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One of the complications from chronic hyperglycemia and insulin resistance due to type 2
diabetes mellitus (T2DM) on the hypothalamic-pituitary-gonadal axis in men is the high
prevalence of hypogonadotropic hypogonadism (HH). Both T2DM and hypogonadism are
associated with impaired bone health and increased fracture risk but whether the
combination results in even worse bone disease than either one alone is not well-
studied. It is possible that having both conditions predisposes men to an even greater
risk for fracture than either one alone. Given the common occurrence of HH or
hypogonadism in general in T2DM, a significant number of men could be at risk. To
date, there is very little information on the bone health men with both hypogonadism and
T2DM. Insulin resistance, which is the primary defect in T2DM, is associated with low
testosterone (T) levels in men and may play a role in the bidirectional relationship between
these two conditions, which together may portend a worse outcome for bone. The
present manuscript aims to review the available evidences on the effect of the combination
of hypogonadism and T2DM on bone health and metabolic profile, highlights the possible
metabolic role of the skeleton, and examines the pathways involved in the interplay
between bone, insulin resistance, and gonadal steroids.

Keywords: insulin resistance, osteoporosis, type 2 diabetes mellitus, hypothalamic-pituitary-gonadal axis,
hypogonadotropic hypogonadism
INTRODUCTION

The frequent association between hypogonadism and metabolic disorders, such as obesity, insulin
resistance, metabolic syndrome (MetS), and type 2 diabetes mellitus (T2DM), is well-known and
has been described in multiple studies (1–7). In particular, hypogonadism is common in men with
T2DM, and about one-third of men with T2DM men have low serum testosterone (T) levels (8).
However, other estimates show that the prevalence of low T could be as high as 64% in men with
T2DM (8, 9). The hypothetical mechanism for this association has been suggested in a study by
Dhindsa et al. showing that as much as 75% of men with T2DM have either low or normal
luteinizing hormone (LH) or follicle stimulating hormone (FSH) or both indicating suppression of
the hypothalamic-pituitary-gonadal axis likely from chronic hyperglycemia (8). On the other hand,
some studies also suggest that the association between T2DM and hypogonadism could be
bidirectional. This is because low T is commonly found in men with T2DM, while men with
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T deficiency are at increased risk to develop impaired glucose
tolerance (2, 10). It has been reported that T deficiency is
predictive of an increased risk of developing incident T2DM
(11–14), while men with high T levels have a 42% lower risk of
developing T2DM (10). Regardless of the etiology of low T, the
coexistence of hypogonadism and T2DM could be detrimental to
bone as each is associated with increased fracture risk.

Low T levels is a risk factor for age-related decline in bone
mass and increase in fragility fractures in men, making androgen
deficiency an important risk factor for osteoporosis (15, 16). On
the other hand, substantial epidemiological evidence also show
that people with T2DM have an increased risk of fractures
compared to those without diabetes despite a normal or high
normal bone mineral density (BMD) (17–21). There are many
factors that may contribute to this paradox, such as lower bone
turnover, increased accumulation of advanced glycation end
products (AGEs) in bone, increased fall risk from neuropathic
and ophthalmologic complications of longstanding diabetes, and
decreased physical activity (22, 23). Meanwhile, T exerts an
anabolic effect on bone by its effect in stimulating osteoblasts
differentiation and proliferation (24, 25). Thus, it is expected that
the frequent presence of low T concentrations in the diabetic
population also contributes to impaired bone strength in men
with T2DM (26).

Considering the individual effect of T2DM and hypogonadism
on bone health and their association with fragility fractures, it is
possible that the combination of the two may have a worse effect
on bone. Given the high and increasing prevalence of T2DM, and
the high rate of concurrent hypogonadism in these patients, a
significant number of men could be at a greater risk for fractures
if the presence of both conditions confers an even higher risk than
either one alone. While the metabolic effects of hypogonadism
and T2DM in men have been well investigated, to date, there is
little information on the bone health of these subjects and how
these conditions may be interconnected. In this review, we
examine the impact of the combination of hypogonadism and
T2DM on bone health, and discuss the pathways involved in the
interplay between insulin resistance and hyperglycemia, with
gonadal hormones and bone metabolism.
METHODOLOGY

A literature search of studies detailing results from cellular and
animal experiments, clinical trials, meta-analysis, systematic and
narrative reviews was performed in PubMed using the search
terms as “T2DM,” “hypogonadism,” “testosterone,” “bone,”
“insulin resistance,” “insulin sensitivity,” and “bone turnover
markers.” Additional studies were identified from cross-
references of the articles found. In total, 309 unique
publications were found from 1969 to 2020 and 223 are
included in this narrative literature review. We included all
manuscripts investigating the relationship between hypogonadism
and T2DM and their effect on bone, either separately or in
combination. Also included in this report are publications
discussing the role of insulin signaling in regulating bone
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metabolism and sex steroid production which we believed are
relevant to this manuscript.
HYPOGONADOTROPIC HYPOGONADISM
AND TYPE 2 DIABETES MELLITUS

One-third to two-thirds of all men with T2DM have subnormal
total or free T concentrations, and ~75% of them have low or
inappropriately normal levels of LH and FSH suggesting
hypogonadotropic hypogonadism (HH) (8, 13, 22). The
common association between low T and T2DM has been
confirmed in several studies (8, 27, 28). For instance, a cross-
sectional study of 355 men aged > 30 years old with T2DM
reported that 42% of these subjects had low T and another 25%
had borderline low T levels (28). In a cross-sectional survey of
580 men with T2DM with a mean age of 65 (including patients
with a range of age from < 40 years to > 80 years), 43% had
reduced total T levels, while 57% had low calculated free T, which
were both inversely related to age (27). Dhindsa et al.
demonstrated that 33% of men with T2DM aged 28 – 80 yr,
were hypogonadal, as shown by significantly lower levels of free T
measured by equilibrium dialysis (8). Similarly, a high prevalence
of HH was also found in younger men with T2DM between the
ages of 18 and 35 years (14).

The possible pathophysiological mechanism underlying the
cause of T2DM induced HH is not yet defined but is likely
multifactorial. Some of the proposed mechanisms involve
obesity, inflammation and insulin resistance (22). Obesity,
which often accompanies T2DM, is also associated with low
total and free T concentrations in men. In fact, in obese patients
free T levels show an inverse correlation with BMI, while
estradiol (E2) levels are increased in these subjects and
positively correlated with BMI (29–31). The hypothalamic and
pituitary mechanisms regulating LH and FSH release are further
suppressed by the increased levels of E2 and leptin in obese
patients and, as consequence, T concentrations are decreased in
these subjects (29, 32).

Chronic inflammation can be considered as another
mechanism that may promote the suppress ion of
hypothalamic-pituitary-gonadal axis and HH in T2DM, as
documented by studies in experimental animals and in vitro
reporting that inflammatory mediators, such as tumor necrosis
factor-a (TNF-a), and interleukin-1b (IL-1b), which are
generally increased in T2DM, obesity, and MetS, are able to
suppress hypothalamic gonadotrophin-releasing hormone and
LH secretion (33, 34). Moreover, inflammation related mediators
contribute to insulin resistance (35), which in turn plays a role in
the development of HH in T2DM as shown by the decreased T
concentration and LH and FSH levels resulting from the selective
deletion of the insulin receptor from neurons in the central
nervous system of mice (36).

The above data suggest that in subjects with HH and T2DM,
the increased adiposity, together with a reduction in free T and a
simultaneous reduction in muscle mass may contribute to
develop a proinflammatory state and insulin resistance (22).
January 2021 | Volume 11 | Article 607240
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However, there is also the possibility of a genetic predisposition
as suggested by a recent study showing that rare isolated HH
genes variants can frequently predispose to adult onset HH with
acquired mild hormonal deficiencies (37).

Considering the frequent occurrence of HH in T2DM,
although majority of the studies did not report LH and FSH
levels in patients with hypogonadism and T2DM, we assume that
a higher percentage of these subjects could have HH. The
relationship between T and T2DM risk has been examined in
meta-analysis including 43 prospective and cross-sectional
studies comprising a total of 6,427 men. This study found that
men with higher T levels had a 42% lower risk of T2DM
compared with those with lower concentrations (10). In a
cross-sectional study of 267 unselected men with T2DM,
fasting blood glucose was inversely correlated with total T
levels, and significantly higher in men with severe
hypogonadism in comparison to patients with normal T (38).
Other investigators suggest that the onset of T2DM may be
preceded by hypotestosteronemia (12), making the androgen
deficiency a possible risk factor for the development of
T2DM (39).
HYPOGONADISM AND BONE

Hypogonadism is a well-established cause of osteoporosis in men
(40). Decreased androgen levels have been linked to low BMD
and an increase in fracture risk in men (15, 16, 22, 41).
Hypogonadal men have reduced cortical and trabecular BMD
compared to controls (15). Hypogonadism in adults leads to
bone loss, while hypogonadism before puberty results in the
failure to achieve peak bone mass (42, 43). T deficiency has been
reported in over half of elderly men with a history of hip fracture
(44, 45). Hypogonadism is associated with increased levels of
bone turnover markers, mainly those of bone resorption (46, 47).
In a study on 792 men, aged 50–85 years old, hypogonadal
elderly subject had increased bone resorption not adequately
matched by an increase in bone formation leading to bone
loss (48).

T affects the male skeleton in several ways (47, 49–56). Firstly,
androgens contributes to bone size by its effect on periosteal
apposition, which explains the wider or bigger bones in men
compared to women (57, 58), and to some extent to bone mass
through increasing muscle mass (59). Having a bigger bone size
denotes better bone geometry which translates to improved bone
strength, due to better capacity to adapt to higher mechanical
load and greater resistance to compression forces that triggers
fractures (59, 60).

Secondly, T the major androgen, is the primary source of E2
in men. Through its conversion to E2 by the enzyme aromatase in
adipose tissue, T appears to play an indirect but important role in
mediating age related bone loss in men (61, 62). At the cellular
level, estrogen is able to suppress bone resorption by decreasing
osteoclasts formation and activity, and increasing osteoclasts
apoptosis (63–65). E2 has long been considered a key regulator
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of bone metabolism not only in women, but also in adult male
skeletal homeostasis (66–68). In a study on 93 healthy men over
55 years of age, BMD at various sites correlated with serum E2
levels, and inversely with serum T levels (69). Data from both
observational and epidemiological studies in men have
documented that BMD and bone turnover markers were more
closely correlated with serum estrogen levels than serum T levels,
and that the link between bone loss and fractures was stronger
with E2 rather than T (62, 67, 70). Additionally, multivariate
analyses showed that serum bioavailable estrogen level was a
consistent independent predictor of BMD in men (62). Moreover
the changes in BMD from androgen therapy correlate with the
changes in E2 but not with the changes in T suggesting that the
effect of androgen replacement on BMD is mediated by its
conversion to estrogen (71). Studies that directly manipulated
levels of T and E2 to assess their independent effects on the
changes in BMD and markers of bone turnover, showed an
increase in resorption markers and bone loss in the absence of
both hormones; these events were however prevented by E2
supplementation but not by T (72, 73). Another study in which
endogenous sex steroids were pharmacologically suppressed and
followed by exogenous replacement of each hormone to tease
out the effect of one over the other confirmed the dominant
effect of estrogen, but not T, on bone resorption, with an estimate
that that in men, estrogen accounts for over 70% of the total effect
of sex steroids on bone resorption (66). Since T is the substrate
from which majority of circulating E2 (over 80%) in men is
derived (74), men with low T often have concurrently low E2
so the effects of low E2 on bone metabolism is indirectly from
low T.

Thirdly, T has a separate and distinct anabolic effect because of
its ability to stimulate osteoblastic differentiation and proliferation
(25). In fact, both androgen and estrogen receptors are detected
in several bone cells including osteoblasts, osteoclasts, and
mesenchymal stromal cells, which differentiate into osteoblasts
(73, 75). In vitro studies have shown that treatment with
androgens result in osteoblasts differentiation, proliferation,
along with bone matrix production and mineralization (76).
T increases the lifespan of osteoblasts by decreasing apoptosis,
mainly through its action on IL-6 production (77, 78), and is able
to stimulate the proliferation of osteoblasts progenitors and the
differentiation of mature osteoblasts (25, 78–80). However, how
this anabolic effect of androgens on bone influences the skeleton
separately from the antiresorptive effect of E2 is unclear. In vitro,
both sex steroids have shown to exert antiapoptotic effects on
osteoblasts and osteocytes, and the loss of estrogens or androgens
shortens the lifespan of osteoblasts and osteocytes in
gonadectomized mice from either sex (79). Also, because of the
effect of androgens in stimulating osteoblasts proliferation and
differentiation, increase in osteoprotegerin (OPG), a product of
the osteoblasts, will follow resulting in decrease osteoclasts
formation and bone resorption (81).

Finally, T could have important nonskeletal effects. Data from
the Dubbo Osteoporosis Epidemiology study, showed that serum
T levels predicted fracture risk in elderly men independent of
BMD, suggesting an important role for T in modulating
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nonskeletal factors, such as muscle strength, which could be
impaired in the presence of insufficient T levels predisposing to
falls and fractures (82). Without question, the beneficial effects of
T replacement therapy on bone mass in men with gonadal failure
is well-established (47, 49–52). T replacement therapy is
associated with a reduction in markers of bone turnover and a
significant in increase of BMD in young and elderly men with
hypogonadism (52–54). Increases of in vertebral and hip BMD
after T treatment were seen in most studies (52, 55, 56). More
importantly, improvement in bone quality has been reported in
hypogonadal men on T replacement (56, 83).

While a symptom-specific threshold level for T has been
identified for certain symptoms of hypogonadism such as: 1) loss
of libido and vigor at T level below 15 nmol/L, 2) obesity below
12 nmol/L, 3) depressive moods, sleep disturbance, lack of
concentration, and T2DM below 10 nmol/L, 4) erectile
dysfunction and hot flushes below 8 nmol/L) (84–86), despite
the well-known association between hypogonadism and bone
impairment in men, the T threshold below which skeletal
consequences begin is unknown (72). Some studies have
suggested a compromised skeletal health and a more favorable
response to T replacement for serum T levels below 6.94 nmol/L
(52, 53, 87–89). Similarly, Finkelstein et al., utilizing different
pharmacologic interventions to determine the levels of T and E2
which initiate the risk of bone loss in hypogonadal men, have
shown that the relationship between gonadal steroid levels and
bone impairment is likely represented by a continuum rather
than a specific threshold. However, bone loss appears higher
when serum E2 levels fall below 10 pg/ml and/or serum T levels
fall below 6.94 nmol/L (72). A few years later, the same authors
demonstrated that suppressing endogenous gonadal steroid
production followed by a concomitant addition of escalating
doses of T in 177 men aged 60 to 80 years old, resulted in a strong
dose-response relationship between T and bone outcome
measures (i.e., BMD and markers of bone resorption), but the
adverse changes related to gonadal steroid deficiency begin at
considerably varying levels of T concentration, although most
outcome measures remain stable until serum T levels are well
below the stated normal ranges (90).

The European Male Aging Study (EMAS) aimed at
identifying clinical and biochemical criteria for diagnosing late-
onset hypogonadism, concluded that this condition can be
defined by the presence of at least three sexual symptoms
(decreased sexual interest and morning erections and erectile
dysfunction) in combination with a total T level of less than 11
nmol/liter (mainly below 8 nmol/liter) and a free T level of less
than 220 pmol/L (91, 92). The occurrence of multiple end-organ
deficits associated with androgen deficiency, such as lower
hemoglobin, BMD, and lean body mass as well as reduced
physical quality of life (suggesting a relationship between these
symptoms and the degree of T deficiency), is especially more
pronounced inmen with severe than moderate forms of late-onset
hypogonadism. Moreover, these features were less noticeable in
men with low T only (without sexual complaints), highlighting
the importance of sexual symptoms in defining late-onset
hypogonadism (92).
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The importance of the clinical, not only biochemical, criteria
in defining hypogonadism, has identified the role of features like
obesity and weight gain, together with grater age and lower
education, as significant predictors for developing secondary
hypogonadism, a condition which is potentially reversible in a
substantial proportion of men by correcting these disorders.
Conversely, a significant improvement in symptoms was not
seen after the biochemical reversal of secondary hypogonadism
to eugonadism (93). Moreover, while obese men with low total T
(and low SHBG) but normal free T do not develop symptoms of
hypogonadism and often remits to eugonadism, obese men with
incident biochemical secondary hypogonadism, symptomatic
androgen deficiency takes place when there is a combination of
both low total and free T, suggesting to shift the focus not only on
total T but also on free T in the diagnosis of hypogonadism, in
order to avoid the over diagnosis of hypogonadism in obese
patients (94).
TYPE 2 DIABETES MELLITUS AND BONE

T2DM is associated with an increased risk of fractures in the
spine and nonvertebral sites such wrist, foot, and even the hip
(95). The fracture risk in T2DM appears to be higher with longer
duration of the disease or poor glycemic control (96, 97).
However, this increased fracture risk in patients with T2DM is
paradoxically associated with normal or high normal BMD (18–
20, 98–100). This implies that for a given BMD, subjects with
T2DM have reduced skeletal strength, and are more likely to
experience a fracture than age-matched individuals without
T2DM. The pathogenesis of bone fragility in T2DM however
has not been well elucidated yet (101).

There are several theories on why diabetes is detrimental to
the skeleton, such as poor glycemic control leading to
accumulation of AGEs, which increase the production of
nonenzymatic cross-links within collagen fibers, therefore
negatively influencing bone matrix properties and affecting
bone remodeling, and directly activating inflammation and
oxidative stress pathways that promote osteoporosis (23, 102).
Moreover, changes in body composition, impaired bone healing,
accumulation of microcracks and cortical porosity due to the loss
of transverse trabecular connections (lower buckling ratios), the
effect of the increased cortisol secretion, peripheral activation,
and sensitivity (i.e., “cortisol milieu”) on the potential
impairment of osteoblast activity, may all lead to lower bone
turnover and poor bone microarchitecture (23, 95, 97, 103–107).

Other co-morbidities that may contribute to increased
fracture risk in patients with diabetes include increased fall risk
due to microvascular complications (i.e., neuropathy, vision loss,
and balance impairment) from prolonged poor glycemic control,
sarcopenia, and side effects from anti-diabetic drugs (23, 95,
108). In particular, the prolonged use of thiazolidinediones
(TZDs), such as pioglitazone and rosiglitazone, which activate
peroxisome proliferator-activated receptor gamma (PPARg), has
been associated with negative effects on bone metabolism,
despite a beneficial effect on glycemic control (reduced insulin
January 2021 | Volume 11 | Article 607240
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resistance and improved insulin sensitivity). Specifically, by
activating PPARg, the use of TZDs leads to increased
adipogenesis, decreased osteoblastogenesis while at the same
time increasing osteoclastogenesis, and promotes osteocyte
apoptosis, therefore resulting in decline in bone formation with
enhancement of bone resorption (23, 104, 109–112),
consequently poor bone biomechanical properties.

Obesity, which often accompanies T2DM, represent another
factor responsible of the increased risk of fracture. Although
some studies have shown a positive correlation between total
adiposity and BMD, justified by the increased loading together
with the effects of leptin and increased aromatase activity which
support bone formation (113, 114), after a certain point,
increased adiposity can result in low BMD and increased risk
for vertebral fractures (115, 116). In addition, obesity as well
T2DM, are associated with increased inflammatory cytokines,
such as TNF- a and IL-6 which have been shown to lead to
osteoblast dysfunction. Their association with central or visceral
fat deposition (the opposite of a peripheral fat metabolic profile)
is considered to have the worse effect on BMD (117, 118).
However, the effect of obesity on skeletal impairment is still
controversial. Recent studies demonstrated that the weight loss
resulting from bariatric surgery is associated with a reduction in
bone density, which is attributed to changes in the hormonal
secretion such as a reduction in leptin, estrogen and insulin, and
potential vitamin D deficiency which can negatively impact bone
health (113).

In T2DM, it is difficult to determine a specific threshold for
glucose or glycosylated hemoglobin (HbA1c) above which
skeletal complications begin due to existence of the above
mentioned co-morbidities (23, 95, 108).

In fact, although some studies have shown a positive
association between HbA1c and fracture risk in diabetes
mellitus (both T1DM and T2DM) (97, 119), Vavanikunnel
et al. reported that in patients with T1DM poor glycemic
control with HbA1c above 8% was associated with an
increased risk of fracture compared to those with HbA1c ≤ 7%.
On the other hand, among patients with T2DM, the risk of
fractures appears not be affected by HbA1c levels, supporting the
notion that the risk of fracture in these patients might be related
to risk factors that are independent of glycemic control (120).
One possible explanation for this lack of association between
poor glycemic control and fracture risk among patients with
T2DM is the occurrence of insulin resistance and hyperinsulinemia
in the early phase of the disease. In fact, since insulin is able to
stimulate osteoblastogenesis, the effect of higher levels of insulin in
the early stages of the disease might retard the influence of poor
glycemic control on fracture risk in T2DM (21, 120). However the
origin of these conflicting results can also be in part explained by
the methodology used. In the study by Vavanikunnel et.al.,
long-term glycemic control was assessed as the a mean of eleven
HbA1c measurements per subject with T2DM rather than from
a single HbA1c measurement (120). In addition, other studies
have also analyzed the risk of fracture using different approaches.
For instance, the Rotterdam study assessed not only the incidence
of fractures but also bone parameters, such as femoral neck and
Frontiers in Endocrinology | www.frontiersin.org 5
lumbar spine BMD, and hip bone geometry, demonstrating that
the increased fracture risk in T2DM is driven by poor glycemic
control and is associated with higher BMD and thicker femoral
cortices in narrower bones (97). On the other hand, Vavanikunnel
et al. assessed the risk of fractures by evaluating patients with a
low-trauma fracture after diabetes onset, finding no involvement
of poor glycemic control in increasing the risk of fractures in
patients with T2DM (120).

To verify the existence of an association between poor
glycemic control in T2DM and fracture risk, specifically a
threshold of glucose or HbA1c at which bone impairment
occurs requires a long-term follow-up of patients with early
disease using periodic comprehensive measurements of bone
health and metabolic parameters. This approach will allow a
determination of the precise HbA1c level at which derangement
in bone parameters occur and what happens long-term to bone
parameters among those who stayed under good control versus
those who will go on to have poor control, and taking into
consideration the use of medications in addition to other relevant
clinical factors such as age, duration of T2DM, and the existence
of diabetic complications. Furthermore, if the population is
substantial enough, information on the incidence of fractures
may also become available, and again, whether good control will
prevent these events.

Considering the normal to high normal BMD in T2DM, the
cause of the skeletal fragility in these patients is likely a problem
of bone quality rather than bone quantity (121, 122). The use of
high-resolution peripheral quantitative computed tomography
(HRpQCT) in the study of bone structure in subjects with T2DM
has produced conflicting results. While some studies assessing
the bone microarchitecture in vivo using HR-pQCT, support the
hypothesis that bone fragility in T2DM is associated with
increased cortical porosity (71, 123, 124), others report
preserved microarchitecture in patients with T2DM (121, 125).
In a small cross-sectional study of 19 elderly women with T2DM,
cortical porosity at the radius and tibia was higher compared to
controls. In addition, compressive bone strength, estimated using
finite element analysis (FEA), was significantly lower in the
radius (71). Data from the MrOS study, including 190 older
men with T2DM, reported lower total bone cross sectional area
(CSA) in the radius and tibia in diabetics compared to
nondiabetics and reduced bending strength in cortical regions.
However, bone strength was similar to that of controls in
trabecular regions, with the higher trabecular volumetric BMD
(vBMD) compensating for a lower total bone area in T2DM
(126). In another study, diabetic women with history of fractures
were found to have significantly higher cortical porosity, and
lower bone strength (stiffness, failure load, and cortical load
fraction) compared to diabetic women without fracture, whereas
these indices did not differ between nondiabetic women and
diabetic women without a history of fracture (123). Higher
cortical porosity, lower cortical vBMD and tissue mineral
density at the radius have been observed on a population of
African American women with T2DM compared to nondiabetic
controls (124). Likewise, in another study, increased porosity was
reported in the midcortical and periosteal, but not endosteal,
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regions of the cortex. On the other hand, no significant
differences were reported in cortical porosity in diabetic
women without fracture compared to healthy controls (127).
However, a small cross-sectional study on 51 subjects with
T2DM, cortical bone deficits were only observed in a subgroup
with microvascular complications (128), and could partly explain
the lack of consistent findings between studies.

Despite the conflicting results with HRpQCT-derived FEA to
estimate bone strength, studies using bone microindentation, a
direct measure of bone strength have shown a consistent
reduction in bone material strength index (BMSi) in diabetic
subjects. Farr et al. conducted a study on 60 postmenopausal
women, 30 with T2DM (duration >10 years), found that BMSi,
which was inversely related to HbA1C level, was significantly
lower in the diabetic women both before and after adjustment for
BMI (121). Similarly, significantly reduced BMSi was reported in
16 postmenopausal women with T2DM when compared to
controls, with a significant inverse correlation with the
duration of disease and skin auto fluorescence, used as a
surrogate for AGEs (129). Lastly, another study also found
significantly reduced BMSi in women with T2DM, before and
after adjustment for multiple covariates including BMI (122).

The most prominent impairment in bone metabolism
associated with T2DM is decreased bone formation, with a
reduction in the mineralizing surface, mineral apposition rate,
and osteoblasts surface, resulting in an overall low bone turnover
state (2, 20, 26, 130, 131). That bone disease in diabetes is
characterized by low bone turnover is well established in both
human and animal studies (20, 132–134). In a meta-analysis on
individuals with diabetes (T1DM or T2DM), analysis of bone
turnover markers, showed significantly reduced levels of serum
osteocalcin (OCN) and C-terminal telopeptide (CTX), although
other markers, including bone-specific alkaline phosphatase
(BAP), did not differ from those without diabetes (20). Similar
findings were reported in a subsequent meta-analysis from the
same group (131). On the other hand, increased serum sclerostin
levels (an inhibitor of bone formation) have also been observed
in T2DM (135–137).

If the fracture risk in T2DM cannot be ascribed to lower
BMD, it might be related from poor bone quality, and given the
low bone turnover, likely due to the inability to replace an aging
bone with new bone and repair microcracks, which increase with
aging. The alteration in bone remodeling possibly from impaired
cross-talk between osteoblasts and osteoclasts, likely led to low
bone turnover, although the exact mechanism is still unclear
(138). In a study on a rat model of T2DM, altered bone
formation due to suppressed osteoblastogenesis has been
identified as a key mechanism for impaired bone regeneration
(139). In vitro studies of human immortalized bone marrow
mesenchymal showed that stem cells (SCP-1) differentiated in
the presence of serum from T2DM patients exhibited reduced
osteoblast function, showing increased proliferation but
impaired maturation with reduced alkaline phosphatase (ALP)
activity and matrix mineralization compared to SCP1 cells
differentiated in the presence of sera from non-diabetic control
(either non-obese or obese). Moreover, altered gene expression
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of matrix components and osteogenic transcription factors was
observed after stimulation with serum from patients with T2DM
compared to serum from non-diabetic controls. Taken together,
these results may suggest the existence circulating factors in the
blood of T2DM patients capable of affecting osteoblastic
function (140).
HYPOGONADISM AND TYPE 2 DIABETES
MELLITUS ON BONE

To date, only a limited number of studies have investigated the
effect of the combination of both hypogonadism and T2DM on
bone health. Dhindsa et al. evaluated the relationship between T
concentrations and BMD in men with T2DM (26). They were
able to demonstrate that free and total T concentrations were
positively associated with bone mineral content (BMC) in the
arm, while free T was positively correlated with BMD in arms
and ribs but not at other sites, such as hip, spine, or total body
BMD, suggesting that T may have variable effects on BMD at
different skeletal sites. This could also mean that hypogonadism
may result in a more pronounced or rapid bone loss at certain
sites such as the arms and ribs compared to the legs, hips, or the
spine among men with T2DM (26). This study reported no
significant difference in areal BMD (aBMD) at the lumbar spine,
femoral neck, and total hip between eugonadal and hypogonadal
subjects suggesting that among patients with T2DM, T deficiency
may not have an effect on the BMD at these sites (26).

In a cross-sectional analysis, on a population of 105
hypogonadal men between 40 and 75 years of age, Colleluori
et al., reported no significant difference in adjusted aBMD on the
spine, total hip, and femoral neck between those with and
without T2DM (141). However, using peripheral quantitative
computer tomography (pQCT), they found that adjusted vBMD
in those with T2DM was significantly higher compared to those
without T2DM with bone CSA, whereas endosteal and periosteal
circumferences significantly lower in the group with T2DM.
These results suggest that hypogonadal men with T2DM have
relatively higher vBMD but smaller bone size compared to
hypogonadal men without diabetes (141). In the same study,
analysis of the biochemical markers of bone turnover showed
that serum CTX and OCN were significantly lower in
hypogonadal patients with T2DM compared to those without
T2DM. In particular, CTX levels were lower in patients with
T2DM relative to their non-diabetic counterparts, while OCN
levels were much lower in the group who has both
hypogonadism and T2DM. These findings suggest that the
suppression of bone turnover markers associated with T2DM
prevails over effect of hypogonadism on markers of bone
turnover. However on further analysis, this difference in the
bone turnover markers between the groups disappeared with
adjustment for medication use. In fact, the group of patients with
T2DM on insulin (n = 23) had significantly lower OCN and CTX
compared to untreated patients and those on medication other
than insulin combined (n = 26). Simple regression analysis
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showed significant negative correlation between OCN, CTX, and
HbA1c in the whole population. A separate analysis according to
the presence of T2DM showed that the negative correlation
between bone markers and HbA1c was observed only between
CTX and HbA1c, and only among those with T2DM (141).
INSULIN RESISTANCE: A SHARED
FEATURE IN HYPOGONADISM AND TYPE
2 DIABETES MELLITUS

Insulin resistance is a feature that is shared by both T2DM and
hypogonadism. Whereas insulin resistance is a defining
characteristic of T2DM, it has a bidirectional relationship with
hypogonadism, where it is both a cause and a resulting feature of
this disease (8, 27, 142). Age-associated decline in T levels have
been linked with lower lean body mass and insulin resistance in
older men (143). T concentration is inversely related to BMI,
diabetes and insulin resistance (9, 39, 144, 145); the latter a
potent risk factor for both micro- and macrovascular
complications of T2DM (146). Several studies have shown that
reduced total T level is associated with insulin resistance, leading
to the development of T2DM (28, 39, 147–149). T and insulin
resistance seem to influence each other by creating a vicious
circle in which insulin resistance is associated with a decrease in
T secretion by the Leydig cells, which in turn can lead to worse
insulin resistance and metabolic complications which further
reduce T production (145).

Androgen deprivation in men with prostate cancer leads to
central obesity and a deterioration in insulin sensitivity resulting in
increased risk for T2DM (150, 151). Animal studies showed that
targeted deletion of the androgen receptor in male mice leads to
increased blood glucose levels from insulin resistance (152).
Epidemiological studies in healthy adult men showed that
fasting and 2-h plasma insulin were higher in the men with
lower T compared to those with normal T even after adjustment
for both BMI and waist/hip ratio (153). Treatments or modalities
that improve systemic insulin resistance such as therapy with
rosiglitazone or lifestyle modification leading to weight loss, have
been found to induce a modest increase in T concentrations in
men with T2DM or obesity, but were unable to reliably normalize
T concentrations (154–156). A cross-sectional study among adult
males with diabetes (type 1 and type 2) displayed concordant
findings of an inverse relationship between T levels and insulin
resistance, showing that in men with T2DM, insulin resistance (as
estimated by the HOMA-IR equation) was independently
associated low total T levels even after adjusting for age, BMI,
treatment regimens, and other potentially confounding variables
(27). In a subgroup of subjects in this same study followed-up
longitudinally, changes in T levels over time were independently
correlated with changes in insulin sensitivity estimated from
glucose disposal rate in patients with T2DM. In addition,
individuals with low T levels were also more likely to have a
BMI higher than 30 kg/m2, elevated triglycerides higher than 1.7
mmol/liter, reduced HDL cholesterol levels, and higher hs-CRP
levels, all indicators of MetS, therefore of insulin resistance (27).
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These findings support the hypothesis that circulating T levels in
men with T2DMmay be influenced by insulin sensitivity, and vice
versa (27). Among men with T2DM, those with HH are less
insulin sensitive than those without HH (157) but T
supplementation may improve their insulin sensitivity (158–
162), however results have not been consistent in this area.

The mechanism by which T supplementation improves insulin
sensitivity has several potential explanations including increases in
lean mass, decreases in fat mass, through suppression of lipolysis,
resulting in decreased circulating concentrations of free fatty acids
which are known to induce oxidative stress that interfere with
insulin signal transduction (157, 163, 164). T treatment has been
observed to increase the expression of insulin receptor b, insulin
receptor substrate-1 (IRS-1), Akt-2, and GLUT-4 in adipose, and
suppress inflammatory mediators that interfere with insulin
signaling such as CRP, IL-1b, TNF-a, and leptin (157). All of
these are positive effects of T therapy on the metabolic profile, and
in addition to the improvement in hypogonadal symptoms in men
with T2DM and hypogonadism, further support T therapy in these
patients (20). On the other hand, a few trials investigating the effects
of T replacement therapy on insulin sensitivity and diabetes,
presented conflicting findings about the role of T in modulating
insulin sensitivity (160, 165). While some showed significant or
slight improvement in the glucometabolic parameters with T
therapy in hypogonadal men (2, 157, 166), others found no
improvement in either insulin sensitivity or insulin resistance and
HbA1c after T therapy with gel (167–169). Furthermore, a study of
39 men aged 50–70 years with low T levels and T2DM treated with
metformin monotherapy, randomized to T gel (n = 20) or placebo
(n = 19) for 24 weeks, showed that the beneficial effect of T therapy
on body composition was not accompanied by improved insulin
sensitivity (170). However, other studies support the hypothesis that
insulin sensitization by T is not an immediate effect and may be
mediated by changes in body composition. This is supported by
a study using hyperinsulinemic clamp to evaluate insulin sensitivity
in response to T replacement which showed no change in glucose
uptake by muscles during clamps at an early time point of 3 week
(157). Two meta-analysis of studies involving observational and
randomized clinical trials investigating the effect of T supplementation
on body weight, body composition and metabolic endpoints, have
both shown an improvement in body weight and composition
(with a significant reduction in fat and with an increase in lean
mass) accompanied by a more favorable glycometabolic profile
(reduction in fasting glucose and insulin resistance) after T
treatment particularly in younger patients and in subjects with
metabolic disturbances (171, 172). Nevertheless, acute withdrawal
of T administration in men with HH resulted in reduced insulin
sensitivity in the absence of apparent or detectable changes in
body composition, BMI or leptin levels suggesting the possibility
that sex steroids could probably modulate insulin sensitivity (173).

Thus, considering the potential involvement of T in regulating
insulin sensitivity, a compensatory increase in the expression of
androgen receptor in a setting of insulin resistance in HH and
T2DM is expected. However, contrary to this hypothesis,
researchers found significantly decreased expression in androgen
receptor, estrogen receptor, and aromatase among men who have
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T2DM and HH compared to eugonadal men, indicating that the
hypogonadal state in T2DM is associated with diminished
responsiveness to T and E2. Nonetheless, there is a reversal of
these deficits following T replacement (174).
INSULIN RESISTANCE AND THE BONE-
PANCREAS-GONADS LOOP

A two-way relationship between insulin and bone has been
suggested by preclinical studies, showing a vicious cycle in which
bone influences insulin sensitivity, and may be in turn affected by
insulin resistance (175–179). Bone formation and bone resorption
are regulated by osteoblasts and osteoclasts respectively, through
insulin signaling mediated by insulin receptors on their surfaces
(180, 181). Insulin acts as an anabolic agent in bone leading to
improvement in bone formation (presumably via a proosteoblastic
mechanism), resulting in increase in bone density and bone strength
(181–183). Moreover, osteoblasts express GLUT4, an insulin
dependent glucose transporter, and its deletion in osteoblasts
from in vitro experiments results in impaired insulin stimulated
glucose uptake, while in vivo, osteoblast specific GLUT4 knockout
mice (DGlut4) displayed hyperinsulinemia, insulin resistance, and
increased peripheral fat deposition (177). As shown by animal
studies, insulin deficiency is associated with abnormalities in bone
microarchitecture, in particular reduced mineralized surface area,
osteoid surface, mineral apposition rate, osteoblast activity and
number, while insulin replacement prevented impairment in bone
integrity, and improved bone strength (181). Evidences from bone
cell cultures suggest that the insulin receptor on bone cells may be
important in modulating bone homeostasis by regulating
osteoblasts proliferation and differentiation, collagen synthesis,
and ALP production (181–183).

Studies in osteoblast-specific insulin receptor knockout mice
(Ob-IR-/-) suggest the existence of a mutual relationship between
bone and pancreas, and that insulin signaling in osteoblasts
activates transcriptional events that promote osteoblast
proliferation, survival, and differentiation, resulting in increases
in OCN expression. The increase in OCN, in turn enhances b-
cell proliferation, thus insulin production, and regulates fat
accumulation and sensitivity, therefore contributing to whole
body glucose homeostasis (184, 185). Ob-IR-/- mice displayed
defective osteoblasts differentiation, reduced number of
osteoblasts, decreased serum levels of bone resorption makers,
and impaired postnatal trabecular bone acquisition leading to
low circulating undercarboxylated OCN and reduced bone
accumulation (185). In osteoblasts lacking insulin receptor the
defect in differentiation was accompanied by decreased Runx2
expression, an osteoblast specific transcription factor, and its
binding to the OCN promoter. The suppression of Runx2 is
mediated by Twist2, its inhibitor, which is upregulated when the
insulin receptor in osteoblasts is lacking. These data suggest that
insulin signaling in osteoblasts is able to regulate osteoblasts
differentiation, and induces OCN expression by attenuating the
negative actions of the Twist2 transcription factor on Runx2
(176, 185, 186). The addition of insulin to osteoblasts cultures
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increases osteoblasts proliferation and differentiation (187). In
Ob-IR-/- mice the number of osteoclasts remained unchanged
compared to controls, but their activity was significantly reduced
due to increased expression of OPG, a decoy receptor for
RANKL (185). All these findings suggest the possible role of
insulin signaling as an anabolic factor for bone formation;
however, the details of this mechanism are still unclear.

Metabolically, the deletion of insulin receptor in osteoblasts as
represented in theOb-IR-/-model, results in marked increased in
peripheral adiposity accompanied by glucose intolerance,
hyperglycemia, hypoinsulinemia, and target tissue insulin
resistance caused by reduced undercarboxylated OCN (184,
185). Ob-IR-/- mice had 40% greater fat mass and 8% lower
lean mass compared to control mice. Moreover after glucose
injection Ob-IR-/- mice displayed significantly higher plasma
glucose levels and significantly reduced serum insulin levels than
controls. Insulin tolerance tests and gene expression analysis
showed that Ob-IR-/- mice had severe insulin resistance with
significantly decreased pancreatic b-cell mass and insulin
expression. The infusion of undercarboxylated OCN improves
metabolic abnormalities in these mice (185).
OSTEOCALCIN AND THE BONE-
PANCREAS-GONADS LOOP

Several studies in mice and humans have proposed a novel
function of the bone, once considered an inert system with
mere structural functions, and now regarded as an endocrine
organ regulating energy metabolism and glucose homeostasis
(176, 188). OCN, a hormone secreted by osteoblasts, has been
suggested to mediate these functions (176). It has been shown
that OCN, especially the undercarboxylated form, has a direct
effect on insulin secretion and stimulates the response to insulin
in adipocytes and myocytes, thus improving insulin sensitivity
(189). Undercarboxylated OCN directly regulates glucose
metabolism in skeletal muscle by enhancing insulin-stimulated
glucose uptake, upregulating Akt signaling by activation of ERK
kinase (MEK) in differentiated C2C12 myotubes, and increasing
glycogen and fatty acid catabolism in muscle fibers (190, 191).
OCN signaling in skeletal muscle induces the translocation of the
glucose transporter, GLUT4, to the plasma membrane,
stimulating glucose uptake in muscle (191). Furthermore OCN
regulates IL-6 expression in muscle, which in turn favors glucose
uptake and fatty acid oxidation in muscle and promote
gluconeogenesis and glucose release in the liver (192). OCN
also stimulates adiponectin secretion in adipose tissue, as well as
enhances insulin sensitivity in muscle, liver, and white adipose
tissue (176, 184, 185, 193). Moreover, OCN has an indirect role
in stimulating insulin secretion through increasing the
production of the gut-derived hormone glucagon-like peptide-
1 (GLP-1), an incretin released by intestinal endocrine cells
(194, 195).

A study using OCN knockout mice (Ocn-/-)mice (OCN loss-
of- function model) and Esp knockout (Esp-/-) mice (OCN gain-
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of-function model) to explore the function of OCN in b-cell and
adipocytes, reported that OCN secreted from bone might be
involved in whole body glucose homeostasis (176). Mice lacking
OCN exhibit hyperglycemia and impaired glucose tolerance
from significantly reduced pancreatic b-cell proliferation and
insulin secretion (176). OCN may regulate insulin sensitivity via
adiponectin, and mice lacking OCN are insulin resistant from
reduced adipocytes expression of adiponectin, an adipocyte-
specific insulin-sensitizing hormone (176). Furthermore,
Ocn-/- mice were obese, with abnormal accumulation of
visceral fat, and increased serum triglyceride levels, suggesting
the role of OCN in regulating energy metabolism (176, 196). It
has been shown that the expression levels of insulin and
adiponectin were significantly increased when OCN expression
vector-transfected COS cells were cocultured with islets or
adipocytes (176). In addition, recombinant OCN injection
improved glucose tolerance, insulin expression in b-cells,
increased b-cell proliferation and insulin secretion, augmented
adiponectin expression, decreased fat mass, and prevented high
fat diet-induced obesity and diabetes in WT mice (176, 197).
Intermittent administration of OCN through daily injections was
followed by a significant improvement in glucose tolerance and
insulin resistance in mice fed with either normal or high fat diet,
and reversal of hepatic steatosis induced by high fat diet,
suggesting its role in regulating fat metabolism also in the
presence of obesogenic environment. Moreover, there was an
increase in the number of mitochondria in skeletal muscle, and
increased energy expenditure, and protection against diet-
induced obesity in these mice (198). Animal model of gain in
OCN activity as in Esp-/- mice was associated with a metabolic
phenotype opposite to that observed in Ocn-/- mice; therefore
characterized by hypoglycemia and low blood glucose level after
glucose injection, increased insulin expression and secretion,
increased insulin sensitivity, and adiponectin expression in
adipose tissue. Furthermore, Esp-/- mice showed decreased fat
mass and serum triglyceride level, a resistance to high fat diet-
induced obesity, and diabetes, as well as resistance to streptozotocin-
induced diabetes. These metabolic alterations were completely
reversed after crossing Esp-/- mice with Ocn+/- mice in Esp-/-;
Ocn+/- mice (176).

Insulin and OCN seem to influence each other in a positive
feedback loop between bone and pancreatic b-cells, in which
insulin signaling in osteoblasts enhances OCN production and
bioavailability (184, 185). In vitro experiments showed that OCN
gene expression during osteogenic differentiation was negatively
affected by hyperglycemia and insulin resistance owing to a
reduction in the activity of the human OCN gene promoter.
Conversely, exposure to OCN increase glucose-induced insulin
secretion in rat INS-1 b-cells, a cell line that secretes insulin in
response to glucose (199). Mice fed a high-fat diet experienced
improvement in whole-body glucose homoeostasis when insulin
signaling in the osteoblasts is increased, while the opposite is true
if signaling is reduced. Furthermore, high-fat diet resulted in
insulin resistance in osteoblasts, leading to a decrease in OCN
activity and a decrease in insulin sensitivity in white adipose
tissue and skeletal muscle (178).
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Results from in vitro and preclinical studies have suggested
that undercarboxylated OCN enhanced human b-cell function
(200). In humans OCN has shown an inverse correlation with
plasma glucose level and fat mass in elderly non-diabetic subjects
and a positive association with insulin sensitivity and
adiponectin levels (201, 202). These findings were supported
by results from cross-sectional and longitudinal studies showing
an inverse correlation between total serum OCN levels and
HOMA-IR, and the changes in fasting plasma glucose (203).
Moreover, in patients with T2DM serum OCN was inversely
associated with glucose and visceral fat mass and positively with
serum adiponectin levels, and parameters of insulin secretion
and sensitivity. During treatment of T2DM, changes in OCN
were negatively correlated with changes in HbA1c (204–206).
Data from a cross-sectional study showed that OCN was a
negative and independent predictor of HbA1c in Korean men
and women younger than 50 years, although no such association
was found in individuals aged 50 years and older (207). All of
these findings were in agreement with results from a meta-
analysis of observational studies, which reported a positive
association between serum total OCN levels and b-cell
function, while a negative correlation with HbA1c (208).

Since OCN is an osteoblast-specific secreted hormone and
osteoblasts differentiation is regulated by T, this may be an
important factor linking glucose homeostasis with gonadal
steroids (65). It has been suggested that undercarboxylated OCN
regulates fertility and possibly the production of sex steroid
hormones, primarily in males (209, 210). While Ocn–/– female
mice have been observed to have normal fertility, male mutant mice
showed a decrease in testicular size, epididymis, reductions in the
weight of reproductive organs, lower T levels, and oligospermia.
Conversely, OCN administration improved these parameters of
male fertility in these mice (78, 176, 210). Furthermore, the
reproductive phenotype of the in Esp−/− male mice was opposite
that of Ocn–/– (210). This difference in gender was also noted in
humans showing a significant association between serum OCN and
T levels duringmid-puberty inmales, but no association between E2
levels and OCN in females (211). This finding could also signify that
OCN could be involved earlier during puberty and rapid skeletal
growth in males. In vitro experiments also demonstrated that
osteoblast-conditioned medium and undercarboxylated OCN
increased T production by the testes but did not affect E2 or
progesterone levels produced by ovarian explants (78). It was
observed that in absence of OCN, Leydig cell maturation
appeared to be halted suggesting that OCN might play a possible
role in promoting T synthesis as shown in coculture assays, in which
the supernatants of WT but not of Ocn–/– osteoblasts in culture
increased T production by Leydig cells of the testes. In addition,
OCN deficient male mice had low circulating T levels, compared
high T concentrations in Esp–/– (210). Moreover, Esp−/− mice,
which have increased insulin signaling in osteoblasts showed
increased fertility, implying the possibility that male fertility
may be regulated by insulin signaling in the osteoblasts (184).
This finding has been supported by data from another study
showing that insulin favors male fertility by stimulating bone
turnover and osteoclasts-mediated activation of OCN (212).
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OCN acts through a testis-specific putative receptor,
identified as GPRC6A, which has been found to be expressed
in different organs such as bone, pancreas, muscle, fat, testis,
liver, and prostate (210, 213, 214). Some studies proposed a role
for the loop between OCN, GPRC6A, and T in regulating energy
homeostasis and male fertility (210, 212, 215–217). In fact,
GPRC6A is involved in T biosynthesis in Leydig cells and in
T-mediated stimulation of insulin secretion in the pancreatic
islets (215), while b-cell proliferation and insulin production are
regulated by pancreatic GPRC6A (216, 218). These observations
suggests that insulin signaling in osteoblasts may regulate T
biosynthesis in the testis though OCN and vice-versa. Studies in
humans report an association between serum OCN and T levels
supporting the reproductive role of OCN (211, 219).
Additionally, in patients with primary testicular failure from a
heterozygous missense variant in the transmembrane domain of
GPRC6A (F464Y) resulting in interference in the GPRC6A
signaling pathway, glucose intolerance accompanies the
reproductive hormone deficit, a phenotype analogous to those
found in ONC- and GPRC6A-deficient mice (176, 210, 212, 220).
These results not only suggest that the pathway between OCN
and GPRC6A is conserved within mice and humans but also
propose a probable key role of OCN in regulating T levels in
patients with T2DM (176, 210, 212, 220, 221).
CONCLUSION

The impact of T2DM on the hypothalamic-pituitary-gonadal
axis is manifested by a type of hypogonadism that is
characterized by reduced or normal gonadotropins resulting in
the so-called HH. The high prevalence of low T in patients
with T2DM has led the Endocrine Society to recommend
screening patients with diabetes mellitus for hypogonadism
(222). Regardless of type or etiology, primary or secondary
(such as HH), hypogonadism is associated with an increased
risk for fractures. Given that T2DM is also associated with a
higher risk for fractures, the combination of both could have
worse consequence on bone health than either one alone.
Considering the well recognized mutual and bidirectional
association between hypogonadism and T2DM (2, 8–10), it is
very likely that a significant number of men could be at a greater
risk for fractures. However, while hypogonadism is associated
with low BMD and high bone turnover, mainly from increased
bone resorption (15, 16, 22, 41, 46, 47), T2DM is characterized by
an opposite scenario including low bone turnover, more
specifically reduced bone formation, with normal or high
normal BMD (17–21). Despite this difference in bone
phenotype, it is possible that both T2DM and hypogonadism
will converge to promote an even greater increased risk for
fractures. The very few investigators who examined the effect of
the combination of hypogonadism and T2DM reported that men
with both conditions have high or normal BMD but smaller bone
size, with a significantly decreased bone turnover (141). Thus, the
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effect of T2DM on bone metabolism and BMD appears to prevail
over the effect of hypogonadism, suggesting that impaired
osteoblastogenesis and osteoblast function could be crucial
determinants of bone quality in men who have a combination
of both conditions. In fact, the effect of T in stimulating
osteoblastic differentiation and proliferation, and inhibiting the
apoptosis of osteoblasts and osteocytes suggest that when there is
insufficiency of T, part of the mechanism leading to bone loss is
impaired bone formation, unable to compensate for the
increased resorption brought about by the reduction in E2
owing to reduction in substrate, i.e., T (48).

On the other hand, an emerging mechanism that may
underlie the possible detrimental effect of the combination of
T2DM and hypogonadism on bone formation could involve the
osteoblast-specific hormone, OCN. In fact it has been
hypothesized that the link between T2DM, hypogonadism and
bone metabolism is the existence of a bone-pancreas endocrine
feedforward loop. Insulin signaling in osteoblasts activates
transcriptional events that promote osteoblasts proliferation,
survival, and differentiation, which result in increased OCN
production (223). Furthermore, OCN (in particular
undercarboxylated OCN), not only has a positive effect on
glucose metabolism by promoting insulin production and
sensitivity, but also proposed to have a putative role in
regulating fertility and the production of sex steroids, hence,
an important bone-derived factor linking glucose homeostasis
with gonadal steroids (223). Through its effect in regulating
osteoblastogenesis, undercarboxylated OCN is in turn regulated
by insulin. Hence, impaired insulin sensitivity, which has a key
role in the development of T2DM, results in low OCN levels
which lead to low T production in men which in turn is
associated with insulin resistance completing the proposed
bone-pancreas-gonads loop (8, 27).

Figure 1 summarizes our proposed framework for how the
pancreas, gonads, and bone interact under normal physiologic
state. Central to this interaction is the role of bone as an
endocrine organ due to its role in generating osteoblasts which
in turn produces OCN. OCN has multiple effects in several
organs; on the pancreas by stimulating insulin production, on the
testis by stimulating T production, and on the muscles, adipose,
and liver by enhancing insulin sensitivity in these tissues/organs.
In turn, the increase in insulin and T promotes increased
osteoblastogenesis, and the cycle of further increase in insulin
and T production, and enhanced insulin sensitivity from
increased OCN is repeated. A disruption in any of the pathway
of this proposed framework may lead to insulin resistance,
which fosters the development of T2DM and hypogonadism.
Although the metabolic complications from this combination
is well-investigated, the skeletal complications remain poorly
characterized. As stated in the previous paragraphs, preliminary
data from the few studies that examined the effect of the co-
existence of hypogonadism and T2DM on bone health, propose
inactive bone turnover, and smaller bone size, suggesting poor
bone quality. Whether improvement in insulin resistance or T
supplementation restores bone turnover to normal, and
improves bone quality remains unknown and deserves further
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studies. We however anticipate, (as shown in most secondary
forms of osteoporosis), that an improvement in skeletal health
will follow after treating the specific underlying cause.
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