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Abstract

Many genetic variants that are significantly correlated to gene expression changes across human individuals have been
identified, but the ability of these variants to predict expression of unseen individuals has rarely been evaluated. Here, we
devise an algorithm that, given training expression and genotype data for a set of individuals, predicts the expression of
genes of unseen test individuals given only their genotype in the local genomic vicinity of the predicted gene. Notably, the
resulting predictions are remarkably robust in that they agree well between the training and test sets, even when the
training and test sets consist of individuals from distinct populations. Thus, although the overall number of genes that can
be predicted is relatively small, as expected from our choice to ignore effects such as environmental factors and trans
sequence variation, the robust nature of the predictions means that the identity and quantitative degree to which genes
can be predicted is known in advance. We also present an extension that incorporates heterogeneous types of genomic
annotations to differentially weigh the importance of the various genetic variants, and we show that assigning higher
weights to variants with particular annotations such as proximity to genes and high regional G/C content can further
improve the predictions. Finally, genes that are successfully predicted have, on average, higher expression and more
variability across individuals, providing insight into the characteristics of the types of genes that can be predicted from their
cis genetic variation.
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Introduction

Variation in gene expression among human individuals plays a

key role in the susceptibility to different diseases and phenotypes

[1–7]. Some of this variation has been linked to genetic variation

that exists among individuals [8–16]. For this reason, a major goal

is to predict gene expression changes among individuals based on

their genetic sequence variation. Ideally, if we could predict the

expression profile of genes for each individual, we could estimate

this individual’s risk for developing certain diseases; but unfortu-

nately, our current ability to make such predictions is poor.

A popular approach to study the relationship between genetic

variation and expression variation is by using a mapping

approach, where the expression of every gene is treated as a

quantitative trait and one searches for genetic changes that are

significantly correlated with the expression changes of each gene.

A dominant method is to fit a linear regression model from the

minor allele count of single nucleotide polymorphisms (SNPs) to

the expression level of a gene across different individuals. Under

some assumptions, a p-value for the resulting correlations can be

computed and after correcting for multiple hypotheses testing, the

set of SNPs that are significantly associated with the expression

changes of every gene can be identified. Using this approach

researchers were able to examine all of the SNPs measured in the

human genome for significant associations in an unbiased way,

resulting in many potential effectors of gene expression

[9,10,17,18].

A major issue in the above analyses is low statistical power for

detecting associations that arises from the large number of SNPs

examined. This means that SNPs with a low correlation to

expression will not be detected as possible effectors. However,

since the degree of correlation of SNPs to expression is associated

with their genomic features such as location (e.g., distance from

the transcription start site) or function [9–16,18–20] (e.g., within

transcription factor binding sites), several studies used genomic

features of SNPs as a prior on the probability of their functional

importance within a Bayesian framework [13,19,20], resulting in

additional statistical power to detect associated SNPs in particular

genomic regions.

A second issue is that the above methods examine each SNP in

isolation. Thus, they cannot detect combinatorial associations

between multiple SNPs and expression changes. Several methods

tried to address this issue by examining multiple SNPs at the same

time using ridge-regression [21], a Bayesian approach [22], or

multiple interval mapping [23], and identified statistically signif-

icant epistatic interactions that are not found using the single SNP

approaches.

Collectively, the above methods focused on mapping SNPs that

are significantly correlated with expression and have identified

many interesting associations between expression changes across
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genes and genotype data. However, since their goal was to identify

statistically significant associations of single SNPs, they do not

consider multiple-SNP models, where combinations of SNPs and

SNPs with small effects could play a role in generating the

predictive model. One work attempted to devise a multiple-SNP

predictive model using a cross validation scheme, whereby a

model whose parameters were fitted from the data of a subset of

the individuals is tested for its ability to predict the expression of

the remaining unseen individuals [24]. This work also integrated

genomic features of SNPs, using them as priors in a regularized

linear model, and found SNPs located in certain regions of the

gene to be more predictive of gene expression variation. However,

in addition to the SNP information, this work also used the

expression value of other genes for the prediction task, making it

difficult to assess which part of the reported predictive power

comes from SNP information and which from the expression of

correlated genes.

Here, we set out to develop an algorithm that predicts changes

in gene expression among human individuals using only their

genetic variation. Notably, this goal is different from that of the

above studies that focus on mapping associated single SNPs.

Accordingly, rather than providing p-values for SNP associations,

we evaluate the quality of our algorithm by its ability to predict the

gene expression levels of unseen human individuals given only

their genotype information. Contrary to the single SNP association

studies mentioned above, we use multiple SNPs to predict the

expression of every gene, but to avoid overfitting only SNPs that

are in the genomic vicinity of the predicted gene are used. We also

incorporate a comprehensive set of genomic and functional

features for each SNP, by allowing the algorithm to use this

meta-information to weigh the importance of each SNP in the

prediction.

We evaluated the ability of several algorithms to predict gene

expression data from immune precursor cells of four different

human populations for which corresponding SNP data is available

[8,10]. Clearly, this prediction task is very difficult for several

reasons, including noise in the data and missing SNPs, and

because the expression of many genes is determined by

environmental factors and by trans-acting SNPs that we do not

consider. Nevertheless, comparing two different multi-SNP

algorithms and one single-SNP algorithm, we find that both a

variation of the K-nearest neighbor (KNN) algorithm [25,26] and

a regularized linear model achieve high correspondence between

their predictions on the training data and those on the held out test

data. We also show that combining their predictions into a single

model improves the predictions on held-out test data, as the two

models explain different aspects of the expression data. As

expected, the total number of genes whose expression can be

accurately predicted using their proximal SNP data is relatively

small, but the high robustness of our algorithm means that it can

determine the quality of the predictions in advance with high

accuracy.

As we had four different populations in the data, we evaluated

the predictions on several different cross validation schemes.

Notably, we found that incorporating individuals from other

populations improves the predictions of a given population

compared to only using the individuals of the predicted

population, suggesting that some of the SNPs that are associated

with expression changes are shared across populations. We also

found that our algorithm achieves similar performance when it

attempts to predict the expression of genes from one population

using only the data of other populations.

Taken together, our work provides concrete means by which

some of the expression variation among human individuals can be

predicted with a low false positive rate using only their genotype

data, suggesting that the time may be ripe for a broader

examination of this important prediction task, perhaps while

incorporating additional features such as trans-acting SNPs.

Results

Experimental Data and Cross Validation Schemes
As the data for our study, we used the HapMap Phase II dataset

[8], consisting of 210 unrelated individuals from four distinct

populations of European (CEU), African (YRI), Chinese (CHB),

and Japanese (JPT) origins, for which corresponding expression

measurements from immune precursor cells are available for

15,439 genes [10]. We defined a prediction task for each such gene

using only its set of proximal cis-SNPs, defined as those SNPs that

reside inside the body of the gene or in the 100 kb upstream and

downstream regions flanking the gene. This resulted in a total of

,4.7 M cis-SNPs across all 15,439 genes, for an average of ,304

SNPs per gene.

To assess whether the predictive power comes from using

individuals of the same population or those of other populations,

we used three different cross-validation (CV) schemes throughout

the paper (Figure 1). In the first Cross-Pop scheme, three

populations serve as training data, and the remaining population

is used as the test data. In the second Mixed-Pop scheme, the

populations are mixed such that the training and test data both

contain individuals from all four populations. Finally, in the third

Intra-Pop scheme, the partition to training and test is done

separately for each population, such that there is a separate test

data for each of the four populations that is predicted using a

model learned only from the remaining individuals of the tested

population. The prediction task of the Cross-Pop scheme may be

expected to be the hardest, since the parameters are learned using

only the data of other distinct populations, which requires the

SNPs affecting expression to be shared across populations.

Conversely, in the Intra-Pop scheme, the model can select different

SNPs for each population, if each population has a different SNP

affecting expression. This may improve the predictions but can

also lead to overfitting of the training data. Finally, in the Mixed-

Author Summary

Variation in gene expression across different individuals
has been found to play a role in susceptibility to different
diseases. In addition, many genetic variants that are linked
to changes in expression have been found to date.
However, their joint ability to accurately predict these
changes is not well understood and has rarely been
evaluated. Here, we devise a method that uses multiple
genetic variants to explain the variation in expression of
genes across individuals. One important aspect of our
method is its robustness, in that our predictions agree well
between training and test sets. Thus, although the number
of genes that could be explained is relatively small, the
identity and quantitative degree to which genes can be
predicted is known in advance. We also present an
extension to our method that integrates different genomic
annotations such as location of the genetic variant or its
context to differentially weigh the genetic variants in our
model and improve predictions. Finally, genes that are
successfully predicted have, on average, higher expression
and more variability across individuals, providing insight
into the characteristics of the types of genes that can be
predicted by our method.
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Pop scheme, although SNPs have to be shared across populations,

having representatives from all populations in the training and test

sets may improve the robustness of the model.

Robust Prediction of Expression of Unseen Individuals
from Multiple SNPs

Most studies of the relationship between genetic and expression

variation have focused on identifying single SNPs that are

significantly correlated with gene expression changes [8–16].

Thus, the question of whether multiple SNPs can be used jointly to

improve predictions of gene expression remains largely unex-

plored, and hence, we sought to devise an algorithm that can

robustly predict the expression of unseen test individuals using

multiple SNPs. Given that we restricted ourselves to cis-SNPs and

that many expression changes are determined by environmental

factors or by trans-SNPs, this prediction task is difficult and even

the optimal predictor would not be able to explain most of the

observed variation in expression. Rather, we strive for a robust

predictor that will have good agreement between the training and

test data, such that it can determine its performance on held out

individuals in advance using only the individuals given to it during

the training phase.

A predictive model based on a single SNP (single-SNP model) will

have only two parameters for regression, namely the slope and the

intercept. Therefore, we decided to compare this model with two

different multi-SNP models that vary in the number of parameters

they use. The first model is based on the K-nearest neighbor

(KNN) algorithm, which predicts the expression level of an unseen

individual based on the measured expression values of the K

individuals in the training set whose genotypes are most similar to

it [25,26]. In the KNN algorithm, similarity is measured by a

distance metric, which we defined in our case as the absolute

difference in minor allele counts summed over all cis-SNPs of the

tested gene. We chose the KNN algorithm due to its inherent

property of generating its predictions using the measured values of

those individuals that are closest to it in feature (genotype) space,

rather than by attempting to construct a generative model of its

predicted values. This property allows the KNN model to use

multiple SNPs in the prediction, while using only a single

parameter, K (the number of neighbors) and it is thus similar to

the single-SNP model in terms of the parameter space it uses. The

second multi-SNP model we consider is a regularized (elastic-net)

linear regression model [27] that has one weight parameter for

each SNP, thereby increasing the number of parameters to the

number of SNPs used by the model. In order to increase

robustness, we employed an internal training cross-validation

procedure to determine the strength of the regularization and the

training performance (see Methods). We also combined the two

multi-SNP models into a single model by averaging their

predictions for each individual, since we hypothesized that the

different assumptions and number of parameters employed by the

two models will capture different aspects of the data and hence

their combination could improve the predictions.

We tested these different models in each of the three different

cross validation schemes. For all models, in each cross validation

partition we used the training data to learn the parameters for

each gene, which maximize the reduction in variance achieved by

the corresponding predictor (i.e., regressor or KNN, see Methods).

We measure this reduction using R2, defined as the proportion of

variance in the data (either training or test) explained by the

predictor.

Notably, for all multi-SNP models, we found high correlations

between their predictions on the training data and their

predictions on the test data in all three cross validation schemes

(e.g., Pearson correlations of 0.57–0.88 between training and test

results across mean cross-validation values of 15,439 genes for the

combined model). In nearly all cases, these correlations between

the training and test predictions were higher than those achieved

Figure 1. Different cross-validation schemes used throughout the paper. Shown are the three different cross validation schemes that we
used throughout the paper. In the Cross-Pop scheme (left column), a 4-fold cross validation scheme is used, whereby in each partition three of the
four populations are used as the training set (blue), and one population is held out as a test set (colored orange). In the Mixed-Pop scheme (middle
column), individuals from all populations are randomly partitioned into five equally sized sets, and each of the five possible choices of four sets is
then used as training, with the fifth held out set used as the test set. Finally, in the Intra-Pop scheme (right column), a standard five fold cross
validation scheme is applied separately to each population (i.e., the training and test set always consist of individuals from the same population).
doi:10.1371/journal.pgen.1003396.g001
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by the single-SNP model. This improved performance of the

multi-SNP models was most notable in the hardest Cross-Pop

prediction scheme, where the KNN model had 0.83 Pearson

correlation, compared to the 0.21 of the single-SNP model

(Figure 2A, Figure S1, Figure S2). The improved performance of

the multi-SNP models was also evident when binning the genes

according to their training performance in each algorithm and

then comparing the R2 that each algorithm achieves on the test

data (Figure 2B, 2C). For example, for genes with training R2

between 0.2 and 0.3 (i.e., 20–30% of the expression variation of

the training set is explained), the KNN, linear and combined

models achieve an average test R2 of 0.21, 0.13 and 0.22,

respectively, whereas the single-SNP model achieves test R2 of

0.075 (Figure 2C, Cross-Pop).

The R2 values above represent an average over multiple genes,

and thus, they may not be indicative of the R2 of individual genes.

As one way to examine performance at the single gene level, we

defined a robustly predicted gene as one with test R2 equal to or

larger than some threshold fraction of its training R2 (only genes

with training R2$0 are considered). Here too, we found the multi-

SNP models to have a much higher fraction of robustly predicted

genes across all thresholds and cross-validation schemes as

compared to the single-SNP model (Figure 2D). Notably, the

differences in this analysis are even more striking than those

suggested by the average R2 values, where for example, at a

robustness threshold of 0.5 in the Cross-Pop scheme (i.e., test R2 of a

gene is at least half of its training R2), 31%, 51% and 75% of the

genes are robustly predicted by the KNN, linear and combined

models, respectively, compared to only 5% for the single-SNP

model.

As expected from this hard prediction task, the overall number

of genes that can be well predicted is relatively small (Table 1,

Tables S1 and S2, and Figure S3). For example, 364/15,439

(2.4%) and 529/15,439 (3.4%) of the genes have training and test

R2 above 0.1 in the Cross-pop and Mixed-pop CV schemes,

respectively. However, the robust nature of our algorithms means

that the number of false positive predictions will be relatively

small, i.e., the algorithm knows in advance which genes will be

well predicted. This high degree of robustness persists and is most

impressive in the Cross-Pop scheme, where the expression levels of

an entire population is predicted without using any individual

from that population.

When comparing the overlap between top-predicted genes (in

test data) for the different models, we find that ,50% of the top-

predicted genes overlap across all models (Table 2, Tables S3 and

S4, top-predicted gene lists appear in Tables S5, S6, S7, S8, S9,

S10, S11, S12, S13). This result suggests that some genes can be

well predicted regardless of the selected model (i.e., even a single-

SNP does relatively well), but for other genes the selection of the

model type, i.e., linear (Elastic-Net) or non-linear (KNN) can have

a large effect on our ability to correctly predict held-out test data.

Although we found the multi-SNP models to have better

robustness in terms of agreement between training and test results,

when comparing the best model across all predicted genes, we find

that on average, ,33% of the genes are best predicted by the

single-SNP model, while the other ,66% are best predicted by

one of the multi-SNP models (Table S14). This result emphasizes

the fact that in different scenarios, different models perform best,

and the best approach would probably make combined use of all

models.

In conclusion, these results demonstrate that multi-SNP models,

including both the KNN-model that uses a single parameter and

the regularized linear model that uses multiple parameters, are

overall more robust than the single-SNP model, and can

outperform it for most genes. In addition, we found that a model

that combines the two multi-SNP models can be beneficial in

terms of prediction robustness as compared to the individual

models.

Integration of Genomic Features of SNPs Improves the
Predictions on Unseen Data

Despite the robust predictions of our KNN-based algorithm, in

the distance metric that it employs all SNPs contribute equally.

Since SNPs can vary greatly in their correlation to the expression

of the nearby gene, and the degree to which their expression

correlations on the training set match their correlations on the test

set, we asked whether SNPs with better agreement have particular

properties. We reasoned that if that were the case, then we might

be able to improve performance by using this information to assign

differential weights to SNPs within the distance metric. Motivated

by studies demonstrating that SNPs that are closer to the

transcription start site or SNPs that are located within 39 UTRs

have higher expression correlations [10,24,27], we generated a

comprehensive set of 117 genomic features for every SNP (Table

S15). In addition to previously examined annotations such as the

location of the SNP (e.g., within a UTR, intron, or gene body),

and its distance from the transcription start and end sites, we also

added features such as the conservation and G/C nucleotide

content around the SNP, and whether or not the SNP resides

within predicted microRNA or transcription factor binding sites.

We also added features based on chromatin immunoprecipitation

experiments, such as whether or not a SNP is located in a genomic

region marked with a specific histone methylation or acetylation.

Next, we extended the KNN algorithm to integrate genomic

features into the model by assigning a weight to each genomic

feature representing its relative importance. We then updated the

distance metric employed by the KNN algorithm such that for

each SNP that it sums over when computing the distance between

the genotypes of two individuals, it weighs the absolute difference

of the SNP’s allele counts between the two individuals by the

weighted sum of the SNP’s genomic features (Figure 3). The

extended algorithm learns the weights of the genomic features in

an iterative manner, by updating the weight of each genomic

feature in a way that maximizes the training R2 and thus improves

the overall expression predictions of the algorithm (Methods). The

greedy nature of the algorithm ensures that it improves in each

iteration until a local maxima is reached in which changes to the

weights of the genomic features do not further improve the

training R2.

To test whether this extended algorithm can improve the

predictions obtained by the simple-KNN algorithm, we applied it

to all genes whose training R2 in the simple-KNN algorithm was

above 0.05 in each of the cross-validation schemes. For most genes

(65–85%, depending on the cross validation scheme, Figure 4A),

integrating genomic features did not result in large improvements

of the training R2 obtained by the simple-KNN algorithm.

Correspondingly, the test R2 values improved for only ,45% of

these genes (Figure 4B). However, for most (66–90%) of the genes

for which integrating genomic features resulted in a substantial

(above 0.1) increase in their training R2, the test R2 also increased,

and the average test R2 increase of these genes was ,0.1 in all

three cross-validation schemes (Figure 4C, Figure 5). Thus,

although integrating genomic features improves the training

predictions for only a subset of genes (15–35%, depending on

the cross-validation scheme), the extended algorithm maintains the

robustness property of the simple KNN algorithm, whereby it can

identify in advance which genes will be better predicted on unseen

individuals.

Robust Prediction of Human Expression Variation

PLOS Genetics | www.plosgenetics.org 4 March 2013 | Volume 9 | Issue 3 | e1003396



Figure 2. Multi–SNP algorithms predict expression of unseen test individuals with high robustness. (A) Predictions of the KNN algorithm
are more correlated between the training and test sets compared to the linear and best-SNP models. For the KNN-based algorithm, the regularized
linear regression model, and the single best-SNP model that uses the most correlated SNP, shown are the Pearson and Spearman correlation
coefficients between the training and test R2 across all genes and all three cross validation schemes. (B) For each of the three models and every cross-
validation scheme, genes were binned by training R2. Shown is the mean training R2 of the genes in every bin. (C) For genes with the same training R2

in each model, the multi-SNP algorithms show higher test R2. For the same bins from (B), shown is the mean test R2 of the genes in every bin. (D) The

Robust Prediction of Human Expression Variation
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Genomic Features Related to Regulation and Activation
Are Significantly Enriched in Both Multi–SNP Models

Having integrated the SNP genomic features into our extended

KNN algorithm, we next examined which genomic features are

significantly enriched or depleted in it. The extended KNN model

explicitly assigns different weights to the different genomic

features, where the weights are learned for each gene separately.

Therefore, for each genomic feature, we can compute the

significance of its enrichment or depletion in having a non-zero

weight across all genes. We find that 44/117 (38%) and 50/117

(43%) of the genomic features are significantly enriched or

depleted in the extended KNN model, respectively (Figure 6,

P,0.01 in all CV partitions, hypergeometric test, FDR [28]

correction). In contrast, the regularized linear model does not use

the genomic features information in the learning process.

However, as different SNPs were assigned different weights, we

can determine whether SNPs that share a certain genomic feature

are given a non-zero weight significantly more than expected by

chance, or significantly less. We find that 47/117 (40%) and 7/117

(6%) of the genomic features are significantly enriched or depleted

in the regularized linear model, respectively.

Since the two multi-SNP models were independently learned,

we also examined their intersections of enriched or depleted

genomic features. We found that 28 genomic features are enriched

in both models, which is a significantly larger intersection than

expected by chance (P,1024, hypergeometric test). Among these

enriched genomic features are all distance bins of 15 kb or smaller

from TSS or TES, suggesting that sequence variation in these

regions is most important for regulation by cis-SNPs, consistent

with the higher known expression correlation of proximal SNPs

[10,13] (Figure 6, full list of enriched/depleted genomic features in

Table S16). In addition, the genomic feature of high (.0.7)

regional GC content (50–100 bp region flanking SNP) was also

enriched in both models. High GC content was shown to correlate

with higher nucleosome occupancy and regulatory function in

humans [29], which may explain why SNPs in these regions are

more predictive of expression changes. SNPs in predicted binding

sites for both transcription factors and microRNAs were also

enriched in both models, as may be expected, since such SNPs

may affect the likelihood of binding of the transcription factor [30]

or microRNA [31].

Among the various post-translational histone modifications

included in our genomic feature set (20 methylations and 18

acetylation marks, Table S15), only 5 histone acetylation marks

were significantly enriched in both models (Table S16). Notably,

all 5/5 (100%) of these acetylation marks are enriched in

enhancers, compared to 11/18 (61%) of all histone acetylation

marks [32], suggesting that SNPs in enhancer elements may have

a larger effect on gene expression. Next, we examined genomic

features that are significantly depleted in both the extended KNN

and the linear models. We find only 3 such genomic features,

consisting of medium-low regional GC content, and heterochro-

matin marks. These results suggest that areas with lower

regulatory capacity have a smaller effect on variation in gene

expression.

To conclude, the analysis of the genomic features that both

multi-SNP models selected in an unbiased manner as being more

(or less) important for the predictions suggests that genetic

variation in active and regulatory regions are more likely to affect

expression compared to variation in other regions.

Genes That Are Well Predicted Have Higher Expression
Levels and More Variability

To gain further insight into properties of genes that may allow

for good predictions, we searched for commonalities in genes that

our algorithms predicted successfully. We arbitrarily defined well-

predicted genes as those with both training and test R2 above 0.05

in any of the three-cross validation schemes, resulting in 850 such

genes. Notably, we found that the KNN algorithm selected

significantly fewer neighbors when predicting these genes

(K = 11.9 vs. 15.2 for the predictable vs. non-predictable genes,

respectively, P,102200, Table 3 and Figure S4), and that

predictable genes had higher absolute expression levels (8.2 vs.

7.7, P,10218, Table 3) and were more variable, as measured by

their coefficient of variation (standard deviation divided by mean

expression, 0.039 vs. 0.027, P,10240, Table 3). Genes with lower

expression and less variability are noisier and their measured

variation may thus not represent true variation, which may explain

why our algorithm is less successful at predicting them. We also

found that predictable genes have on average fewer cis-SNPs (291

combined algorithm is more robust than the all other models. For each model and every cross validation scheme, genes with training R2.0.05 were
extracted. For each such set of genes, shown is the fraction (y-axis) of genes whose test R2 by each respective model and cross validation scheme
were within some fraction (x-axis, robustness threshold) of their training R2.
doi:10.1371/journal.pgen.1003396.g002

Table 1. Number of genes that pass R2 threshold.

R2

threshold KNN Elastic-Net Combined
Single
SNP All models

0.05 273/622 388/640 401/493 533/2659 700/2730

0.1 152/350 239/389 213/265 272/685 364/753

0.2 47/125 114/189 82/105 100/179 143/245

0.3 18/57 54/94 35/42 50/72 73/115

0.4 8/29 32/55 15/20 14/25 36/62

0.5 4/17 14/28 6/11 5/7 16/29

Models are: K-nearest-neighbor (KNN); Regularized Linear model (Elastic-Net);
single best-SNP (Single SNP) or in any one of them (All models). Shown are the
number of genes that pass training and test R2 threshold (test/training) using
the different models in the Cross-Pop cross-validation scheme.
doi:10.1371/journal.pgen.1003396.t001

Table 2. Number of top predicted genes that overlap
between different models.

Top genes KNN-EN KNN-SS EN-SS All models

10 3 3 6 3

20 10 8 14 7

50 29 26 39 24

100 52 47 79 43

200 119 108 152 97

Models are: K-nearest-neighbor (KNN); Regularized Linear model (EN); single
best-SNP (SS) or in any one of them (All models). Shown are the numbers of top
predicted genes that overlap between the different models in the Cross-Pop
cross-validation scheme.
doi:10.1371/journal.pgen.1003396.t002
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vs. 307, P,0.002), but their average information content per SNP,

measured by the SNP’s entropy, is higher (0.44 vs. 0.42, P,1027).

Finally, comparing genes that are predicted better by the

extended KNN algorithm integrating genomic features (KNN-IGF,

412 genes) to those that are predicted better by the simple-KNN

algorithm (90 genes), we found that genes that are better predicted

in the extended version have more SNPs (307 vs. 255, P,0.0004)

and similar information content per SNP (0.44 in both cases). This

suggests that by integrating genomic features and weighting the

relevance by various genomic annotations, we can integrate more

features (SNPs) without overfitting.

We next asked whether predictable genes are enriched for

particular biological functions or processes by testing whether they

are enriched with particular GO annotations. After correcting for

multiple hypotheses testing using FDR [28], we found 18 GO

annotations that were significantly enriched in the 850 genes that

were better predicted (see Table S17 for the full list). Of these, the

most notable enrichments were immune response categories, such

as MHC protein complex and antigen processing and presentation

(P,1024 and P,1023, respectively), which may be expected given

that the expression measurements were done in a lymphoblastoid

cell line. This result is consistent with the finding that SNPs can

effect expression in a cell-type specific manner [33], and with

another study that found enrichment for immune-related pheno-

types in the genes associated with SNPs that have high expression

correlation in these cell lines [7]. Since our algorithm only used cis-

SNPs for its predictions, these results suggest that cis-variation may

underlie part of the expression variation of immune response

genes.

High expression of a gene in a particular cell type suggests

regulation in that cell type. Thus, our ability to better predict

highly expressed genes suggests that predicting the expression

variation of a gene based on its cis-SNPs requires that gene to be

regulated in the measured cell type. Clearly, even if the variation

that exists in the cis-regulatory sequence of a particular gene affects

its expression, the effect will not be observed in cell types in which

that gene is not regulated.

Discussion

Here, we devised two multi-SNP algorithms for predicting gene

expression variation among human individuals using only

Figure 3. Extending the K-Nearest-Neighbor algorithm to integrate genomic features. Illustration of our extension to the KNN algorithm
that integrates genomic features. The algorithm starts with two constant datasets, and a genomic feature weight vector (dashed box) that it updates.
The constant datasets consist of the SNP matrix (bottom matrix), in which every entry is colored by the allele composition of the individual (‘c’,
common; ‘r’, rare), and the genomic feature matrix (top matrix), in which every entry represents the value of the genomic feature for the
corresponding SNP. The genomic feature weight vector represents the relative weight or importance of each feature. The algorithm updates this
weight vector iteratively. First, we compute the SNP induced weights vector, by multiplying the genomic feature weight vector with the genomic
feature matrix (1). Next, we compute the pairwise distances between every two individuals (rows), by summing the differences in allele composition
across all SNPs, where each SNP is weighed by its corresponding induced weight (2), resulting in a pairwise distance matrix (bottom right). This
pairwise distance matrix is then used to find the k nearest neighbors for each individual, i.e., those k individuals with the smallest distance from each
individual (3). Then, we average their expression values to generate a prediction for this individual. We apply this process to each individual, and
obtain an expression prediction vector for all individuals (4). Finally, we compare the prediction to the true expression vector, and use this difference
to update the genomic feature weight vector for the next iteration, by selecting the weight vector that minimizes this difference the most from
among a candidate pool. (5). We iterate until convergence to a local maximum, whereby changing the genomic feature weight vector does not
further improve the prediction on training data.
doi:10.1371/journal.pgen.1003396.g003
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genotype information. The algorithms use information from

multiple SNPs in the local vicinity of the predicted gene and we

also present a combination of both algorithms and an extension

that incorporates heterogeneous sources of genomic annotations of

SNPs and assigns higher relevance to variation in SNPs with

particular annotations. Notably, we show that our algorithms can

predict the expression of genes of unseen individuals with

remarkable robustness even when the training set consists only

of data from populations different than that of the predicted

individuals. In fact, a subset of genes are predicted better by our

algorithm when incorporating information from populations other

than that of the predicted individuals, suggesting that part of the

predictive sequence variation is shared across different populations

and may be hard to distill using only individuals from the same

population.

The overall number of genes that can be accurately predicted

by our algorithms is relatively small, which is expected given that

we only consider cis-SNPs and ignore trans sequence variation and

Figure 4. Integrating genomic features improves the performance of the KNN algorithm. (A) Shown is a comparison of the training R2

values for genes in either the basic KNN algorithm (x-axis) or the extension of the KNN algorithm that integrates genomic features (KNN-IGF, y-axis).
Only genes that have training R2$0.05 in the basic KNN were included in the analysis. Results are shown for each cross validation scheme, along with
the fraction of genes with improved training R2 of 0.1 or more in KNN-IGF (pink). (B) Shown is a comparison of the test R2 values for same genes in
either the basic KNN algorithm (x-axis) or the KNN-IGF (y-axis). Results are shown for each cross validation scheme, along with the fraction of genes
that better predicted in the basic KNN (under the blue line) or in KNN-IGF (above blue line). (C) Same as (b), but filtered for genes whose training R2

when integrating genomic features was at least 0.1 higher than the training R2 of the basic KNN algorithm. As seen, most genes with improved
training R2 also have better test R2.
doi:10.1371/journal.pgen.1003396.g004
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environmental factors. However, the robust nature of our

algorithms means that although relatively small in number, the

genes that can be successfully predicted can be known in advance,

as well as the quantitative degree to which they will be predicted.

We show that both a regularized linear regression model and a

KNN-based model that use multiple SNPs are more robust than a

single-SNP based model, especially when predicting expression

across populations. We also show that combining these two models

into a single model results in improved predictions on held-out test

data. In addition, although multi-SNPs models are more robust,

we found different genes to be best predicted by different models

(i.e., linear, non-linear, single best-SNP) in different cross-

validation schemes, suggesting that perhaps the most promising

approach for predicting expression variation from genotype would

make some combination of models.

Analysis of the genomic features that both our extended KNN

algorithm and the regularized linear model selected as important

for prioritizing SNPs provides insight into specific classes of SNPs

that may have better predictive power and offers concrete means

by which we can efficiently explore the vast space of sequence

variation and focus on the more relevant variation. Features that

we found to have higher predictive power include proximity to the

transcription start and end sites, high regional G/C content, and

presence within microRNA or transcription factor binding sites. In

contrast, we found that SNPs that are located far away from the

gene and SNPs located within heterochromatic regions or low G/

Figure 5. Examples of predictions for genes with large training R2 improvement when integrating genomic features. Shown are the 8
genes for which the KNN algorithm that integrated genomic features resulted in the greatest R2 improvement in the training data as compared to the
basic KNN algorithm. Each plot shows the expression predictions on the test data (x-axis) versus the measured expression values (y-axis), where every
dot represents one of the 210 individuals. The regression curve for each plot is also shown (red curve) along with the gene name, and training and
test R2 values.
doi:10.1371/journal.pgen.1003396.g005
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Figure 6. Enrichment and depletion of different genomic features in the multi–SNP models. Venn diagram showing the number of
significantly enriched (blue) or depleted (red) genomic features in the extended KNN algorithm and the regularized linear model. For each model, the
number of significant genomic features appears in parenthesis, and non-zero intersections are shown in the appropriate location. The list of
respective genomic features (enriched or depleted) is depicted, and the number in parenthesis represents the actual number of different genomic
features in the group.
doi:10.1371/journal.pgen.1003396.g006

Table 3. Comparison between predictable and unpredictable genes.

Feature Predictable Unpredictable P-value

Number of Neighbors (K) 11.9 15.2 1.00E-200

Abs. Expression 8.2 7.7 5.80E-19

Coefficient of Variation 0.039 0.027 4.20E-41

Num. SNPs 291 307 0.002

SNP entropy 0.44 0.42 8.00E-08

Feature Predictable (KNN-IGF) Predictable (Simple-KNN) P-value

Number of Neighbors (K) 10.1 10.5 NS

Abs. Expression 8.2 8.3 NS

Coefficient of Variation 0.04 0.04 NS

Num. SNPs 307 255 0.0004

SNP entropy 0.44 0.44 NS

Compared features are the number of neighbors selected by the model (i.e., k), the absolute expression level of the gene, the coefficient of variation of the gene (i.e.,
standard variation normalized by mean), the number of SNPs per gene and the sum of entropy of SNPs per gene. Shown are the average values for each set of genes
(850 predictable genes vs. 14,587 unpredictable genes in the top rows, and 412 K-nearest-neighbor-integrating-genomic-features (KNN-IGF) predictable genes vs. 90
simple-KNN predictable genes in the bottom rows), and the p-value calculated by Student’s t-test (NS is non-significant).
doi:10.1371/journal.pgen.1003396.t003
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C content regions have, on average, lower predictive power. We

also found that genes that are successfully predicted by our

algorithm have, on average, higher expression and more

variability and are enriched for classes of genes that have known

functional roles in the measured cell types. This finding provides

insight into the types of genes that we may expect to be able to

predict in a given cell type.

There are many ways in which our algorithms can be further

improved, including incorporating trans genetic variation, addi-

tional functional annotations of SNPs, and other types of genetic

variation such as insertions, deletions, and copy number variation.

Examining our ability to predict gene expression in other tissues

using the models learned in this work is an interesting avenue of

research, given that it has been shown that eQTLs are shared

across different tissues [16], and that the similarity between gene

expression profiles across different tissues is dominated by

heritable effects at the cis-SNPs [34]. Our ability to provide

highly robust predictions suggests that the time may be ripe for

working on such problems, and that the ability to accurately

predict some of the gene expression patterns of individuals using

only their DNA sequence may be within reach.

Methods

Data and Code Download
All data used in the different models and the code generating

the predictions presented here are available for download in the

following URL: http://genie.weizmann.ac.il/software/gen2exp/

gen2exp.html

Genotype Dataset
We obtained genotype data from the HapMap project Phase II

[8]. We removed the 60 children from the trios, resulting in 210

unrelated individuals from four distinct populations. We down-

loaded the entire set of measured single nucleotide polymorphisms

(SNPs) for each individual, for a total of ,3.5 M SNPs per

individual. For each gene, we extracted all SNPs located inside the

gene and those within 100 kb from the transcription start or end

sites. We transformed each SNP to a discrete variable with values

of 0, 1, or 2, corresponding to the number of minor alleles that

each individual has for the SNP. Therefore, an individual with 0

minor alleles will have a value of 0, etc.

Expression Dataset
We used expression measurements of 15,439 genes performed

in lymphoblastoid cell lines for all HapMap individuals [10]. To

remove population specific effects, we separately centered the

expression of the gene (i.e., subtracted the mean to achieve zero

mean) within each of the four populations.

SNP Genomic Features Definition and Acquisition
The full list of SNP genomic features that we used along with

their description and corresponding reference or website from

which they were acquired are given in Table S15.

Computing SNP Average Entropy per Gene
For each SNP we compute the entropy of its allele counts across

all individuals based on Shannon’s entropy calculation. Since

different SNPs can have a different number of values (i.e., 0/1/2

vs. only 0/1), we first transform the minor allele count of each SNP

into two alleles, A and B, such that 0 is converted to A = 0, B = 0, 1

to A = 0, B = 1 and 2 to A = 1, B = 1. Next, we compute Shannon’s

entropy for each of the alleles A and B, and average their result per

SNP. For a specific gene, we average across all its cis-SNPs to

obtain an average SNP entropy value per gene.

Predictive Models
Single best–SNP model. For each gene, we selected the SNP

with the highest correlation to expression in the training set. Using

this SNP, we then constructed a predictor using simple linear

regression between its minor allele counts and the expression of

the corresponding gene. We computed the performance on the

test set by predicting the expression values of unseen individuals

using the resulting predictor.

Linear model with elastic-net regularization. For each

gene, we used the training data (including expression and all cis-

SNPs) to construct a linear regression model from the allele counts

of all SNPs to the value of expression. To regularize the model, we

used elastic-net [27], where the value of lambda (the penalty

coefficient) was learned using cross-validation on the training set

(i.e., partitioning the training set to a learning and validation set)

and selecting the value that gave best results on the validation set.

The training R2 was calculated as the average R2 achieved using

internal cross-validation on the training set.

K-nearest-neighbor algorithm. K-nearest-neighbor (KNN)

predicts the response value of a given instance using the response

values of k instances that are closest to it in the feature space under

some metric [25]. Intuitively, if instances are close to one another

in the feature space, we expect them to be close to one another in

the response space. KNN was shown to be a useful approach for

many learning tasks [26], and since its naı̈ve form has a single

parameter (k), overfitting does not typically occur. Since the

predictions made by KNN depend on the identity of the closest

neighbors, the metric plays a key role in the predictive power of

the method.

Simple KNN algorithm. For each gene, we selected the

value of K that maximizes the variability explained by a predictor

based on the average expression value of the K nearest neighbors

of each individual. The distance metric was the sum of the

absolute differences in minor allele counts across all cis-SNPs of

the gene.

Extended KNN algorithm that integrates genomic

features. To extend the above basic algorithm to integrate

genomic features, we convert the genotype matrix into a feature

matrix X of size Ntotal6D and the expression values to a response

vector y of size Ntotal61, where Ntotal is the number of individuals in

the task, and D is the number of SNPs or features that will be used

for the prediction task. In addition, we define F as a matrix of

genomic features representing different properties of the features

themselves, where for each of the D features we have M genomic

features, resulting in a matrix of size D6M. Our goal is to predict

y, or minimize the squared error between the predicted response ŷ

and the actual response y. We assessed the results that our

algorithm achieved on a held-out test set to evaluate its

performance. To this end, we first partition the data into training

and test sets of sizes Ntrain and Ntest = Ntotal2Ntrain, respectively, and

ran the algorithms only on the training sets.

The extended version learns the distance metric used by the

KNN. Instead of the metric used by the basic algorithm, in which

every SNP is given an equal weight, the extended version learns a

weight for each genomic feature and then uses this vector to

differentially weigh each SNP within the distance metric, as a

weighted sum of its genomic feature values. A key aspect of this

approach is that each genomic feature is shared across all SNPs

(with a corresponding value for each one), such that changing its

coefficient within the genomic feature vector affects all SNPs,

thereby reducing overfitting. In addition, it enables usage of
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additional information about the features which cannot be

represented as part of the original X matrix of SNP values.

Regression using a greedy search over the space of linear

combinations of genomic features. To learn one joint metric

that uses all M genomic features, we define a metric by using a

linear combination of all genomic features, using a coefficient

vector a. In this approach, the distance between two instances a,b

is defined as follows:

da,b~
XD

i~1

xai{xbij j:
XM
m~1

am
:fim

 !

~
XD

i~1

XM
m~1

xai{xbij j: am
:fimð Þ

~
XM
m~1

XD

i~1

xai{xbij j: am
:fimð Þ

~
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m~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xai{xbij j

p T :Am
:
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p

where Am~diagonal(am
:f1,m, . . . ,am

:fD,m)and Xa,i is the value for

the i’th feature of individual a, fi,m is the value of the m’th genomic

feature for the feature i, and am is the coefficient of the m’th

genomic feature. Now, using this metric, we define the prediction

for a single instance n as the average of its k nearest neighbors:

ŷyn~
1

K
:
XK

l~1

yl

The loss function of the extended KNN algorithm. For

the learning task, we can use several objective functions. In our

case, since we are using a greedy heuristic approach, the objective

function does not need to be differentiable. Although several

objective functions are possible, we used the Metric-to-response

Correlation (MRC) objective function, which is independent of k.

During the optimization process of the metric, we attempt to

maximize the correlation (across all instances) between the

pairwise distances under the metric (dab) to the corresponding

distances in the response (|ya2yb|). Note that this objective

function does not require k, and does not produce a prediction.

Intuitively, it tries to learn the ‘‘right’’ metric, where for every two

instances, the closer they are under the metric, the closer they are

in their responses. Once we have optimized this objective, we can

now select the k that will produce the prediction with the

minimum L2 loss (i.e., maximum R2). The fact that the selection of

k is detached from the metric learning can possibly help to reduce

over-fitting and help the model to be more robust for different

choices of k.

Optimization procedure for the extended KNN

algorithm. To find the coefficient vector a that maximizes

our selected objective function, we initialize a predictor pool with

M predictors, where each predictor is based on one genomic

feature, such that for predictor m: am = 1, aj = 0 m j?m. We then

compute the distances as described above, and for each predictor

we compute the value of the objective function. From here on, we

iterate the following algorithm:

1. Pick the Rmax best predictors from the predictor pool in terms

of their objective function, and define the objective function

value for the i’th predictor as fi

2. For each pair of predictors ri, rj, i = 1 … Rmax, j = 1… Rmax,

create the predictor rij in the following manner: for each

m = 1… M:

a(ij)
m ~

fi

fizfj

:a(i)
m z

fj

fizfj

:a(j)
m

3. Define the new predictor pool (of size R2
max) as all the

predictors rij, i = 1… Rmax, j = 1… Rmax

This way, every iteration tries to create better predictors by

linearly combining two predictors from the previous pool. The

combination is done in a weighted manner, where the relative

weight of each predictor in the combination is the value of the

objective function for this predictor (fi). This means that combining

a ‘‘good’’ predictor with an ‘‘intermediate’’ predictor will result in

a predictor more similar to the ‘‘good’’ one. Note that in every

iteration each of the predictors in the predictor pool is a predictor

with some vector of coefficients a over the M genomic features,

which defines a metric. We stop iterating when we are not

improving in the sense that the best fi is not increasing. Note that

since we take all combinations of the top Rmax predictors, we also

get the combination of every predictor with itself, so the maximum

value of fi in our predictor pool cannot decrease.

Supporting Information

Figure S1 The multi-SNP algorithms exhibit better correspon-

dence between predictions on the training and test set compared to

a single best-SNP model. Shown are the training and test R2

values for all 15,439 genes, along with the Pearson and Spearman

correlation coefficients between them. Results are shown for every

cross validation scheme and for the KNN algorithm, linear

regression model, combined model, and the model based on the

SNP with the highest training set correlation.

(PDF)

Figure S2 PCA-corrected results. For each gene, the SNP

genotype matrix of all individuals was corrected using the first 2

principal components, and the exact same analysis was conducted

as in Figure 2 of the article. (A) Predictions of the KNN algorithm

are more correlated between the training and test sets compared to

the linear and best-SNP models. For the KNN-based algorithm,

the regularized linear regression model, and the single best-SNP

model that uses the most correlated SNP, shown are the Pearson

and Spearman correlation coefficients between the training and

test R2 across all genes and all three cross validation schemes. (B)

For each of the three models and every cross-validation scheme,

genes were binned by training R2. Shown is the mean training R2

of the genes in every bin. (C) For genes with the same training R2

in each model, the multi-SNP algorithms show higher test R2. For

the same bins from (B), shown is the mean test R2 of the genes in

every bin. (D) The combined algorithm is more robust than the all

other models. For each model and every cross validation scheme,

genes with training R2.0.05 were extracted. For each such set of

genes, shown is the fraction (y-axis) of genes whose test R2 by each

respective model and cross validation scheme were within some

fraction (x-axis, robustness threshold) of their training R2.

(PDF)

Figure S3 Fraction of genes at various training R2 thresholds.

For the set of 100, 200, 500, 1000, or 2000 genes with the largest

variability in expression, shown is the fraction of genes (y-axis)

whose training R2 is at least above some fraction (x-axis), for at
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least one cross validation scheme. Although the overall fraction of

genes that are predicted with high training R2 is relatively small,

our results indicate that these predictions are robust (i.e., their test

R2 is close to their training R2).

(PDF)

Figure S4 The predictions of genes that are predicted well are

generated using a smaller number of neighbors. For each cross

validation scheme (for Intra-Pop results are shown separately for

each population), shown is the distribution of the number of

neighbors (value of k in the KNN algorithm) selected by the

algorithm for genes that are predicted with test R2$0.05 (blue)

and genes predicted with test R2,0.05 (red).

(PDF)

Table S1 Number of genes that pass a certain R2 threshold in

test/training using the different models in the Mixed-Pop cross-

validation scheme.

(PDF)

Table S2 Number of genes that pass a certain R2 threshold in

test/training using the different models in the Intra-Pop cross-

validation scheme.

(PDF)

Table S3 Number of top predicted genes that overlap between

different models at different cutoffs in the Mixed-Pop cross-

validation scheme. KNN, K-Nearest-Neighbor; EN, Elastic-Net;

SS, Single-SNP.

(PDF)

Table S4 Number of top predicted genes that overlap between

different models at different cutoffs in the Intra-Pop cross-

validation scheme. KNN, K-Nearest-Neighbor; EN, Elastic-Net;

SS, Single-SNP.

(PDF)

Table S5 The list of the 100 top-predicted genes of the KNN

model in the Cross-Pop cross-validation scheme.

(PDF)

Table S6 The list of the 100 top-predicted genes of the Elastic-

Net model in the Cross-Pop cross-validation scheme.

(PDF)

Table S7 The list of the 100 top-predicted genes of the Single-

SNP model in the Cross-Pop cross-validation scheme.

(PDF)

Table S8 The list of the 100 top-predicted genes of the KNN

model in the Mixed-Pop cross-validation scheme.

(PDF)

Table S9 The list of the 100 top-predicted genes of the Elastic-

Net model in the Mixed-Pop cross-validation scheme.

(PDF)

Table S10 The list of the 100 top-predicted genes of the Single-

SNP model in the Mixed-Pop cross-validation scheme.

(PDF)

Table S11 The list of the 100 top-predicted genes of the KNN

model in the Intra-Pop cross-validation scheme.

(PDF)

Table S12 The list of the 100 top-predicted genes of the Elastic-

Net model in the Intra-Pop cross-validation scheme.

(PDF)

Table S13 The list of the 100 top-predicted genes of the Single-

SNP model in the Intra-Pop cross-validation scheme.

(PDF)

Table S14 For each cross-validation scheme and model, shown

is the percentage of genes (with test R‘2. = 0.05) where the model

had the best predictive power.

(PDF)

Table S15 Full list of all genomic features complied for this

paper.

(PDF)

Table S16 Enriched and depleted genomic features in multi-

SNP models. Shown are SNP genomic features that were

significantly enriched or depleted in both the extended-KNN

algorithm and the regularized linear model. Enrichment/deple-

tion of a genomic feature was defined as a feature with

hypergeometric test p-value P,0.01 in all cross-validations.

(PDF)

Table S17 GO categories enrichment. Shown are the GO

categories that are enriched in the set of 850 predictable genes. P-

values were computed using Hypergeometric test and corrected

using FDR with 5% threshold. Hypergeometric test and correction

were performed by an in-house Perl script, and GO categories

were downloaded from the gene ontology database (http://www.

geneontology.org/).

(PDF)
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