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Obesity and diabetes contribute to cardiovascular disease and alter cytokine profile. The cytokine, tumour necrosis factor alpha
(TNFα), activates a protective signalling cascade during ischaemic postconditioning (IPostC). However, most successful clinical
studies with IPostC have not included obese and/or diabetic patients. We aimed to investigate the influence of TNFα on the
outcome of IPostC in obese or diabetic mice. TNF knockout or wildtype mice were fed for 11 weeks with a high carbohydrate
diet (HCD) to induce modest obesity. Diabetes was induced in a separate group by administration of a single intraperitoneal
injection of streptozotocin. Hearts were then isolated and subjected to ischaemia (35 min of global ischaemia) followed by 45 min of
reperfusion. HCD increased body weight, plasma insulin and leptin levels while the glucose level was unchanged. In streptozotocin-
treated mice, blood glucose, plasma leptin and insulin were altered. Control, obese or diabetic mice were protected with IPostC in
wiltype animals. In TNF knockout mice, IPostC failed to protect control and diabetic hearts while a slight protection was observed
in obese hearts. Our data confirm a bidirectional role for TNFα associated with the severity of concomitant comorbidities and
suggest that diabetic and/or modestly obese patients may still benefit from IPostC.

1. Introduction

Both obesity and diabetes are major risk factors for car-
diovascular disease. Forty years ago, fewer than 25% of
adults in the USA were classified as overweight or obese
compared with 75% in 2002 [1–3]. Because the onset of
type1 diabetes occurs at a young age, the cardiovascular risk
is increased tenfold when compared with nondiabetic peers
[4]. In addition, obesity and diabetes are associated with
an increased mortality and an attenuation of tolerance to
ischaemic events [5, 6].

Experimental data suggest that the protective effect of
ischaemic postconditioning (IPostC) (defined as a series of
brief episodes of alternating reperfusion and ischaemia at
the onset of reperfusion) is diminished in animals with
comorbidities such as obesity and diabetes; see review [7].
Bouhidel demonstrated that the protective effect of IPostC
against reperfusion injury in ob/ob mice was impaired [8].

Furthermore, obesity and diabetes compromise the inflam-
matory system with altered expression of tumour necrosis
factor alpha (TNFα) occurring in adipose and muscle tissue
of obese humans [9]. However, whether this alteration is
beneficial or deleterious to the heart still remains unclear.
The expression of adipokines, such as leptin, is also modified
in obesity and diabetes and there is a strong correlation
between serum leptin and TNFα levels [10]. Additionally,
leptin has been reported to protect against lethal reperfusion
injury in the isolated mouse heart via direct action on the
heart [11, 12].

A dual role for TNFα in the heart has been postulated
whereby beneficial effects are seen at low concentrations and
deleterious effects become evident at higher concentrations
in a time-dependent manner [13–15]. TNFα can activate
both TNF receptor 1 and TNF receptor 2 which seem to exert
opposite effects in the heart [16]. In a mouse model, we have
recently shown that a low concentration of TNFα activates
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Figure 1: Effects of high carbohydrate diet (HCD) on physiological parameters in TNF-WT mice. HCD increased body weight (a), heart weight
(b), plasma insulin (e) and plasma leptin levels (f), decreased blood glucose tolerance test (d) but no significant difference was observed on
blood glucose levels (c), ∗P < 0.05; ∗∗∗P < 0.001 versus normal diet (ND); n ≥ 6 for all groups.

Table 1: Energy provided by high carbohydrate diet (HCD) versus
normal chow (ND).

Normal diet
(ND)

High-carbohydrate diet
(HCD)

Carbohydrates (%) 60 69

Proteins (%) 30 17

Fats (%) 10 14

a protective signalling cascade during IPostC via the activa-
tion of the TNF receptor 2 [17]. However, the outcome of
IPostC in obese and diabetic patients remains uncertain as
the recent application of this therapy in clinical studies has
excluded patients with such comorbidities.

In the present study, we aimed to investigate the influence
of TNFα on the outcome of IPostC in obese or diabetic mice.

2. Methods

All animal studies performed were approved by the Animal
Research Ethics Committee of the University of Cape Town
and followed the recommendations laid down in the Guide
for the Care and Use of Laboratory Animals published by the
US National Institute of Health (NIH Publication no. 85-23,
revised 1996).

2.1. High-Carbohydrate Diet (HCD) Mouse Model. Wild-
type (TNF-WT) and TNFα knockout (TNF−/−) mice were
separated into 2 groups each, with 6 mice per group.
One group of TNF-WT and one group of TNF−/− mice
each received a normal diet (ND) of mouse chow and the
second groups of TNF-WT and TNF−/− each received a
diet containing elevated carbohydrates and fats mimicking
a Western-type diet (HCD), for 11 weeks as illustrated in
Table 1 [5].
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Figure 2: Effect of obesity on IPostC-induced cardioprotection in
isolated TNF-WT hearts. IPostC in TNF-WT with normal diet (ND)
reduced infarct size from 50 ± 2% in the ischaemic control group
(I/R) to 18± 1% for IPostC. The infarct size in TNF-WT with high
carbohydrate diet (HCD) was decreased to 19± 2% versus 50± 2%
for the I/R group, ∗∗∗P < 0.001 versus I/R; n ≥ 6.

2.2. Streptozotocin Diabetic Mouse Model (STZ). Experimen-
tal diabetes type 1 was induced in a total of 10 mice per
group by a single intraperitoneal (i.p.) injection of 180 mg
streptozotocin (STZ)/kg body weight, dissolved in 0.1 mol
citrate buffer [18]. Nondiabetic control animals were treated
with solvent (citrate buffer) alone. Standard mouse chow and
tap water were provided ad libitum for all groups. At the
end of each time period, only STZ-treated mice with a blood
glucose level greater than 16 mmol/L were considered as
diabetic (normal blood glucose levels in mice range from 3.4
to 9.7 mmol/L). Of the 10 STZ-treated TNF-WT mice, 7 met
the criteria, 2 did not achieve sufficiently high glucose levels,
and 1 died shortly after receiving the STZ. No death occurred
in the 10 Nondiabetic control animals in each group.

2.3. Blood Glucose and Glucose Tolerance Test. Blood glucose
and the glucose tolerance test (GTT) were done at 14
weeks. Mice were fed normal chow or HCD as described
in Table 1. Prior to performing the blood glucose tolerance
test, the mice were fasted for 7 hours, but had free access to
drinking water. A 20% solution (w/v) of glucose was made
up in sterile distilled water. Each mouse was then sedated
with a mixture of ketamine (75 mg/kg) and medetomidine
(0.5 mg/kg) given i.p. Body weight was recorded for each
mouse; a tail cut was done and blood glucose determined in
mmol/L by means of a blood glucose monitor (Accu-Chek
Active; Roche Diagnostics, Mannheim, Germany) as per the
manufacturer’s instructions. A bolus of glucose was given i.p.

(15 mg/kg). Thereafter, a blood glucose measurement was
performed every 30 min after injection, until a decrease in
the glucose level was observed (120 to 150 min).

2.4. Perfusion of Mouse Hearts. The HCD-fed mice (14 weeks
of age), the STZ-treated mice (5 and 10 days after STZ
treatment), and their respective controls were anaesthetized
(sodium pentobarbitone, 60 mg/kg i.p.) and heparinized
(25 IU i.p.). Hearts were isolated and perfused retrogradely
as previously described [19]. At the same time, blood was
taken from the thoracic cavity of each mouse and placed in
a chilled heparinized tube, centrifuged at 5000 rpm for 5 min
at 4 degrees. The plasma was removed and frozen for further
analysis.

2.5. Ischaemic Postconditioning. HCD-fed mice and STZ-
treated mice were subjected to the ischaemic postcondi-
tioning (IPostC) protocol which consisted of six alternating
cycles of 10-second reperfusion, 10-second ischaemia, com-
mencing at the onset of reperfusion as described previously
[17].

2.6. Ratio of Heart Weight to Body Weight. At the end of
the perfusion protocol, each heart was carefully dried and
weighed after staining with triphenyl tetrazolium chloride
(TTC). The heart weight to body weight ratio for each mouse
was then calculated.

2.7. Insulin Levels. Quantitative determination of baseline
insulin levels was performed using the Ultrasensitive Mouse
Insulin Elisa Kit (Crystal Chem Inc.; USA) as per the
manufacturer’s instructions.

2.8. Leptin Levels. Quantitative determination of baseline
leptin levels was performed using the Ultrasensitive Mouse
Leptin Elisa Kit (Crystal Chem Inc.; USA) as per the
manufacturer’s instructions.

2.9. Chemicals and Pharmacological Agents. Unless otherwise
stated, all chemicals were obtained from Sigma-Aldrich
Chemicals, Germany.

2.10. Statistical Analysis. Data are presented as mean± SEM.
Comparisons between multiple groups were performed by
1-way ANOVA followed by Tukey post hoc test or Bon-
ferroni multiple comparison test (GraphPad Instat). Two-
way ANOVA followed by Bonferroni multiple comparison
test (GraphPad Prism) was performed where species or
diet differed. P < 0.05 was considered to be statistically
significant.

3. Results

3.1. Effect of High Carbohydrate Diet on Physiological Param-
eters in TNF-WT Mice. HCD increased the body and heart
weights in the TNF-WT mice from 29.0 ± 1.0 grams to
32.0±0.7 grams (P < 0.05 versus ND; Figures 1(a) and 1(b)).
Although HCD did not affect baseline blood glucose levels
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Figure 3: Effects of obesity on physiological parameters in TNF−/− mice. High carbohydrate diet (HCD) increased body weight (a), plasma
insulin (e) and plasma leptin levels, whereas blood glucose levels (c) and heart weight (b) remained unchanged. ∗P < 0.05 versus normal
diet (ND); n = 6 for all groups.

(P = ns, Figure 1(c)) it improved glucose tolerance in the
WT animals (P < 0.05 versus ND, Figure 1(d)) and increased
plasma insulin and leptin levels to 0.64 ± 0.06 ng/mL from
0.46± 0.03 ng/mL in ND (P < 0.05) and to 10.6± 0.9 ng/mL
from 4.5 ± 0.4 ng/mL in ND (P < 0.001, resp., Figures 1(e)
and 1(f)).

3.2. Effect of High Carbohydrate Diet on IPostC-Induced Car-
dioprotection in TNF-WT Hearts. Mice on the ND presented
a similar infarct size to those fed an HCD mice when
subjected to I/R (P = ns). IPostC reduced the infarct
size to a similar extent in ND and HCD mice versus their
respective ischaemia-reperfusion control groups (P < 0.001)
(Figure 2).

3.3. Effect of High Carbohydrate Diet on Physiological Param-
eters in TNF−/− Mice. TNF−/− mice were used to investigate
the role of TNFα in obesity. Similar to TNF-WT mice, body
weight was increased with HCD from 26.0 ± 0.4 grams to
31.5±0.5 grams (P < 0.05 versus ND, Figure 3(a)). However,
there was no change in heart weight in TNF−/− mice on
the HCD compared to their ND counterparts (P = ns,
Figure 3(b)).

Baseline blood glucose and tolerance of HCD-fed TNF-
deficient mice to glucose remained unchanged by HCD,
(P = ns; Figures 3(c) and 3(d)). Plasma insulin levels
were increased significantly by HCD from 0.41± 0.02 ng/mL
to 0.57 ± 0.01 ng/mL (P < 0.05 versus ND, Figure 3(e)).
Similarly, the plasma leptin levels were significantly increased
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Figure 4: Effect of obesity on IPostC-induced cardioprotection in
isolated TNF−/− mice. IPostC reduced infarct size in the HCD fed
mice from 56 ± 2% to 45 ± 4% whereas mice fed the normal diet
could not be protected, ∗P < 0.05 versus I/R; n ≥ 6.

by the HCD from 1.3 ± 0.08 ng/mL to 11.2 ± 0.8 ng/mL
(P < 0.05 versus ND, Figure 3(f)).

3.4. Effect of High Carbohydrate Diet on IPostC-Induced Car-
dioprotection of TNF−/− Hearts. To determine whether ab-
sence of TNFα in obesity can affect the outcome of IPostC,
the isolated hearts of TNF−/− mice fed with either a normal
diet or an HCD were subjected to the IPostC protocol.
HCD mice subjected to I/R presented a similar infarct size
compared to mice fed with ND (P = ns). Surprisingly, the
hearts from TNF−/− mice fed with HCD demonstrated a
slight reduction in infarct size versus the I/R control (P <
0.05; Figure 4).

3.5. Effects of Diabetes on Physiological Parameters in TNF-
WT Mice. To create a type 1 diabetic model, TNF-WT mice
were given a single intraperitoneal injection of streptozotocin
(180 mg/kg body weight). Physiological parameters and
experiments were performed either 5 days or 10 days
after STZ administration. TNF-WT mice had a significant
decrease in body weight 5 days after treatment, from 29.7 ±
1.3 grams to 21.0 ± 2.6 grams (P < 0.001 versus no STZ).
However, the weight was restored by day 10 (P = ns versus
no STZ; Figure 5(a)). There was no change in the heart
weight after 5 days of STZ (P = ns; Figure 5(b)), whereas,
after 10 days after STZ treatment, the heart weight was
significantly increased (P < 0.01 versus untreated controls).
Streptozotocin injection increased baseline blood glucose at
days 5 and 10 (P < 0.01 versus no STZ; Figure 5(c)), but
decreased plasma insulin from 1.02 ± 0.2 ng/mL to 0.53 ±
0.14 ng/mL (5 days after STZ) and to 0.36 ± 0.02 ng/mL
(10 days after STZ) (P < 0.05 versus no STZ-treatment;
Figure 5(d)). Similar results for glucose and insulin after

streptozotocin treatment have been reported [20]. Leptin
levels were also reduced by STZ at day 5 and 10 after
injection from 4.5±0.7 ng/mL to 0.6±0.2 ng/mL and 0.23±
0.04 ng/mL, respectively (P < 0.001 versus no STZ treatment;
Figure 5(e)).

3.6. Effect of Diabetes on IPostC-Induced Cardioprotection in
TNF-WT Hearts. STZ-treated TNF-WT mice subjected to
I/R showed a similar infarct size to the untreated I/R control,
at both 5 days and 10 days after treatment (P < 0.001 versus
I/R). STZ treatment did not affect the cardioprotective effect
of IPostC after 5 or 10 days versus the untreated animals,
(P < 0.001; Figure 6).

3.7. Effect of Diabetes on Physiological Parameters in TNF−/−

Mice. To investigate whether TNFα plays a role in type 1
diabetes and cardiovascular disease, TNFα-deficient mice
were injected intraperitoneally with a single dose of strep-
tozotocin (180 mg/kg body weight). Similar to TNF-WT
mice, STZ administration had no effect on body weight,
5 or 10 days after STZ treatment (P = ns, Figure 7(a)).
However, the heart weight was significantly decreased by the
STZ treatment after 5 days (P < 0.001 versus untreated,
Figure 7(b)) but 10 days after treatment the heart weight
was similar to untreated controls (P = ns versus untreated,
Figure 7(b)). As expected, STZ increased baseline blood
glucose at both time points (P < 0.001 versus untreated,
Figure 7(c)). Although no significant difference was seen in
plasma insulin levels at 5 days after STZ treatment, there was
a significant increase 10 days after treatment, from 0.32 ±
0.1 ng/mL to 1.06 ± 0.3 ng/mL (P < 0.01 versus untreated
control, Figure 7(d)). Similarly to the TNF-WT mice, the
diabetic TNF−/− animals demonstrated an elevated level
of plasma leptin at 5 days after STZ administration, from
2.3 ± 0.1 ng/mL to 3.0 ± 0.4 (P < 0.001 versus untreated
control), but the leptin level was drastically reduced in the
10-day post-treatment group to 0.3 ± 0.08 ng/mL (P < 0.05
versus untreated control group, Figure 7(e)).

3.8. Effect of Diabetes on IPostC-Induced Cardioprotection in
TNF−/− Hearts. IPostC failed to confer protection in the
STZ-treated TNFα knockout animals (P = ns versus I/R;
Figure 8).

4. Discussion

Our data revealed that 11 weeks of a high-carbohydrate diet,
or the administration of a single intraperitoneal injection
of streptozotocin, resulted in a modest model of obesity
or diabetes, as demonstrated by changes in body weight,
blood glucose levels, plasma insulin, and plasma leptin
levels. IPostC-induced cardioprotection was evident in the
modestly obese TNF-WT mice and also in the diabetic TNF-
WT mice, suggesting that the presence of obesity/diabetes
did not alter the cardioprotective signalling cascade activated
by IPostC. However, in the absence of TNFα, the IPostC
stimulus did not protect the healthy and diabetic mice
against I/R injury. Surprisingly, there was slight restoration
of the cardioprotective effect in the modestly obese TNF−/−
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Figure 5: Effects of diabetes on physiological parameters in TNF-WT mice. Body weight was decreased 5 days post STZ treatment and returned
to normal at day 10 post STZ treatment (a). Heart weight was reduced 10 days post STZ treatment (b). Insulin and leptin levels were both
decreased with post STZ treatment (d and e) while STZ increased baseline blood glucose at days 5 and 10, ∗P < 0.05 and ∗∗∗P < 0.001
versus no STZ.

animals, reinforcing the concept that TNFα has both delete-
rious and beneficial effects in the heart.

4.1. Obesity/Diabetes and Susceptibility to Ischaemia-Reper-
fusion. Many of the signalling cascades involved in car-
dioprotection may be affected by various factors such as
preexisting disease, age, and cotreatments [21, 22]. To date,
cardioprotective investigations have been performed mainly
in young and healthy animals, which is far different from
the clinical setting [23, 24]. The high-carbohydrate diet
used in our study is of a similar composition than the
conventional Western-type diet of humans and was chosen
to represent a modestly obese phenotype [5], unlike the more
severe obese models of either ob/ob mice or the db/db mice
which are either leptin deficient or have no leptin receptors.
In our model, high-carbohydrate diet did not affect the

damage following ischemia-reperfusion. Obesity is associ-
ated with hyperinsulinaemia which markedly modulates the
extent to which myocardial injury occurs during ischaemia-
reperfusion [25]. Therefore, it is plausible to suggest that, in
obesity, the impact of high levels of circulating insulin during
ischaemia and reperfusion could overshadow myocardial
susceptibility to ischaemia-reperfusion injury.

4.2. Obesity/Diabetes Susceptibility to IPC and IPostC. Our
data demonstrate that obesity, induced by a high-
carbohydrate diet or diabetes, induced by injection of
streptozotocin, did not affect the cardioprotective effect
of IPostC in the wildtype animals. Failure of IPostC to
limit infarct size was reported from a study conducted in
ob/ob mice [8]. However, a limitation of this study was
the lack of leptin in this mouse strain. A very recent study
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conducted in a murine model of streptozotocin-induced
diabetes (using a similar dose to our study) reported a loss
of efficacy in IPostC-induced cardioprotection [26]. Possible
explanations for the contradiction between this study and
our present findings are as follows: (1) the insulin levels
in the mice of the published study were significantly lower
(0.18 ± 0.08 ng/mL) than the insulin levels found in our
diabetic mice (0.36 ± 0.02 ng/mL); (2) the difference in
mouse species, (3) the difference in age of the animals, and
(4) the number of I/R cycles performed to postcondition
the heart. The ischemic postconditioning algorithm chosen
may influence the postconditioning effect [27]. In our study,
we have used 6 cycles while published studies that failed to
postcondition the diabetic heart have used 3 cycles [26]. It is
possible that the threshold of protection has been raised with
6 cycles. We have recently reported that age, strain, and the
postconditioning algorithm are critical factors to consider
for successful cardioprotection with postconditioning and
a minute difference in age, for example, can lead to an
opposite outcome [28].

4.3. TNFα and Myocardial Function. Although TNFα is
known to have a detrimental effect in ischaemia-reperfusion
[29], we have previously demonstrated that TNFα is required
for the protection with ischaemic pre- and postconditioning
[17, 30]. In fact, TNFα is cardioprotective in a dose- and
time- dependent manner [31]. Depending on which TNF
receptor is activated, TNFα can be either harmful or protec-
tive with the activation of the TNF receptor 1 being harmful
and the activation of the receptor 2 being protective [17, 32].
The cardioprotective effect of TNFα initiates a prosurvival
signalling cascade termed as the survivor activating factor

enhancement (SAFE) pathway that involves the activation of
the transcription factor STAT-3 and possibly the closure of
the mitochondrial permeability transition pore [33, 34].

4.4. Role of TNFα in Obese and Diabetic Animals. The role
of TNFα in diet-induced obesity may depend on the TNF
receptors activated with TNF receptor 1 being deleterious
and TNF receptor 2 being cardioprotective [35]. Our data
showed that the body weight was increased by 21% in
TNF−/− mice fed with HCD versus only 11% in the TNF-
WT mice subjected to the same regime, therefore suggesting
a protective effect of TNFα in diet-induced obesity. It would
be of interest to repeat our experiments in our TNF−/−,
TNFR1−/−, and TNFR2−/− animals to further delineate the
role of TNFα receptors in our model.

The presence of TNFα in obesity has been reported to
contribute towards the development of cardiac hypertrophy
in cardiomyocytes [35]. In support of this hypothesis, our
data demonstrate an increase in the heart weight in the TNF-
WT mice fed with an HCD whereas, in the absence of TNFα,
the HCD had no effect on the heart weight.

In our obese and diabetic models, the absence of TNFα
did not affect the damage in hearts subjected to ischemia-
reperfusion. However, it is important to note that our
ischemia-reperfusion insult was performed in vitro and it
may not translate to an in vivo setting.

TNFα production is markedly increased in muscle and
adipose tissue in obese humans and rodent models of
obesity-diabetes, compared with tissues of lean individuals
[36]. The risk of cardiac microvascular disease is also
increased in the diabetic individual and the release of circu-
lating microparticles may favour the release of TNFα from
endothelial cells [37]. Several studies have demonstrated that
TNFα plays a role in mediating insulin resistance as a result
of obesity [38–40]. Three factors which contribute to the
control of body weight have been linked to TNFα: (1) the
intake of food, (2) expenditure of energy, and (3) storage of
energy.

Administration of TNFα in a rat model resulted in
reduced food intake [41] and also inhibited gastric emptying,
leading to a feeling of satiation, most likely due to activation
of leptin [42, 43]. Neutralization of TNFα by intravenous
administration of a soluble TNF receptor-immunoglobulin
G chimeric protein provided a significant improvement in
insulin sensitivity in fatty rats [38–40], but treatment of non-
insulin-dependent diabetes mellitus patients with a specific
TNFα antibody had no effect on insulin sensitivity [44].

Although TNFα has been proposed as a link between
obesity and insulin resistance [45], the baseline blood glucose
was unchanged by HCD in the TNF-WT and TNF−/− mice
in our study. However, plasma insulin levels were increased,
therefore suggesting the development of insulin resistance,
even in the absence of TNFα.

Surprisingly, the high carbohydrate diet slightly restored
the protective effect of IPostC in the TNF-deficient mice,
therefore suggesting that absence of TNFα in obesity may be
of benefit to the heart. In our modestly obese TNF−/− mice,
the plasma leptin level was significantly elevated compared to
the animals kept on the normal diet where IPostC-induced
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Figure 7: Effects of diabetes on physiological parameters in TNF−/− mice. Body weight remained unchanged in Streptozotocin (STZ)-treated
mice (a) but decreased the heart weight 5 days post treatment (b). mice (a) but decreased the heart weight 5 days post treatment (b). Blood
glucose (c), plasma insulin (d) and plasma leptin (e) were increased with STZ, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 versus no STZ; n = 6.

protection was abrogated, therefore suggesting that this
adipokine may be implicated in a compensatory mechanism.
Leptin has been demonstrated to exhibit direct cardiopro-
tective effects by targeting the mitochondrial permeability
transition pore [11]. It is possible that the increased level
of leptin in obesity might in fact protect the individuals
with a higher body mass index after a myocardial infarction
[22, 46, 47].

The increased plasma leptin levels observed in our
TNF−/− mice correlate with an increase in body weight and
the same correlation was found in mice fed with a high-fat
diet [48]. In contrast to our obese TNF−/− mice, our STZ-
induced diabetic TNF-WT model had significantly decreased
leptin levels and the protective effect of IPostC was not
significant. It has recently been reported that the tissue-
preserving actions of leptin are influenced by obesity [48].

Dixon’s group showed that leptin decreased the infarct size
in Wistar and Zucker lean rats, which have functional leptin
receptors, but the cardioprotection was lost in the Zucker
obese rats in which the leptin receptors are nonfunctional
[49]. These data provided evidence suggesting that the tissue-
preserving actions of leptin are influenced by the severe
obesity seen in Zucker obese rats. Thus, the degree of obesity
as well as the presence or absence of TNFα may be of
importance in determining the protective effects of leptin.

5. Conclusion

In conclusion, our data demonstrate that the cardioprotec-
tive effect of IPostC was unaltered in a high-carbohydrate
diet mouse model of obesity and streptozotocin-induced
diabetes. Whilst TNFα is necessary for the maintenance of
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Figure 8: Effect of diabetes on IPostC induced cardioprotecion in
isolated TNF−/− mice. Ischaemic postconditioning failed to protect
hearts from TNF−/− mice both at 5 and 10 days after STZ-treatment,
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glucose homeostasis, for the control of appetite to prevent
obesity and for IPostC-induced cardioprotection, it can also
lead to cardiac hypertrophy. The absence of TNF in mice did
not affect the outcome of obese and diabetic mice subjected
to an ischemia-reperfusion insult. IpostC failed to protect in
healthy or obese TNF−/− mice. However, a slight protection
with IPostC was observed in our TNF−/− model in the
presence of obesity, illustrating the bidirectional effect of
TNFα in the heart and the fact that the role of TNFα in
obesity- and diabetes-related ischaemic heart disease remains
a complex system. Nevertheless, our data suggest that obese
and type 1 diabetic individuals may still benefit from IPostC,
relative to the severity of the disease.
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