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Abstract

Motivation: Previously constructed classifiers in predicting eukaryotic essential genes integrated a

variety of features including experimental ones. If we can obtain satisfactory prediction using only

nucleotide (sequence) information, it would be more promising. Three groups recently identified

essential genes in human cancer cell lines using wet experiments and it provided wonderful oppor-

tunity to accomplish our idea. Here we improved the Z curve method into the k-interval form to

denote nucleotide composition and association information and used it to construct the SVM clas-

sifying model.

Results: Our model accurately predicted human gene essentiality with an AUC higher than 0.88 both

for 5-fold cross-validation and jackknife tests. These results demonstrated that the essentiality of

human genes could be reliably reflected by only sequence information. We re-predicted the negative

dataset by our Pheg server and 118 genes were additionally predicted as essential. Among them, 20

were found to be homologues in mouse essential genes, indicating that some of the 118 genes were

indeed essential, however previous experiments overlooked them. As the first available server,

Pheg could predict essentiality for anonymous gene sequences of human. It is also hoped the k-inter-

val Z curve method could be effectively extended to classification issues of other DNA elements.

Availability and Implementation: http://cefg.uestc.edu.cn/Pheg

Contact: fbguo@uestc.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Catalogs of essential genes on a whole-genome scale, determined

using wet-lab methods, are available for a large number of pro-

karyotic and eukaryotic organisms which are provided in DEG

and OGEE databases (Chen et al., 2012; Luo et al., 2014).

Computational methods with high accuracy offer an appealing alter-

native method for identifying essential genes. Computational meth-

ods are broadly divided into three types: machine learning-based

methods combining intrinsic and context-dependent features (Cheng

et al., 2013; Deng et al., 2011), flux balance analysis-based methods

(del Rio et al., 2009; Gatto et al., 2015; Kuepfer et al., 2005) and

homology search and evolutionary analysis-based methods (Peng

et al., 2012; Wei et al., 2013). With respect to essential gene predic-

tion in bacteria, we integrated the orthology and phylogenetic infor-

mation and subsequently developed a universal tool named Geptop

(Wei et al., 2013), which has shown the highest accuracy among all

state-of-the-art algorithms.
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Some studies have focused on essential gene prediction in eu-

karyotic genomes. In 2005, Chen and Xu investigated protein dis-

pensability in Saccharomyces cerevisiae by combining high-

throughput data and machine learning-based methods (Chen and

Xu, 2005). In 2006, Seringhaus et al. reported a machine learning-

based method that integrated various intrinsic and predicted features

to identify essential genes in yeast S.cerevisiae genomes (Seringhaus

et al., 2006). Yuan et al. integrated informative genomic features to

perform knockout lethality predictions in mice using three machine

learning-based methods (Yuan et al., 2012). Lloyd et al. analyzed

the characteristics of essential genes in the Arabidopsis thaliana gen-

ome and used A.thaliana as a machine learning-based model to

transform the essentiality annotations to Oryza sativa and

S.cerevisiae (Lloyd et al., 2015).

Recently, three research teams approximately identified 2000 es-

sential genes in human cancer cell lines using CRISPR-Cas9 and gene-

trap technology (Blomen et al., 2015; Hart et al., 2015; Wang et al.,

2015). Their results showed high consistency, which further con-

firmed the accuracy and robustness of the essential gene sets (Fraser,

2015). These studies provided an in-depth analysis of tumor-specific

essential genes and feasible methods to screen tumor-specific essential

genes (Fraser, 2015; Hart and Moffat, 2016). The essential genes

screened by these three teams provided a clear definition of the re-

quirements for sustaining the basic cell activities of individual human

tumor cell types. Practically, these genes can be regarded as targets for

cancer treatment (Fraser, 2015). The data from these three groups

provided a rare opportunity to theoretically study the function, se-

quence composition, evolution and network topology of human es-

sential genes. One of the most important and interesting theoretical

issues in modern biology is whether essential genes and non-essential

genes can be accurately classified using computational methods. The

models established in the aforementioned three eukaryotic organisms,

S.cerevisiae (Chen and Xu, 2005; Seringhaus et al., 2006), Mus mus-

culus (Yuan et al., 2012) and A.thaliana (Lloyd et al., 2015), involved

intrinsic features, or intrinsic and context-dependent features. These

context-dependent features included those features extracted from ex-

perimental omics data. However, the features derived from experi-

mental data are frequently unavailable; consequently, this type of

machine learning model cannot be extended to a wide range of gen-

omes. In the present study, we addressed this problem in humans

by using only intrinsic features derived from sequences, from which

certain features can be characterized using a k-interval Z curve. The

k-interval Z curve considered information of both adjacent nucleotide

compositions and internal nucleotide associations. To facilitate the

use of interested researchers, we have provided a user-friendly online

web server, Pheg, which can be freely accessed without registration at

http://cefg.uestc.edu.cn/Pheg.

2 Materials and methods

2.1 Data collection
We extracted the gene essentiality data from the DEG database

(http://tubic.tju.edu.cn/deg/), the updated version of which con-

tained human gene essentiality information from three recent works

(Blomen et al., 2015; Hart et al., 2015; Wang et al., 2015). These es-

sentiality annotations serve as the basis for constructing our bench-

mark dataset. The flowchart shown in Figure 1 illustrates the

construction of the positive and negative datasets.

In the three studies, 13 datasets were provided. Due to lines

HCT116 and KBM7 are represented by two datasets each, 11 cancer

cell lines (KBM7, K562, Raji, Jiyoye, A375, HAP1, DLD1, GBM,

HCT116, Hela, rpel) are involved in total. Blomen et al. and Wang

et al. identified the essential genes in the KBM7 cell line. We com-

bined these two datasets into one gene set, KBM7. A total of 2073

and 386 essential genes were contained in the two datasets for

HCT116. The 386 genes in this dataset were markedly different from

those in the datasets for the other cell lines, so this dataset was

excluded. Ultimately, 11 essential gene sets were obtained, corres-

ponding to a single cell line. Essential genes, by definition, are indis-

pensable for the survival of organisms under optimized growth

conditions. Those genes are considered the foundation of life (Juhas

et al., 2011), and they should be persistent in a wide range of cell lines

and species. Therefore, we only retained genes that were identified as

lethal genes in more than half of the investigated cell lines. When a

gene appeared as essential in more than six cell lines (11/2�6), it was

selected as one sample in the positive dataset. According to this prin-

ciple, we obtained a total of 1518 essential genes. We downloaded all

of the protein coding gene sequences from the CCDS database (Harte

et al., 2012) (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi),

and the annotations of protein coding genes were obtained from the

HGNC database (http://www.genenames.org/cgi-bin/statistics, March

1, 2016), which contained 19 003 annotation entries. The essential

gene sequences were extracted according to the annotations, and

genes with no counterpart in the CCDS database were excluded.

According to this criterion, we excluded 2 genes and obtained 1516

essential genes. We used the essential gene annotation in the DEG

dataset, and the gene sequences were extracted from the CCDS be-

cause the former did not contain the information for non-essential

genes. For human essentiality annotations in the DEG database, a

number of scattered annotated essential genes aside from those in the

11 cell lines were identified. A total of 28 166 essential gene anno-

tated entries (including conditional essential gene annotated entries)

were obtained. Among these annotations, there were many repeated

annotation entries; therefore, there were considerably fewer unique

entries. To obtain a more reliable negative dataset, i.e. absolutely

non-essential genes, we excluded all of the human essential genes

annotated in the DEG database (Luo et al., 2014) from the list of the

protein coding genes. The remaining genes were regarded as the nega-

tive dataset, and their gene sequences were extracted from the CCDS

database. Genes with no counterpart in the CCDS database were also

excluded. A total of 10 499 non-essential genes were obtained using

this method. Ultimately, a total of 12 015 gene entries were obtained

in the benchmark dataset: 1516 essential genes and 10 499 non-

Fig. 1. Description of the construction of the human essential and non-essen-

tial gene datasets
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essential genes. The protein coding gene annotations are provided in

Supplementary Material S1, and information for the benchmark data-

set is provided in Supplementary Material S2.

2.2 k-Interval Z curve
The originally proposed Z curve variables might reflect the compos-

ition of a single nucleotide considering the features derived from phase

heterogeneity of a single nucleotide (Zhang, 1997; Zhang and Chou,

1994; Zhang and Zhang, 1991, 1994). Herein, we provided a sum-

mary of the Z curve method used for gene identification (Zhang and

Wang, 2000). Let us suppose that the frequencies of bases A, C, G and

T occurring in an ORF or a gene fragment at positions 1, 4, 7, . . ., 2,

5, 8, . . . and 3, 6, 9, . . ., are represented by a1, c1, g1, t1; a2, c2, g2, t2;

a3 and c3, g3, t3, respectively. Those 12 symbols represent the frequen-

cies of the bases at the 1st, 2nd and 3rd codon positions, respectively.

According to the symbols defined above, the universal Z curve math-

ematical expression is as follows (Zhang and Wang, 2000):

xi ¼ ðai þ giÞ � ðci þ tiÞ

yi ¼ ðai þ ciÞ � ðgi þ tiÞ

zi ¼ ðai þ tiÞ � ðgi þ ciÞ

8>>>><
>>>>:

xi; yi; zi 2 ½�1; 1�; i ¼ 1; 2; 3

(1)

Because composition bias for oligonucleotides in coding DNA se-

quence (CDS) regions or open reading frames (ORFs) exists, the adja-

cent w-nucleotides Z curve method was proposed (Gao and Zhang,

2004; Guo et al., 2003). Let us suppose that w represents the length

of the adjacent nucleotide sequence. The Z curve variables for the

phase-specific adjacent w-nucleotides can be calculated as follows:

xk
Sw
¼ ½pkðSwAÞ þ pkðSwGÞ� � ½pkðSwCÞ þ pkðSwTÞ�

yk
Sw
¼ ½pkðSwAÞ þ pkðSwCÞ� � ½pkðSwGÞ þ pkðSwTÞ�;k ¼ 1; 2;3

Zk
Sw
¼ ½pkðSwAÞ þ pkðSwTÞ� � ½pkðSwGÞ þ pkðSwCÞ�

8>>><
>>>:

(2)

where k equals 1, 2, or 3 to indicate that the first oligonucleotide bases

are situated at the 1st, 2nd and 3rd codon positions, respectively.

Recent studies demonstrated the existence of long-range associ-

ations in chromosomes and showed that these associations are cru-

cial for gene regulation (Fullwood et al., 2009). Although the two

adjacent nucleotides in the primary structure have no association in

some cases, strong associations in terms of tertiary structure might

exist. Therefore, we introduced the k-interval Z curve to virtually

represent the interval range association. The details of this method

are described as follows. Let us used pk(SwX) to represent the fre-

quency of oligonucleotides SwX in genes or ORFs, where X is one of

the four basic bases A, T, G and C. To facilitate this presentation,

the length of the oligonucleotide Sw is represented as w. According

to the predetermined characters, we generated the universal equa-

tion for the k-interval Z curve based on Z curve theory as follows:

xk
Sw
¼ ½pkðSwAÞ þ pkðSwGÞ� � ½pkðSwCÞ þ pkðSwTÞ�

yk
Sw
¼ ½pkðSwAÞ þ pkðSwCÞ� � ½pkðSwGÞ þ pkðSwTÞ�;

k ¼ 1 : kþ 1; 2 : kþ 2; 3 : kþ 3

Zk
Sw
¼ ½pkðSwAÞ þ pkðSwTÞ� � ½pkðSwGÞ þ pkðSwCÞ�

8>>>>><
>>>>>:

(3)

where x, y and z represent the accumulation of the three base groups

classified according to chemical bond properties. Variable k denotes

the phase-specific index of the first base in the nucleotide sequence

Sw, and k represents the intervals between Sw and X. The first base

in the oligonucleotide Sw was located at position k. The core part of

k-interval Z curve forms oligonucleotide SwX. A schematic diagram

of the formation of these oligonucleotides is shown in Figure 2. The

oligonucleotide window Sw slides along a DNA molecule sequence

according to phase, forming oligonucleotide sets with base X, which

is k intervals away from the last base of Sw. The periodicity derived

from three codons is denoted as SwX.

When w is equal to 1 and k is equal to 0, Equation (3) can be

transformed into Equation (1). When w is more than 1 and k is

equal to 0, Equation (3) can be transformed into Equation (2). Thus,

the phase-specific single nucleotide Z curve and phase-specific adja-

cent w-nucleotide Z curve are incorporated into the k-interval Z

curve. Using the k-interval Z curve, we can extract more features to

characterize DNA sequences. According to Equations (1) and (2),

when w is greater than 0 and k is equal to 0 we can obtain

3�3�4w�1 variables to characterize DNA sequences. When w and

k are greater than 0, we can obtain 3�3�4w variables. For con-

venience, we used fvw,k to represent the variables with the length of

w for oligonucleotides Sw, and the highest interval length between

oligonucleotides Sw and base X is k. To obtain more information

from a DNA sequence, the final variable is described as FVw, k,

where w represents the longest oligonucleotides and k is the highest

interval. This variable can be represented as follows:

FVw;k ¼ ½ [
i¼w�1;j¼k

i¼1;j¼0
fvi;j; fvw;0�T (4)

where the symbol ‘U’ represents the union set of fvw,k, i.e.

FV2,0¼ [fv1,0, fv2,0]T, FV2,1¼ [fv1,0 [ fv1,1, fv2,0]T, FV2,2¼ [fv1,0 [
fv1,1 [ fv1,2, fv2,0]T, . . ., FV3,0¼ [fv1,0[fv2,0, fv3,0], . . .. FV2,0 and

FV3,0 are the combination of adjacent phase-specific w-nucleotide Z

curve variables. We performed this prediction with w ranging from

2 to 4 and k ranging from 0 to 5. According to the discussion above,

we obtained 4 545 variables for FV4, 5.

2.3 Support vector machine
Linear SVMs play a key role in solving ultra-large-scale data, reflect-

ing the effectiveness, rapid speed and splendid generalization of this

method in training and prediction. LIBLINEAR, designed by Fan

Fig. 2. Description of the process of constructing the oligonucleotides using

the k-interval Z curve method. A gene or an ORF has three phases (I, II, III rep-

resent first, second and third phase, respectively) denoted with different col-

ors (Color version of this figure is available at Bioinformatics online.)

1760 F.-B.Guo et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx055/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx055/-/DC1
Deleted Text: 
Deleted Text: i
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: <sup>-</sup>
Deleted Text: ,
Deleted Text: ,


et al. (2008), is an easy-to-use, freely available software tool to man-

age large sparse data. The new version of LIBLINEAR (version 2.1-4)

supports not only classification, such as L2-loss and L1-loss linear

support vector machine, but also regression, such as L2-regularized

logistic regression. Given the ultra-high-dimensional feature vectors

and large samples contained in the benchmark dataset in the present

study, we used the LIBLINEAR software package for prediction. The

new version of LIBLINEAR can be downloaded from https://www.

csie.ntu.edu.tw/�cjlin/liblinear/. In the present study, we used the

5-fold cross-validation test to determine the best penalty parameter

c with the penalty parameter from 2�18 to 210. We further adopted

the jackknife test to assess the predictive power of our classifier. The

area under the ROC (Receiver Operating Characteristic), curve, the

AUC, is often used to measure the performance quality of a binary

classifier. An AUC of 0.5 is equivalent to random prediction, whereas

an AUC of 1 represents a perfect prediction. There is no bias for eval-

uating the performance of the unbalanced dataset through AUC.

Therefore, we adopted the AUC as a cross-validation criterion in the

present study.

2.4 Feature extraction technology
First, the predictive power of a classifier can be influenced by the

relevance and noise in the original features. Second, additional time

for training and predicting tasks can be increased due to the high-

dimensional features. Feature selection (FS) technology is a powerful

method for the removal of noise and redundant features from the

original features. Hence, the dimension of the features can be

reduced. Recursive feature extraction through SVM linear kernels is

a powerful FS algorithm (Guyon et al., 2002), but the correlation

bias was not considered using this method. Yan and Zhang (2015)

proposed an improved method, called SVM-recursive feature extrac-

tion (RFE)þcorrelation bias reduction (CBR), which incorporates

the CBR. The main concept is that the ranking criterion can be dir-

ectly derived from the SVM-based model. The feature with the

smallest weight is excluded for each run time. The training process

was repeated by incorporating CBR until the ranks of all features

are obtained. We used SVM-RFEþCBR FS technology to perform

feature selection and improve the performance of the classifier.

3 Results

3.1 Cross-validation results
The final features of this method were described by FVw,k., a value

that contains information on the composition of the adjacent w-nu-

cleotides (Gao and Zhang, 2004) and k-interval nucleotides. The as-

sociation information was also captured by FVw,k. Therefore, this

method achieves improved performance compared with using the

original Z curve. The following results solidly confirmed this point.

We performed a 5-fold cross-validation test with w ranging from

2 to 4 and k ranging from 0 to 5. The detailed results are provided in

Table 1, showing that area under the curve (AUC) values gradually

increased with increasing k when w was fixed. An examination of

the performance under variable values for w and fixed values for k

revealed that the performance for the classifier improved with

increasing values for w. As shown in Table 1, we obtained an AUC

value of 0.8002 under FV2,0.

However, after utilizing the k-interval nucleotide composition,

the performance was improved, for example, the best AUC achieved

for this model was 0.8449 through the 5-fold cross-validation test

under variable FV4,5. The AUC was improved 4.47% compared

with FV2,0. The information redundancy and noise in the original

features can influence the predictive power of a classifier, and high-

dimensional features also increase the time costs for training and

prediction. FS technology can mitigate these disadvantages. The

SVM-RFEþCBR method was adopted to rank these features in des-

cending order based on the contribution of each feature.

Subsequently, the top 100 features were used to constitute the initial

feature subset to train and test the model, and the next 100 features

were added into the feature subset, followed by prediction using the

same methods. This process was repeated until the top 4500 features

had been added according to the rank order. The test results of each

model were evaluated according to the AUC scores via a 5-fold

cross-validation test. The AUC values for different top features are

shown in Figure 3A. Among all 4545 features examined, the best

AUC of 0.8814 was achieved for the top 800 selective features. The

final AUC value was 8.12% higher than that for FV2,0. To conduct

an objective evaluation of this method, we performed a rigorous

jackknife test based on the top 800 selected features using the par-

ameters determined via a 5-fold cross-validation test. We obtained

an AUC value of 0.8854. As expected, excellent performance was

obtained after adopting the k-interval nucleotide composition and

feature selection technology. Those results illustrated that the essen-

tiality of human genes could be well reflected by only sequence

information.

As we are extremely interested in the actual essential genes in the

predicted results, we used the positive predictive value (PPV) to fur-

ther refine. This evaluation index can be calculated using the for-

mula TP/(TPþFP), where TP (true positive) and FP (false positive)

represent the number of real essential and non-essential genes

among the positive predictions. Therefore, the PPV reflects the pro-

portion of actual essential genes among the predicted essential genes.

We obtained a PPV of 73.05% (TP¼515, FP¼190) using the jack-

knife test based on the top 800 features. Sn (sensitivity), Sp (specifi-

city) can reflect the correctly predicted percentage of positive and

negative samples, respectively. To give a comprehensive evaluation,

we additionally calculated Sn, Sp. We obtained Sp with value of

98.19% and Sn with value of 33.97% under the default threshold of

LIBLINEAR. Note that the Sn is much lower than Sp and this case is

cause by the unbalanced dataset (the size of non-essential genes is

much larger than essential genes). One of the simplest cross valid-

ation tests is the holdout method. In this procedure, the dataset is

Table 1. AUC values at different w, k and penalty parameters c

Variablesa c AUC

FV2,0 256 0.8002

FV2,1 64 0.8198

FV2,2 16 0.8256

FV2,3 128 0.8275

FV2,4 64 0.8293

FV2,5 64 0.8365

FV3,0 32 0.8276

FV3,1 1 0.8333

FV3,2 0.5 0.8347

FV3,3 0.25 0.8356

FV3,4 0.5 0.8408

FV3,5 0.25 0.8429

FV4,0 1 0.8344

FV4,1 0.5 0.8369

FV4,2 0.5 0.8386

FV4,3 0.25 0.8413

FV4,4 0.25 0.8436

FV4,5 0.25 0.8449

aThe subscript of the variables correspond to w and k.
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separated into two subsets, namely, training and testing datasets.

We randomly sampled one-fifth of the positive and negative samples

from the benchmark dataset for the training model, and the remain-

ing samples were used as the testing dataset. To comprehensively as-

sess the method used in the present study, we repeated the holdout

method 100 times. The composition of our training and testing sam-

ples has differences in every holdout process. The mean AUC score

was used as the final evaluator. A mean AUC score of 0.8537 with a

variance of 1.67e-005 was obtained. Additionally, the proportions

of samples in the training and predicting datasets were changed for

further investigation. One-tenth of the positive and negative samples

were randomly sampled as the training dataset, and the remaining

samples were used as the testing dataset. This procedure was re-

peated 100 times. We obtained a mean AUC score of 0.8347 with a

variance of 2.77e-005. These results further confirmed that this

method was robust and accurate.

3.2 Different contributions of each group of variables to

the classification ability
Features with fixed w and k values correspond to a specific group of

variables. A total of 19 special groups were obtained, namely, fv1,0,

fv1,1, fv1,2 . . .. fv1,5; fv2,0, fv2,1 . . .. fv2,5; fv3,0, fv3,1 . . .. fv3,5 and

fv4,0. We calculated the percentage of features in these groups, and

the results are provided in Table 2.

For each group, there were two frequencies: P(A), which denotes

the actual frequency of features in each group appearing in the top

800 selected features, and P(E), which denotes the expected fre-

quency of the features in each group appearing in the original 4545

features. Therefore, P(A) was obtained based on the number of se-

lected features in each group divided by 800, and P(E) was calcu-

lated by dividing the number of total features in each group by

4545. P(A) and P(E) are listed in columns 4 and 5, respectively. If

P(A) is higher than P(E), then the group makes a higher-than-

average contribution to the identification of essential genes. We cal-

culated the selected tendentiousness using the formula P(A)/P(E)-1,

and the results are listed in column 6 of Table 2. We further con-

ducted a hypergeometric distribution test for each group, and the

p values are listed in column 7. Figure 3B and Table 2 show that

fv2,0 (p¼1.60E-06), fv2,1 (p¼0.024077) and fv3,0(p¼7.89E-05)

are preferentially selected and are statistically significant. These re-

sults demonstrated that there are strong signals for classifying essen-

tial and non-essential genes when the character interval is equal to

zero or one, but the other groups did not show these strong signals.

To further confirm this result, the variables fv2,0, fv2,1, fv2,2, fv2,3,

fv2,4, fv2,5 and fv3,0, fv3,1, fv3,2, fv3,3, fv3,4 and fv3,5 were used as in-

put features. Improved performance was obtained under fv2,0, fv2,1

and fv3,0 compared with the other groups (Table 2, column 8).

Those results demonstrated that the shorter interval association pro-

vides more information. However, longer interval association can

still play an independent role. Hence, integrating the interval infor-

mation into adjacent ones could significantly improve our classifier’s

capacity of discernment (Table 1).

3.3 A web server for predicting essential genes in

human
To facilitate the use of interested researchers, we constructed a user-

friendly online web server named Pheg (Predictor of human essential

genes), which is freely accessible at http://cefg.uestc.edu.cn/Pheg.

Pheg’s algorithm is based on the k-interval Z curve. Additional par-

ameters are not necessary, making this server convenient to use.

Pheg can predict whether a query gene (or multi query genes) with

FASTA format is (are) essential using only the CDS region of a gene

(or multi genes) as input. We integrated logistic regression into the

Pheg server to estimate the reliability of the predicted results. Hence,

this server can output a probabilistic estimated value as a measure-

ment of gene essentiality for the inputted coding region. This is the

first available server for predicting human gene essentiality.

Comparatively, some computational models have been proposed for

the other eukaryotes however all of them did not provide online pre-

diction service. We re-predicted the genes in the benchmark dataset

via Pheg and obtained an AUC¼0.9249 and PPV¼83.84%. A total

of 612 genes were identified as essential genes among the 1516 posi-

tive samples. This means the number of false negative samples is

904 and tends to be a quite large number. However, this case is per-

vasive in the issue of essential gene prediction because the re-

searchers try to keep a high TN proportion in order to correctively

deal with a very high number of negative samples. Among the 10

499 negative samples in our benchmark, 118 ones were predicted as

essential genes by Pheg. To estimate how many genes among those

predictions are real essential genes, we calculated precisions using

5-fold, 10-fold, 15-fold and 20-fold cross-validation tests, and we

obtained precisions with values of 70.43%, 71.63%, 72.48%,

72.22%, which were approximately 70%. Hence, we expect that 82

(118�70%) are correctly predicted essential genes. The informa-

tion for these 118 genes is provided in Supplementary Material S3.

Addtionally, we used these 118 gene sequences to conduct a

BLAST (Basic Local Alignment Search Tool) search against essential

genes in the genome of Mus musculus (mouse). The current mouse

essential gene set is accessible in the OGEE database (Chen et al.,

2012). Considering that no BLAST program is embedded in OGEE,

we downloaded the essential gene annotations (gene_essentiality) at

(http://ogee.medgenius.info/downloads/) and extracted the essential

gene annotation of M. musculus. We obtained the essential gene se-

quences according to the annotations (http://ogee.medgenius.info/

downloads/). A BLAST search was performed via ncbi-blast-

2.2.30þ-win64.exe (Shiryev et al., 2007) using the data from

OGEE, and homologs for 20 genes were identified (e value<1e-

100) among the 118 predicted essential genes. The details for these

20 genes are provided in Supplementary Material S4. The Exome

Aggregation Consortium (ExAC) incorporates high-quality exome

sequencing data, and it provides rare opportunity to investigate loss-

of-function (LoF) intolerance of a gene via quantitative index pLI

(Lek et al., 2016). Herein, The 20 genes identified as essential were

further investigated using ExAC Browser (http://exac.broadinstitute.

org/). Two-sample t-test illustrated that the mean pLI values

Fig. 3. AUC values obtained under different top n features and the contribu-

tion of each group. (A) The AUC scores under different top features. Dots with

different colors denote different c values. (B) The selective tendentiousness

for every variable type. The red bars denote that the selective tendentious-

ness is statistically significant in hypergeometric distribution test (Color ver-

sion of this figure is available at Bioinformatics online.)
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between those 20 predicted essential genes and those remained non-

essential genes in our negative dataset is significantly different

(P<0.05), indicating functions of the 20 predicted genes are more

vital. These results illustrated that at least a part of these 118 genes

have higher probability to be factually essential genes and have been

overlooked in the essential gene screening in previous experimental

studies. Hence, Pheg sever could be used to predict essentiality for

anonymous gene sequences of human and closely related species,

and identifying novel essential genes using Pheg may supplement the

essential gene list of human.

4 Discussion

The Z curve has been widely used in the field of bioinformatics for

tasks such as protein coding gene identification (Chen et al., 2003;

Guo et al., 2003; Guo and Zhang, 2006; Hua et al., 2015;

Zhang and Wang, 2000), promoter recognition (Yang et al., 2008),

translation start recognition (Ou et al., 2004), recombination spots

recognition (Dong et al., 2016), and nucleosome position mapping

(Wu et al., 2013). However, correlation and k-interval nucleotide

composition have not been incorporated into the Z curve method.

In the present study, we present a k-interval Z curve based on Z

curve theory. The DNA sequence can be understood as an ordinary

character sequence; therefore, the method proposed in the present

study has the potential for applications in mining characteristics

from other character sequences and can be used as a universal fea-

ture extraction method for DNA sequences.

Based on the k-interval Z curve, we obtained excellent perform-

ance in human essential gene identification. This excellent perform-

ance might be attributable to the following points: First, we

introduced the concept of intervals, reflecting association informa-

tion and the k-interval nucleotide composition. Second, we used fea-

ture selection technology in the present study. Thus, noisy and

redundant features could be removed from the original features.

Table 2 shows the improved performance obtained under fv2,0, fv2,1

and fv3,0 compared with the other variable groups. Further compari-

son of these results with other feature groups shown in Table 2, and

this comparison shows that the AUC values obtained with k-interval

variables are smaller than those obtained with adjacent variables.

However, the performance can be improved after adding k-interval

oligonucleotide association information (see Table 1). Hence, the k-

interval Z curve should reflect additional important information for

essential genes that cannot be contained in adjacent nucleotide asso-

ciation information.

In 2005, Chen and Xu used a neural network and SVM to pre-

dict the dispensability of proteins in the yeast S. cerevisiae based on

the protein evolution rate, protein-interaction connectivity, gene-

expression cooperativity and gene-duplication data (Chen and Xu,

2005). The next year, Seringhaus et al. only used 14 features to pre-

dict essential genes in S. cerevisiae and obtained a PPV¼0.69

(Seringhaus et al., 2006). Yuan et al. assembled a comprehensive list

of 491 candidate genomic features to predict a lethal phenotype in a

knockout mouse using three machine learning methods (Yuan et al.,

2012), and the best AUC value was 0.782. In 2015, Lloyd et al.

investigated the relationship between phenotype lethality and gene

function, copy number, duplication, expression levels and patterns,

rate of evolution, cross-species conservation, and network connect-

ivity, and the random forest-based model used in this study achieved

an AUC of 0.81, which is significantly better than that obtained by

random guessing (Lloyd et al., 2015). Those previous researches in

three eukaryotes illustrated classifiers can gave satisfactory predic-

tion through combining sequence information with other features.

For human essential gene identification, we only used the sequence

composition and interval association information in the present

study and still obtained an AUC of 0.8854. Considering that this re-

sult is better than the results obtained in previous studies using inte-

grated features, the gene essentiality of the human genome can be

accurately reflected based on only the sequence information.

We also surveyed two other properties related to gene essential-

ity. Homologous genes between human and other 17 species were

Table 2. Feature details for every variable type in the top 800 selective features

Variables No. (A) No. (E) P(A) P(E) P(A)/P(E) - 1 P value AUC C

fv1,0 3 9 0.0038 0.0020 0.8938 0.200495 – –

fv1,1 7 36 0.0088 0.0079 0.1047 0.452683 0.7220 1024

fv1,2 3 36 0.0038 0.0079 �0.5266 0.965324 0.6216 64

fv1,3 4 36 0.0050 0.0079 �0.3688 0.900314 0.6028 1024

fv1,4 4 36 0.0050 0.0079 �0.3688 0.900314 0.6018 128

fv1,5 8 36 0.0100 0.0079 0.2625 0.292801 0.6302 256

fv2,0 19 36 0.0238 0.0079 1.9984 1.60E-06 0.7902 64

fv2,1 35 144 0.0438 0.0317 0.3809 0.024077 0.7551 1024

fv2,2 20 144 0.0250 0.0317 �0.2109 0.906339 0.6841 1024

fv2,3 25 144 0.0313 0.0317 �0.0137 0.566007 0.6633 512

fv2,4 22 144 0.0275 0.0317 �0.1320 0.802176 0.6856 1024

fv2,5 25 144 0.0313 0.0317 �0.0137 0.566007 0.6816 1024

fv3,0 44 144 0.0550 0.0317 0.7359 7.89E-05 0.8236 2

fv3,1 94 576 0.1175 0.1267 �0.0729 0.821727 0.7652 8

fv3,2 84 576 0.1050 0.1267 �0.1715 0.983389 0.7125 32

fv3,3 107 576 0.1338 0.1267 0.0554 0.272681 0.7168 1024

fv3,4 86 576 0.1075 0.1267 �0.1518 0.970308 0.7027 64

fv3,5 103 576 0.1288 0.1267 0.0159 0.44446 0.6983 1024

fv4,0 107 576 0.1338 0.1267 0.0554 0.272681 – –

Notes: The feature groups statistically significant in hypergeometric distribution test are indicated bold font.

No. (A): feature numbers in the top 800 features; No. (E): feature numbers in the original variable FV4, 5.

P(A): actual frequency that variables in the top 800 features, P(A) ¼ No.(A)/800; P(E): expected frequency that variables in FV4,5, P(E) ¼ No.(E)/4545.

P value: hypergeometric distribution test.
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downloaded from HCOP (http://www.genenames.org/cgi-bin/hcop).

These data were used for calculating how many species maintain

homologous genes compared with human. Results of two-sample

t-test illustrated that there is significant difference for persistence

value between essential and non-essential genes (P¼4.9493e-214).

The mean persistence for essential genes was 12.7, whereas the

mean persistence for non-essential genes was 8.3. We also down-

loaded the human protein-protein interaction data (BIOGRID-

ORGANISM-3.4.139.mitab.zip) from the BioGRID database (Stark

et al., 2006). Results of network topology analysis revealed there is

significant difference in the degree of connectivity between essential

and non-essential genes via the two-sample t-test (P¼1.6160e-229).

The mean connectivity degree for essential genes was 76, whereas

the mean connectivity degree for non-essential genes was 19. Thus,

essential genes tend to maintain persistence in more species and have

more neighbors in protein-protein interaction networks than non-

essential genes. If the two types of features are integrated in the fu-

ture we think the classifier of essentiality could be further improved.
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