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The immune system regulates itself to establish an appropriate immune response to potentially harmful pathogens while tolerating
harmless environmental antigens and self-antigens. A central role in this balance is played by regulatory T cells (Tregs) through
various ways of actions. By means of molecule secretion and cell-cell contact mechanisms, Tregs may have the capacity to
modulate effector T cells and suppress the action of proinflammatory cytokines across a broad range of cell types. As a result,
abnormal regulatory T cell function has been pointed as a main cause in the development of allergic diseases, a major public
health problem in industrialized countries, with a high socioeconomic impact. This prevalence and impact have created an
international interest in improving the allergy diagnosis and therapy. Additionally, research has sought to gain a better
understanding of the molecular mechanisms underlining this kind of disease, in order to a better management. At this respect,
the role of Treg cells is one of the most promising areas of research, mainly because of their potential use as new
immunotherapeutical approaches. Therefore, the aim of this review is to update the existing knowledge of the role of Tregs in

this pathology deepening in their implication in allergen-specific therapy (AIT).

1. Introduction: Current Knowledge about
Treg Cells

The immune system (IS) requires tight control to protect the
organism from exaggerated stimulatory signals triggered by
harmless antigens, such as self-antigens and environmental
substances. Depending on the nature of the antigen, an
imbalance in the regulatory mechanisms of the IS can lead
to autoimmune disorders or allergic diseases in genetically
predisposed subjects [1, 2].

The induction of a tolerant state in peripheral T cells
represents a key step in healthy immune responses to anti-
gens. The first hypothesis to explain the break of this toler-
ance was based on the dichotomy between Thl and Th2
lymphocytes. Years later, the hygiene hypothesis suggested
that the lack of early childhood exposure to infectious agents
and parasites could increase the risk of the susceptibility to
suppress the correct development of the IS [3, 4].

Currently, there are several evidences that peripheral T
cell tolerance is involved in the regulation of the IS. This

regulation is characterized by functional inactivation of the
cells in contact with the antigen, which in turn eliminates
both the proliferative response and cytokine secretion.
Several T cell subtypes with immunosuppressive function
have been widely studied, and these are generically named
regulatory T cells (Tregs) [5, 6]. Tregs suppress inflammation
by upregulating immunosuppressive molecules and inhibit-
ing the cells’ tissue homing.

Numerous studies have identified Tregs as important
immunoregulators in many inflammatory and autoimmune
conditions including asthma, multiple esclerosis, and type I
diabetes [7]. Additionally, Tregs are phenotypic and func-
tionally specialized according to tissue localization, disease
state, activation, and differentiation status [8-11] and are
able to play different roles in disease and health [12, 13].
For these reasons, Tregs have been extensively studied and
treated as a promising potential therapeutic tool in different
types of diseases [14, 15].

Though this review focuses on the function of the Tregs,
it is important to keep in mind that these cells do not work in
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isolation. In fact, there exists a complex regulatory T cell
system, which includes several populations of immunosup-
pressive cells as myeloid-derived suppressor cells (MDSCs),
regulatory B cells (Bregs), regulatory y§ T cells (yd-Tregs),
and immunosuppressive plasmocytes (ISPC), a regulatory
subset of ILCs (innate lymphoid cells) and so on with con-
nected functions that work together [14].

1.1. Treg Cell Types. Different types of Tregs have been
described [6]. These can be classified into two main catego-
ries according to their origin: natural Tregs with thymic ori-
gin, which mediate tolerance to self-antigens, and peripheral
or induced Tregs, which are derived from a pool of naive
conventional CD4" T cells after exposure to antigens and
in the presence of TGF-f3 [16] and regulate the response to
nonself antigens [17]. Both of these Treg subsets play a key
function in the maintenance of peripheral tolerance, but
due to the nonoverlapping T cell receptor (TCR) repertoires,
their actions are directed at different antigens. Although cur-
rently, there are no exclusive markers for Tregs, both types
express FOXP3, a member of the forkhead or winged helix
family of transcriptor factors. Indeed, FOXP3 was proposed
as a master switch for Treg development and function in
mice and humans [18-21]. FOXP3 controls several cell
lineages and develops the differentiation of CD4"CD25"
FOXP3™Tregs, the most physiologically significant subtype
of these cells [22].

Although the most widely studied regulatory T cells are
those with FOXP3, there are also populations of Tregs that
do not express FOXP3. These include three main kinds of
T cells: Tr1 cells, a population activated in the periphery after
antigenic stimulation in the presence of IL-10 and which
express the surface markers LAG-3 (lymphocyte-activation
gene 3) and CD49b in the face of absent FOXP3 and CD25
expression; Th3 cells, which are also differentiated in the
periphery and these Tregs mediate the cell suppression by
secreting the cytokine TGF-f; and finally, CD8" Tregs [23],
described as antigen-specific memory T cells with Treg
properties, which may regulate immune responsiveness
by production of IL-10, TGF-$1, and IFNy though the
exact mechanisms underlying this suppression are still
largely unknown.

1.2. The Central Role of FOXP3. The relevance of FOXP3 in
humans was recognized after the discovery of its implication
in X-linked immune dysregulation, polyendocrinopathy
syndrome (IPEX). IPEX is characterized by a high incidence
of autoimmune and allergic diseases, including early-onset
diabetes mellitus and other endocrinopathies, enteropathies,
and diseases caused by severe allergic inflammation such as
eczema, food allergies, and eosinophil-mediated inflamma-
tion [22, 24]. Patients with this pathology present mutations
in FOXP3 with low levels of circulating Tregs. Indeed, it has
been demonstrated that some single nucleotide polymor-
phisms (SNPs) in the FOXP3 gene are associated with higher
susceptibility to develop allergies [25, 26] and other immune
diseases [27, 28]. Given the importance of FOXP3 in the
control of the immune response, the factors which in turn
control FOXP3 expression have become a topic of interest.
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In fact, peripheral Tregs are known to be less stable than
nTregs and under different inflammatory conditions can
lose FOXP3 expression (ex-Treg) and adopt various T-
helper-cell-like phenotypes. Epigenetic modifications, which
can target histones (by acetylation) or DNA directly (by
methylation in CpG motifs in noncoding regions in the
FOXP3 locus) could regulate the gene expression profile
[24, 29]. One explanation for the lack of stability of pTregs
was the methylation status of the conserved noncoding
region 2 (CNS2) of the Foxp3 gene. This locus, which acts
to maintain Treg lineage identity under inflammatory condi-
tions, is known to be stably hypomethylated in nTreg
whereas it is incompletely demethylated in pTregs [30].

In addition to the transcriptional control of the Foxp3
gene, the stability of FOXP3 expression is also determined
at the posttranscriptional level. For example, Tregs respond
to stress signals elicited by proinflammatory cytokines and
lipopolysaccharides by degrading FOXP3 protein to then
acquiring a T-effector-cell-like phenotype [31-33].

1.3. Mechanisms Involved in the Modulation of FOXP3 and
Treg Cells. In view of the clinical relevance of this gene,
elucidating the main mechanisms involved in the regulation
of FOXP3 expression and Treg function could be very useful
in the effort to control immune-dysregulated disorders and
in understanding the physiological role in health and disease
of this Treg instability. Thus, an increasing number of stud-
ies have been published in recent years to describe the differ-
ent molecular mechanisms related to FOXP3 instability, in
order to determine the expression of transcription factors
and receptors that enable the suppressive functions of Tregs
to operate in inflammatory and noninflammatory condi-
tions. Examples of such researches include the description
in Tregs of a positive feedback between USP21 (an E3 deubi-
quitinase), GATA3 (an essential and sufficient transcription
factor for the polarization and function of the Th2 cell line-
age), and FOXP3, to promote FOXP3 expression and thus
modulate Treg activity [34]. This last report proposed that
after TCR stimulation, FOXP3 upregulates USP21 transcrip-
tion. USP21 could act as a GATA3 deubiquitinase and to
stabilize GATA3. This mechanism may contribute to the
upregulation of GATA3 expression in Tregs and can be
strengthened in a FOXP3-dependent matter. The study also
highlighted the possibility that GATA3 could recruit USP21
to the FOXP3 complex to prevent FOXP3 degradation. This
work proposes that in Tregs, USP21, GATA3, and FOXP3
may form a positive loop to promote FOXP3 expression
and thus modulate Treg activity. Years later [35], it was
described how USP21 stabilizes the FOXP3 protein by medi-
ating its deubiquitination and controls Treg lineage stability
in vivo.

Another regulator proposed was SOCS2, a suppressor of
cytokine signaling (SOCS) proteins, which inhibits the
development of Th2 cells and allergic immune responses.
It was described as being highly expressed in pTregs and a
requisite for the stable expression of Foxp3 in these Tregs,
in vitro and in vivo, but with no effect on nTreg development
or function. Interestingly, pTreg stability was induced by
SOCS2 downregulating IL-4 signaling [36].
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Recently, MALT1, a nuclear factor-«B signaling mediator
mucosa-associated lymphoid tissue lymphoma translocation
protein 1, has been described as an important novel regulator
of nTregs and pTregs [37]. The report describes a dual
role of MALT1, citing it as crucial for nTreg development
and thus important for central tolerance and also in the
periphery, where MALT1 determines the threshold for
the differentiation of naive T cells into functional pTregs.
Although MALT1 had no influence on the suppressive
function of pTregs, it was seen to be able to limit further
induction of pTregs at sites of inflammation by downreg-
ulating Toll-like-receptor (TLR) 2 expression. In this
respect, the influence of TLR signaling on Tregs is quite
controversial but it is generally accepted that TLR2, 4, or
5 engagements can enhance Treg cell function, survival,
and/or proliferation [38-41].

Interestingly, it has been demonstrated that Helios (a
member of the ikaros family of transcription factors) expres-
sion by Tregs is key to supporting their suppressive functions
and phenotypic stability during inflammation [42].

On the other hand, Treg functions can also be regulated
by endogenous danger signals, or alarmins, which are
released by epithelial cells at the mucosal barrier. One such
alarmin is interleukin- (IL-) 33, a cytokine that is released
from epithelial and endothelial cells at barrier surfaces upon
tissue stress or damage and that was primarily implicated in
the induction of Th2-type immune responses. More recently
[43], however, their pleitropic role has been demonstrated
as this cytokine is able to mediate immunosuppression
and tissue repair by activating Tregs and promoting M2
macrophage polarization.

Finally, another important modulator of tolerance is the
microbiota. It has been suggested that the microbiota can
promote tolerant or proinflammatory cell subtypes. This
aspect has been extensively studied in the context of allergic
diseases [44, 45]. The release of microbiotal products can
interact directly with immune cells and their innate recep-
tors. Therefore, proallergic or protolerant bacterial species
can affect the development of Tregs and Th2 subtypes,
thereby increasing the production of IL-10 or IL-4 and
IL-13, respectively.

1.4. General Mechanisms of Treg Action. The main role of all
Treg subsets is to maintain the integrity of the organism by
avoiding excessive immune responses thereby preserving a
state of tolerance to innocuous substances through the
secretion of soluble factors and by direct contact (cell-to-
cell). A variety of molecules has been found to be involved
in Treg-mediated suppressive activities. The main mecha-
nisms of Treg action include regulatory cytokine production
such as IL-10, IL-35, and TGEF-f3; the metabolic disruption
mechanisms: CD25, cAMP, histamin receptor 2, adenosine
receptor 2, CD39, and CD73; mechanisms with targets in
DCs such as cytotoxic T lymphocyte antigen-4 (CTLA-4),
program death-1 (PD-1), and cytolysis mechanism (gran-
zymes A and B) [14, 46, 47].

As detailed above, it has been described how the sup-
pressive functions of Tregs are induced under inflammatory
conditions by the specific expression of receptors and

transcription factors. By way of example, GATA3 expression
by Tregs is triggered by TCR activation and is required to
maintain FOXP3 expression and allow accumulation of
Tregs at inflamed sites [48]. GATA3 expression in Tregs
appears to be essential in limiting Tregs producing effector
cytokines within inflamed tissues [17].

Recently, it has also been described that Tregs secrete
microRNAs which could be implicated in inhibiting T effec-
tor cells, thus opening a new area of interest in Treg-
mediated suppressive mechanisms [23].

To summarize, although the complex functioning of the
regulatory network is not well known, Tregs are able to main-
tain tolerance by multiple mechanisms. Figure 1 summarizes
the main roles proposed for Tregs. These cells could act at the
initiation of adequate specific antigenic immune response,
promoting tolerogenic DC phenotypes, inhibiting the
inflammatory ones [49]. It has also been demonstrated that
the correct capacity of DCs to induce a tolerogenic response
depends on the particular subsets, maturation stages, and
several exogenous signals such as microbiota, histamine,
adenosine, flavonoids, vitamin D3 metabolites, or retinoic
acid [46]. Suppression of DCs appears to be mediated
through CTLA-4 (constitutively expressed in Tregs, as a neg-
ative costimulatory molecule which is essential to their sup-
pressive functions), LAG-3 (lymphocyte-activation gene 3),
and LFA-1 (leukocyte function-associated antigen-1). Tregs
also act directly on DCs by decreasing the surface expression
of CD80/CD86 and blocking the allergen-specific Th2 cell
immune response. In addition, Tregs could inhibit Th devel-
opment: Tregs suppress the activation process of Th2 cells,
reducing the secretion of inflammatory cytokines such as
IL-4, IL-5, IL-9, and IL-13 and in Thl cells, by inhibiting
INF-y secretion, Th17 cell response (IL-17-secreting cells)
and Th22, which predominantly produce IL-22 [23]. It has
been demonstrated that peripherally induced Tregs suppress
the group 2 innate lymphoid (ILC-2) response and its inflam-
matory cytokines, IL-5 and IL-13 [23]. In addition, Tregs
may control effector cells by inhibiting the maturation and
degranulation of basophils and mast cells, thus reducing the
expression of FceRI and the degranulation via OX40-
OX40L interactions. Tregs also prevent the infiltration of
eosinophils and T cells into damaged tissue. Also, Tregs
could interact with resident tissue cells by preventing damage
and contributing to tissue remodeling [46]. For this reason,
Tregs are involved in the reduction of local inflammation
and contribute to the repair of damaged tissue [50-52].

Tregs also could modulate the humoral immune
response. These cells may directly inhibit the progress of
antigen-specific B cells, reducing the production of immuno-
globulin (Ig) type E (IgE) and increasing the levels of anti-
inflammatory immunoglobulin such as IgG4 [53]. This is
another point justifying Tregs as excellent candidates for reg-
ulating allergic diseases.

2. Allergic Response: An Imbalance of
Regulatory Mechanisms

Regulation of IS a general process that allows inflammation
to be attenuated. Defective immunosuppressive mechanisms
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FIGURE 1: Main roles proposed to Tregs. Regulatory T cells could mediate the healthy immune response through different modes of action.
They are able to suppress the inflammatory dendritic cells (DCs), inhibit the activation of effector T cells (Th1, Th2, Th22, and Th17) and type
2 innate lymphoid cells (ILC-2), block the secretion of inflammatory antibodies by antigen-specific B cells, and inhibit the activation of

basophils, mast cells, and eosinophils.

by Tregs could explain the development of allergic reactions.
Allergic diseases are highly complex adverse reactions of the
IS against various innocuous substances. Although the popu-
lation is continuously exposed to a wide range of allergens,
not everyone develops this kind of disease. The reasons why
some individuals suffer from allergic diseases while others
do not are far from clear. The pathophysiology of allergic
diseases is complex and may be influenced by many factors,
including genetic susceptibility as well as aspects of the
microenvironment, such as allergen dose and route of
exposure. In this sense, clinical manifestations depend on
the nature of the allergen and the part of the organism
affected. The most common symptoms of allergic diseases
include allergic rhinoconjunctivitis, allergic asthma, atopic
dermatitis, food allergy, and anaphylaxis [54].

In the allergic response, the IS must recognize the patho-
genic stimuli and induce a vigorous immune response. Sensi-
tization to a specific antigen is a prerequisite: specific regions

of antigens called epitopes are recognized by naive T and B
lymphocytes. First, the allergens are recognized and pre-
sented to naive T cells by specific major histocompatibility
complex (MHC) class II antigens expressed on the surface
of antigen-presenting cells (APC). T cell activation induces
the differentiation and expansion of T helper type 2 (Th2)
cells. The key cytokines responsible for the allergic response
include interleukin- (IL-) 4, IL-5, and IL-13, as well as innate
lymphoid (ILC-2) cells which may amplify and maintain
local Th2-driven allergic inflammation by secreting Th2
cytokines, particularly IL-5 and IL-13 [55]. These ILs act on
B cells, promoting immunoglobulin (Ig) class switching to
Ig type E (IgE). Allergen-specific IgE antibodies bind to
high-affinity receptors for IgE (FceRI) expressed on mast
cells and basophils. Repeated exposure to the allergen causes
the cross-linking of FceRI-bound IgE, stimulating the release
of histamine and other mediators responsible for the imme-
diate symptoms of allergic disease. The late phase of an
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FIGURE 2: Mechanisms involved in allergic reactions. Sensitization to a specific antigen is a prerequisite for the onset of allergic diseases.
Differentiation and expansion to Th2 cell subtypes lead to the production of inflammatory cytokines (IL-4, IL-5, and IL-13). They drive
immunoglobulin E (IgE) class-switch in B cells and the recruitment and activation of proinflammatory cells (i.e., eosinophils and mast
cells) in mucosal target organs. These activations contribute to the development of the inflammation and the symptoms of allergic disease.

allergic reaction occurs 6-12hours after allergen exposure,
when allergen-specific cells are reactivated and expanded
locally. Effector cells (i.e., mast cells, basophils, and specifi-
cally, eosinophils) release additional inflammatory mediators
and cytokines, perpetuating the proinflammatory response.
This phase is responsible for the symptoms of allergic dis-
eases, and continuous exposure to the allergen causes disease
chronicity (Figure 2) [1, 56].

Currently, the prevalence of allergic diseases has
increased substantially, with allergies affecting up to 25% of
the population in industrialized societies and constitute a
major public health problem with a high socioeconomic
impact [46]. Although allergic symptoms can often be sup-
pressed using anti-inflammatory drugs, allergen-specific
immunotherapy (AIT) remains as the only treatment that
can cure allergic diseases. AIT has been applied since 1911
and was reported first by De Martinis et al. [57]. Their assays
proved that subcutaneous injection of grass pollen extract
modulated the course of the disease, and more importantly,
these effects remained for more than a year after the conclu-
sion of treatment. The method used by the two researchers
was accepted by the scientific community, leading to an
increase in this type of studies in subsequent years. Nowa-
days, AIT is a routine part of clinical practice in allergy [57].

3. Induction of Peripheral Tolerance in
Allergy by AIT

AIT is considered a therapeutic vaccine because it uses the
patient IS to establish tolerance against specific antigens,

providing clinical efficacy with a long-term benefit. However,
although the molecular mechanisms involved in the AIT
response have been extensively studied, they have not been
elucidated in their entirety [58-60].

AIT is believed to promote the absence of proinflamma-
tory signals influenced by the maturation of dendritic cells
(DC) into a tolerogenic response [61], thus inducing major
changes in allergen-specific T cell subsets: it leads to a down-
regulation of the Th2 response with a shift towards the Thl
profile. Allergen-specific T cells with a regulatory phenotype
are also promoted, and their presence is associated with an
increase in the suppressive cytokines such as IL-10 and
TGEF-f [53, 62-64]. Through this fact, AIT plays an essential
role in changing antibody isotypes. Many studies have shown
a decrease of allergen-specific IgE antibodies (inflammatory
response) in serum associated with high levels of the
allergen-specific IgG4 antibody, a noninflammatory or pro-
tective immunoglobulin, in the context of allergic response
[44]. IgG4 secreted by regulatory B cells [65] could act as a
blocking antibody in competition with the antigen-binding
IgE present on the surface of mast cells and basophils, which
would limit activation and degranulation [66]. AIT and this
promoting of Tregs also suppress allergic inflammation
induced by mast cells, basophils, and eosinophils. The
recruitment of these cells to the site of allergen exposure
and their ability to release mediators are reduced in treated
patients, decreasing the inflammatory response of tissues
[63]. Due to these capacities, AIT reduces the allergic symp-
toms in a significant fraction of treated individuals and
improves their quality of life (Figure 3) [54].
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4. Regulatory Cytokines in Allergen Tolerance
and Specific Inmunotherapy

One of the most important mechanisms of Tregs is the
secretion of some soluble mediators, such as suppressive
cytokines (IL-10, IL-35, and TGF-f). Their importance in
allergen tolerance and their modulation with AIT have been
widely studied.

4.1. Cytokine 10 (IL-10). This cytokine is formed by two
subunits of 178 amino acids [67, 68]. It is synthesized and
secreted by a wide range of cell types, including Th cells,
monocytes, macrophages, and dendritic cells [69, 70].

Its receptor is formed by two chains: IL10-R1, expressed
only in target cells (T, B, NK cells, monocytes, mast cells,
and dendritic cells) and IL10-R2, expressed ubiquitously.
The junction ligand-receptor produces signaling by phos-
phorylation of some proteins that induce the activation of
signal transducer and activator of transcription 3 (STAT3),
which induce the expression of suppressor of cytokine signal-
ing 3 (SOCS3) and several preapoptotic genes, as well as the
inhibition in the production of proinflammatory cytokines
such as TNF-a.

Due to these activations, IL-10 has broad immunosup-
pressive and anti-inflammatory capacities. It is a potent
inhibitor of proinflammatory cytokine production and their
receptors. It inhibits several molecules involved in the anti-
gen presentation to dampen TCD4" cell activation.

IL-10 produced by Tregs plays an essential role in pro-
tecting the host from exaggerated inflammatory responses
to pathogens as well as autoimmune diseases. In addition,
its implication in tolerogenic and allergic responses has been
extensively studied and the protective role it plays nowadays
is well-established. It has been demonstrated that dendritic
cells from the respiratory system of healthy controls express
higher levels of IL-10 than allergic patients (with rhinitis

and asthma) [71, 72]. IL-10 modulates the activity of numer-
ous cells involved in allergic diseases, mast cells, Th2 cells,
and eosinophils. Several researchers have shown that Treg-
specific deletion of IL-10 promoted allergic inflammation
[73] suggesting that Treg-derived IL-10 plays a “privileged,”
nonredundant role in the induction of immune tolerance in
allergic airway inflammation. High levels of allergens, as cat
allergens, induce IL-10 production by Trl cells associated
with the secretion of IgG4 and amelioration of clinical symp-
toms [74]. Also, the exposure to high doses of bee venom in
beekeepers has demonstrated a natural mechanism of
immune tolerance owing to the expansion of IL-10 secreting
Trl cells [75]. Furthermore, numerous clinical trials have
reported that specific treatments for allergies increase IL-10
levels [76-78].

4.2. Tumor Growth Factor-f3 (TGF-f3). TGF-f3 is a member
of a complex superfamily, being TGF-1 the most widely
studied member [79, 80].

TGEF-f3 is a pleiotropic cytokine required for the mainte-
nance of peripheral tolerance. TGF-f3 regulates lymphocyte
homeostasis by inhibiting Th2 and Th1 cell responses as well
as the conversion of naive T cells into peripheral regulatory T
cells by the stimulation of FOXP3 expression in a paracrine
feedback loop, which promotes the generation of CD4"
CD25" Tregs able to inhibit allergic airway disease [81-83].

TGE-f3 also inhibits macrophage proliferation and func-
tion, inhibits the secretion of antibodies by B cells, and also
blocks the expression of FceRI in mast cells. In damaged
tissues, TGF-f regulates airway inflammatory response,
inducing fibrosis [84].

4.3. Cytokine 35 (IL-35). 11-35 is a newly discovered member
of the IL-12 family. It is a heterodimer composed of a subunit
of IL-12 (p35, IL-12) and the Epstein-Barr virus-induced
gene 3 (EBI3) [85]. While the other IL-12 family members
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(IL-13, IL-23, and IL-27) are considered proinflammatory
cytokines, IL-35 is secreted by Tregs and was identified as
an anti-inflammatory and suppressive cytokine [8, 22] in an
inducible manner [86].

Tregs deficient in Ebi3 or IL-12p35 are functionally
defective in vitro and in vivo [17]. Several findings lend
support to the importance of these Tregs in some respira-
tory diseases. Recent findings suggest that expression of
IL-35 is abnormal in asthma and plays an important role
in the pathogenesis of allergy diseases [87]. It has also
been demonstrated how people with asthma and chronic
obstructive pulmonary disease (COPD) have low levels of
this cytokine and after sublingual immunotherapy, IL35
serum levels increased, being this increase associated with
an improvement in clinical symptoms.

5. MicroRNAs as a New Mechanism of
Suppression by Tregs

MicroRNAs are short noncoding RNA molecules which have
emerged as important regulators of immune response.
MicroRNAs are fundamental in Treg development and func-
tion. miR-155, miR-15b/16, miR-24, and miR-29a were
described as important players in Treg differentiation and
maintenance [23, 88].

Furthermore, this mechanism for cell communication
mediated by exosomes can inhibit the action of T effector
cells. Specifically, Tregs released Let7d to Thl cells regulating
Th1 response [89] and miR-21 in the control of Th2 inflam-
mation. Therefore, Tregs are able to capture and deliver dif-
ferent miRNAs and other substances to different cells at
different times, depending on the specific situation, to control
Treg function and development status [90].

6. Conclusions and Future Perspective

The immune system requires correct functioning and fine
balance that it are controlled by the development and main-
tenance of a complex network of regulatory mechanisms,
where regulatory cells play essential roles. By gaining a fuller
understanding of the heterogeneity of Treg populations and
the appropriate suppressive function system in inflammatory
conditions, we may be able to devise novel therapeutic
approaches to inhibit this kind of disease. For this reason,
we have reviewed the general mechanisms of Tregs and the
immunologic mechanisms involved in allergy and allergen
tolerance, where Tregs could act as the nucleus in enforcing
healthy immune responses to allergens. Tregs are capable of
suppressing conventional T cells, APCs, and B cells by mole-
cule secretion and cell-cell contact mechanisms.

Recovery of the correct immune tolerance response in
inflammatory diseases such as allergy is an attractive target
for immunotherapy, and Tregs could play a main role in this
pursuit as new therapy tools. However, one important aspect
that should be studied in depth is Th reprogramming of
Tregs in allergic diseases. Nowadays, a dynamic view of Tregs
is emerging in allergic diseases by which Tregs are seen as
playing a central and determining role, not only in tolerance
induction but also, when destabilized and reprogrammed, in

mediating disease pathogenesis, severity, and chronicity [44].
New findings on the pathways and mechanisms implicated
in this regard could provide unique tools to control Treg
function to treat allergic diseases.
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