing SMOX expression.

Spermine oxidase catalyzes the direct back-conversion of Spm to Spd, 3-aminopropanal (3-AP),
which is non-enzymatically converted to acrolein, and hydrogen peroxide (H2O2) (Figure 4), and each
of these products can affect muscle tissue in various ways, as described in the following sections.
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Figure 4. Enzymatic reaction catalyzed by SMOX. The physiological substrate spermine (Spm) is
oxidized by the SMOX enzyme into spermidine (Spd) with the production of 3-aminopropanal and
hydrogen peroxide.

4. Hydrogen Peroxide and Muscle Tissue

The reactive oxygen species (ROS) H2O2 produced by SMOX is a two-electron, nonradical oxidant
molecule that is stable and freely diffuses within and between cells, and therefore acts as a signaling
molecule. Numerous studies on myogenesis have indicated that muscle development is particularly
sensitive to environmental and endogenous H2O2 levels. On the whole, H2O2 is directly engaged in
modulating the expression of several enzymes related to the cellular redox state and plays a wide range
of important roles in a variety of cells in a concentration-dependent manner [33–36]. It is to be noted
that at low concentrations, H2O2 can activate various enzymes, such as phosphatases, modulating cell
signaling; on the other hand, at high concentrations, it causes oxidative stress, leading to irreversible
cell damage [37].

Some studies, conducted by treating cells with H2O2 exogenously, provide evidence for its
negative effect on myoblast differentiation. Treatment with H2O2 slowed differentiation [38] and
reduced myogenin and MHC protein content and creatine kinase activity, as well as troponin I
gene transcription, in a dose-dependent manner [39]. The inhibition of myotube formation was
reversible when the powerful antioxidant N-acetylcysteine had been previously added to the culture
medium [39]. It was also reported that H2O2 administration markedly reduced Myf5, MRF4 gene, and
myogenin expression [40]. Another study showed that during the early stages of C2C12 myoblast
differentiation, mildly toxic treatment with H2O2 resulted in the depletion of glutathione (GSH),
the main thiol antioxidant, leading to further intracellular accumulation of ROS. The oxidative
environment favored the activation of nuclear factor-kappa B (NF-κB), a redox-sensitive transcription
factor, thus contributing to the lower expression of MyoD and impaired myogenesis [41].
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On the other hand, other studies have shown a crucial role for endogenous ROS concentrations
during skeletal muscle differentiation. It has been reported that an increase in skeletal muscle NADPH
oxidase isoform 2 (NOX2) activity during differentiation leads to a rise in superoxide anion O2

−,
a molecule quickly converted by dismutation into H2O2. In line with the positive role of ROS, this
increase seems to be crucial to muscle differentiation via NF-κB/inducible nitric oxide synthase (iNOS)
pathway activation [42] and to the promotion of skeletal muscle precursor cell proliferation [43].
Furthermore, it has been observed that enhancement of the endogenous H2O2 level can regulate the
cellular GSH redox balance from the very early stage to the fully differentiated myotube formation
stage [44]. On the whole, these data clearly show that myogenesis is a process very sensitive to the
intracellular redox environment, and at the same time supports the notion that H2O2 can have different
outcomes depending on its intracellular concentration.

5. Acrolein and Muscle Tissue

Numerous conditions, such as oxidative stress, inflammation, alcoholic myopathy, and renal
failure in which acrolein is increased, have been associated with muscle deterioration and dysfunction,
resulting in disease. Moreover, increased muscle catabolism has been linked to an exogenous source of
acrolein due to cigarette smoking [45]. Exposure of skeletal myotubes to cigarette smoke stimulates
muscle catabolism via increased oxidative stress, activation of p38 mitogen-activated protein kinases
(p38MAPK), and upregulation of muscle-specific E3 ubiquitin ligases [45]. In addition, acrolein
treatment was sufficient to induce an increase of free radicals, activation of p38 MAPK, up-regulation
of the muscle-specific E3 ligases atrogin-1 and MuRF1, degradation of MHC, and atrophy of myotubes.
Inhibition of p38MAPK by SB203580 abolished acrolein-induced muscle catabolism [46]. These studies
demonstrated that acrolein is able to activate a signaling cascade, inducing muscle catabolism in skeletal
myotubes. Acrolein can also react with amino acid residues in proteins, consequently modifying
protein function and inducing apoptosis [47] or tissue damage such as brain infarction [48,49].
Notwithstanding that high levels of acrolein within cells have been linked to toxicity, it has recently
been demonstrated that SMOX plays a central role in the formation of bile canalicular lumen in liver
cells by activating the protein kinase B (AKT) pathway through acrolein production [50].

6. Spermidine and Muscle Tissue

Considering the new emerging role of SMOX in muscle physiology, it is of primary importance to
have full knowledge of this enzyme and the role of its catabolic product Spd. In several model systems
such as yeast, flies, worms, and human immune cells, Spd levels decrease during aging, and by giving
Spd as a dietary supplement, lifespan is extended [51]. In fact, a Spd-rich diet postpones age-related
phenomena, such as the progressive decline of locomotor activity in flies [52]. In this variety of model
organisms, Spd was found to suppress several aging-associated parameters, such as overproduction of
ROS and the level of necrotic cell death [51]. Recently, Spd has been of great interest in the prevention
or treatment of muscle diseases, since it may play a role in skeletal muscle atrophy/hypertrophy [53].
Aging brings a loss of skeletal muscle, and it has been shown that Spd cellular concentrations decrease
during age progression [51]. Autophagy contributes to age-related degeneration processes, since
it has been proven to decrease with aging. In physiological conditions, autophagy has a critical
role, acting as a cell housekeeper by degrading damaged or unnecessary organelles and allowing
the recovery of metabolites under nutrient starvation [54,55]. Deregulated autophagy contributes to
neurodegenerative disorders, as well as liver, heart, and muscle diseases [56]. Variations in autophagic
flux have been demonstrated to affect muscle homeostasis and body metabolic state [56]. Different
studies have analyzed the correlation between aging, Spd, and autophagy and led to the identification
of Spd as a strong and specific inducer of autophagy [56]. Through the autophagy mechanism, Spd
extends lifespan by triggering epigenetic deacetylation of histone H3 through inhibition of histone
acetyltransferases, suppressing oxidative stress and necrosis [51]. This mechanism provides protection
from the aging process for several tissues, including heart, brain, and skeletal muscle, thereby endorsing
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longevity [1]. In an aged population, regular and proper exercise is used as a stimulus for muscle
adaptation, attenuating the loss of skeletal muscle [57]. Autophagy attenuation that occurs with aging
has been shown to be reduced with exercise training, thus endurance exercise enhances autophagic
signaling in aged mice [1]. The coupled use of a specific autophagic inducer such as Spd and regular
exercise could activate autophagy, establishing a correct health level for the maintenance of skeletal
muscle [1].

Extended bed rest or post-surgery immobilization, resulting in skeletal muscle unloading, leads
to skeletal muscle atrophy. In addition, exposure to a microgravity environment during extended
space flights brings skeletal muscle disuse/atrophy similar to what is observed in prolonged bed
rest or post-surgery recovery [53]. Abukhalaf et al. [53] reported that skeletal muscle polyamine
levels appear to be influenced by microgravity (hind limb suspension) in a fiber-type-specific manner.
Unloading-induced atrophy was accompanied by a dramatic decrease in Spd level (68%) in slow-twitch
(type I) muscle fibers, but a slight increase (14%) in fast-twitch (type II) ones, when comparing unloaded
and control animals [53]. No significant changes were observed in Spm levels in either type of muscle
fibers [53]. On the other hand, individuals suffering from myasthenia gravis display high Spd and
Spm levels, associated with muscle weakness and severe atrophy [58]. Further contrasting results were
obtained by Bongers et al. [30], who did not detect any change of Spd levels in limb immobilization,
suggesting that enzymes other than SMOX or transporters are able to maintain Spd levels when SMOX
activity is reduced. Taking into account all these works, it can be seen that the direct role of polyamines,
and in particular Spd, needs to be clarified in detail, but it is necessary to refer to the specific type of
muscle fiber in light of the results obtained by Abukhalaf et al. [53].

A frequently used model to induce aging-related damage in vivo is administration of D-galactose
(D-gal) [59], which causes accumulation of ROS with final oxidative stress [60].

Excessive apoptosis and deficient autophagy may cause skeletal muscle atrophy due to
pathological events or the aging process, thus promoting cell death and disease progression [1].
Recently, AMP-activated protein kinase (AMPK) has been found to phosphorylate forkhead box O3
(FOXO3a) on Ser588 [61]. The FOXO3a signaling pathway induces the transcriptional activation of
autophagy-related genes that oversee protein degradation. FOXO3a was found to be necessary for the
reduction of skeletal muscle atrophy induced by D-gal and to maintain proliferation in aging skeletal
muscle cells by Spd and exercise. These results suggest that exercise and Spd may share mediators
that act on similar pathways in varying degrees, generating a synergistic effect for delaying skeletal
muscle senescence [1]. Therefore, Spd, by activating the AMPK-dependent autophagy pathway, may
decrease endoplasmic reticulum stress and reduce apoptosis [62].

Skeletal muscle atrophy is a state that not only characterizes a physiological condition in the aged
population or in extended bed rest, but also is present in several pathologies with different etiologies.

Spermidine was found to ameliorate myopathic defects in the animal model of Ullrich congenital
muscular dystrophy (UCMD) and Bethlem myopathy (BM) (col6a1−/− mice) by reactivating autophagy
in skeletal muscle [56]. In this model, there is overactivation of AKT, which causes defective autophagy
by activating the mechanistic target of rapamycin, which inhibits the transcription of genes under
FOXO [56]. Ineffective autophagy brings an accumulation of damaging organelles in the myofibers,
which degenerate with time. However, this process is reversible through dietary and pharmacological
approaches [63]. The beneficial effects of Spd administration in col6a1−/− mice are linked to its
ability to reactivate autophagic flux [64], as demonstrated by a significant increase of LC3B and
autophagosome formation [56]. Spermidine seems to act on AKT [56]. AKT kinase negatively regulates,
by phosphorylation, the activity of FOXO transcriptional factors. Low levels of phosphorylated
AKT activate FOXO [65]. Spermidine is able to reduce AKT phosphorylation, which triggers the
translocation of FOXO transcriptional factors into the nucleus, promoting autophagy [56]. BM and
UCMD patients display respiratory insufficiency due to a loss of diaphragm function [66], which is also
the most affected muscle in col6a1−/− mice, where it shows a high incidence of apoptotic myofibers [63].
Spermidine was able to rescue the aspects of both BM and UCMD.
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FOXO proteins are key transcription factors regulated by different post-translational modifications,
and among these, inhibitory acetylation by the histone acetyltransferase EP300 has been described in
detail [67]. Since Spd also acts as a histone acetyltransferase inhibitor, and one of its known targets
is EP300 [68], it is probable that Spd controls FOXO activity at multiple levels and determines a
permissive condition for its activity by the action of AMPK, AKT, and EP300 (Figure 5).
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7. Polyamines and Muscle Diseases

The involvement of Spd, and of PAs in general, has also been demonstrated in amyotrophic lateral
sclerosis (ALS) and Duchenne muscular dystrophy. Results from ALS patients and SOD1G93A mice,
an animal model for ALS pathology, showed deregulated PA levels in plasma, skeletal muscle, and
cerebral cortex. The many roles of PAs include ALS-relevant processes such as protection against
stress induced by ROS [69], modulation of glutamate ion channel receptors [70], and induction
of autophagy [51]. Similarly, muscular fibrosis after denervation displays a constant rise in PA
concentration [71].

Duchenne muscular dystrophy is a neuromuscular disease caused by mutation(s) in the
dystrophin gene. It is characterized by skeletal muscle and cardiopulmonary complications, resulting in
shorter life expectancy. The mouse model that better represents this disease is a double-mutant mouse
(dmd/utrn double mutant (mdx-dm)), where both dystrophin and utrophin genes are mutated [72]. It is
hypothesized that the rapid deterioration of muscles is correlated to reduced action of androgens [73].
In a recent study, GTx-026 a nonsteroidal selective-androgen receptor modulator that selectively builds
muscle and bone, was used to treat mdx-dm mice, and it was able to increase muscle mass, function, and
survival [72]. While GTx-026 failed to reverse the genes altered by dystrophin knockdown, it regulated
the expression of several genes of the PA pathway. Interestingly, GTx-026 significantly increased
SMOX by two- to threefold. Moreover, genes belonging to the Spd pathway were also upregulated by
GTx-026, confirming the crucial role of Spd in enhancing cellular lifespan and proposing SMOX as a
key gene in muscle diseases [72].

8. The Transgenic Mouse Line: Total-Smox

Spermine oxidase is a significant positive regulator of muscle gene expression and fiber size.
Recently, a Cre/loxP-based double transgenic mouse line overexpressing the Smox gene in all organs
was engineered and named Total-Smox. Transgenic Green Fluorescent Protein (GFP)-Smox (formerly
JoSMOX) mice described by Cervelli et al. [6] were crossed with Total-CRE mice reported by [74],
to obtain the Total-Smox genetic line (Figure 6). This new experimental model was further genetically
stabilized by back-crossing Total-Smox mice 10 times with C57BL/6 mice. SMOX overexpression in
transgenic individuals can be detected in all tissues by β-Galoctiside (3-Gal) staining (Figure 6) and
reverse-transcriptase/PCR analysis. As expected, SMOX enzyme activity was higher in all the organs
of Total-Smox mice in comparison to their syngenic littermates, including skeletal muscle and heart,
as demonstrated by [75].
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promoter drives the ubiquitous expression of the SMOX gene and the lacZ reporter gene. IRES: internal
ribosome entry site. (B) LacZ staining of Total-Smox embryo.
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In the literature, it is known that muscle diseases and aging-related pathologies display high
oxidative stress by accumulating H2O2 in the muscles [76]. In the Total-Smox mouse model, chronic
H2O2 production due to SMOX overexpression leads to an imbalanced cellular redox state in both
types of muscle tissue. Skeletal muscle displays lower oxidative damage compared to the heart,
evoking a different redox adaptation through upregulation of the enzymatic antioxidant system [75].
This tissue shows a significant decline in the ratio of GSH reduced and oxidized due to a decrease in
the total amount of GSH. SMOX overexpression increases glutathione S-transferase activity, since it
is an enzyme induced under oxidative stress and is responsible for the detoxification of molecules
through the formation of S-conjugates [75]. SMOX overexpression in the skeletal muscle of Total-Smox
mice also causes a concomitant increase of catalase, another detoxifying enzyme, indicating that there
is a counteracting action against the high H2O2 production. Moreover, the amount of Spd has been
found to be elevated in Total-Smox mice compared to control animals, while the levels of Put and
Spm were not altered. Spermidine has been proven to be essential in muscle physiology by promoting
autophagy, counteracting aging, and extending lifespan [1].

Considering the important role of Spd in many pathologies and that Spd increases in the Total-Smox
mice model while no changes are reported for the other PAs, it would be interesting to cross this mouse
line with animal models of different diseases such as Ullrich congenital muscular dystrophy and
Bethlem myopathy (col6a1−/− mice), amyotrophic lateral sclerosis (SOD1G93A mice), and Duchenne
muscular dystrophy (mdx-dm mice), to evaluate the possibility of rescuing the phenotype.

9. Conclusions and Future Perspectives

This review points out that not only does SMOX take part in cancer and neurological disorders,
but it is also involved in skeletal muscle pathophysiology. New evidence for the physiological roles of
the PA pathway in atrophy could represent a major area for future research [77]. The prevalence rate
of sarcopenia is up to 33% in elderly people, and the number is expected to increase due to lifestyle,
dietary habits, and aging [78]. It has been known that PA levels and related enzyme activities decline
during aging; however, until recently, it was not clear how alterations in PA metabolism could affect
the aging process [79]. Several experiments have highlighted the role of Spd as an autophagy inducer
that ameliorates age-related muscle atrophy [80]. Different mouse models of disease have brought
new insights as to the possibility of Spd as a therapeutic food option. This approach could be used to
design innovative treatments, with Spd alone or in combination with other approaches, leading to
clinical trials. In perspective, this nutraceutical-based, autophagy-inducing approach could be applied
to different therapies, and could also be extended to other inherited muscle pathologies involving
defective activity of the autophagy machinery. Of note, Spd is the reaction product of SMOX, which in
turn has been demonstrated to help in maintaining muscle mass and counteracting the expression
of genes that promote muscle atrophy. Understanding how the SMOX/p21 axis and its product Spd
influence muscle gene expression and how they are linked to autophagy and muscular atrophy during
aging is a new field of investigation. Considering that SMOX is highly expressed in skeletal muscle
and regulates the amount of PAs, it can become a key gene to target for treatment of diseases such as
Duchenne muscular dystrophy.

In perspective, Total-Smox mice could be considered as a valuable genetic animal model to
investigate the role of SMOX and Spd in muscular physiology, shedding light on new therapies to test
in several muscle diseases.
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