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A computer-aided diagnosis (CAD) system that employs a super learner to diagnose the presence or absence of a disease has been
developed. Each clinical dataset is preprocessed and split into training set (60%) and testing set (40%). A wrapper approach that
uses three bioinspired algorithms, namely, cat swarm optimization (CSO), krill herd (KH) ,and bacterial foraging optimization
(BFO) with the classification accuracy of support vector machine (SVM) as the fitness function has been used for feature
selection. The selected features of each bioinspired algorithm are stored in three separate databases. The features selected by
each bioinspired algorithm are used to train three back propagation neural networks (BPNN) independently using the conjugate
gradient algorithm (CGA). Classifier testing is performed by using the testing set on each trained classifier, and the diagnostic
results obtained are used to evaluate the performance of each classifier. The classification results obtained for each instance of
the testing set of the three classifiers and the class label associated with each instance of the testing set will be the candidate
instances for training and testing the super learner. The training set comprises of 80% of the instances, and the testing set
comprises of 20% of the instances. Experimentation has been carried out using seven clinical datasets from the University of
California Irvine (UCI) machine learning repository. The super learner has achieved a classification accuracy of 96.83% for
Wisconsin diagnostic breast cancer dataset (WDBC), 86.36% for Statlog heart disease dataset (SHD), 94.74% for hepatocellular
carcinoma dataset (HCC), 90.48% for hepatitis dataset (HD), 81.82% for vertebral column dataset (VCD), 84% for Cleveland
heart disease dataset (CHD), and 70% for Indian liver patient dataset (ILP).

1. Introduction

Data related to symptoms observed on a patient at a point of
time are stored in electronic health records (EHRs). Interest-
ing patterns can be extracted from the data that are stored in
EHRs, and the extracted patterns can be represented as
knowledge, and this knowledge can assist the physicians to
diagnose the presence or absence of a disease. Data mining
tasks, namely, association rule mining, classification, and
clustering are used to mine valuable patterns from the data
stored in EHRs. Clinical decision support systems (CDSSs)
that assist the physicians to diagnose the presence or absence
of a disease can be developed from data stored in EHRs using

bioinspired algorithms and data mining techniques.
Although several algorithms have been proposed by
researchers for association rule mining, classification, and
clustering, no algorithm can be deliberated to be the “univer-
sal best.”Quality of data and data distribution are the two key
factors that determine the effectiveness of a data mining task.
The performance of a data mining task depends on how
effective data preprocessing has been done. Classification
plays a major role in the development of CDSSs. Classifica-
tion is a two-step process, first, building the classifier and sec-
ond, model usage. Building the classifier is the process of
training the classifier with a supervised learning algorithm.
Model usage is the process of estimating the accuracy of the
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classifier using testing instances commonly referred to as
testing set. Overfitting and underfitting are two major prob-
lems associated with building the classifier.

Clinical dataset (s) ðCsÞ used for classifier construction is
split into a training set ðTsÞ and a testing set ðTtÞ.
Researchers have proposed different methods to identify the
Ts and Tt . One commonmethod is to split 80% of the dataset
into Ts and 20% of the dataset into Tt . For clinical decision-
making, a balanced dataset is essential for building a predic-
tion model. Clinical datasets are normally not balanced, and
classificationmethods perform poorly onminority class sam-
ples when the dataset is tremendously imbalanced. For exam-
ple, consider a Cs with n instances, each instance associated
with a class label c1 or c2. Among the n instances that 75%
of the instances in Cs are associated with class label c1, and
25% of the instances in Cs are associated with class label c2,
it is evident that the class labels in Cs are not equally repre-
sented and therefore, the Cs is imbalanced. In this context,
c1 is the majority class, and c2 is the minority class, and
hence, constructing a classifier with class-imbalanced data
will lead to bias in favor of the majority class. One method
to handle class imbalance in a Cs is to generate additional
instances from the minority class. The Synthetic Minority
Oversampling Technique (SMOTE) [1] is one of the pre-
vailing methods used to generate additional training and
testing instances.

A training instance can be defined as a tuple tið f1, f2,⋯
f mÞ, where ti represents a training instance, and ð f1, f2,⋯f jÞ
represents the features corresponding to a training instance.
The subscript i in ti can range from 1 to n, where n is the num-
ber of instances. The subscript j in f j can range from 1 tom,
where m is the number of features. Using irrelevant features
to train a classifier will affect its performance. Selecting the
optimal features from theCs and then training the classifier will
enhance the accuracy of the classifier. Feature selection
methods can be supervised, unsupervised, and semisupervised
depending upon whether the training set is labeled or not.
Commonly used supervised feature selection methods are filter
and wrapper methods. The filter method considers the depen-
dency of each feature to the class label and is independent of
any classification algorithm. Measures, namely, information
gain [2], gain ratio [3], Gini index [4], Laplacian score [5],
and cosine similarity [6] can be used to rank the features. Other
measures to rank the features can also be used in filter method.
The wrapper method considers the classification accuracy of a
learning algorithm to select the relevant features. Researchers
are using a confluence of disciplines to develop computer-
aided diagnostic (CAD) systems to assist physicians.

Knowledge mining using rough sets for feature selection
and backpropagation neural network (BPNN) for classifying
clinical datasets has been proposed in [7]. A CDSS to diag-
nose Urticaria using Bayes classification is proposed in [8].
CDSSs to diagnose lung disorders are proposed in [9–14].
A CDSS to diagnose the severity of gait disturbances using
a Q-backpropogated time delay neural network on patients
affected by Parkinson’s disease is proposed in [15]. A statisti-
cal tolerance rough set induced decision tree classifier to clas-
sify multivariate time series clinical data is proposed in [16].

A CDSS to diagnose gestational diabetes mellitus using the
fuzzy logic and radial basis function neural network is pro-
posed in [17]. Use of fuzzy sets and extreme learning machine
to classify clinical datasets is proposed in [18]. Wind-driven
swarm optimization, a metaheuristic method to classify clini-
cal datasets, is proposed in [19]. A computer-aided diagnostic
system that uses a neural network classifier trained using dif-
ferential evolution, particle swarm optimization, and gradient
descent backpropagation algorithms is proposed in [20]. A
radial basis function neural network to classify clinical datasets
using k-means clustering algorithm and quantum-behaved
particle swarm optimization is proposed in [21]. Classifying
clinical unevenly spaced time series data by imputing missing
values has been proposed in [22]. A framework to classify
unevenly spaced time series clinical data using improved dou-
ble exponential smoothing, rough sets, neural network, and
fuzzy logic is proposed in [23].

An outline of nature-inspired algorithms for optimiza-
tion is presented in [24]. The cooperative intellectual actions
of insects or animal groups in nature, for example, colonies of
ants, schools of fish, flock of birds, swarms of bees, and ter-
mites, have fascinated the thoughtfulness of researchers.
Entomologists have studied the collective actions of insects
or animals to model biological swarms, and engineers have
applied these models as a framework to solve complex real-
world problems.

In this work, a CAD system that employs a super learner
to diagnose the presence or absence of a disease has been pro-
posed. The bioinspired algorithms used in this work are cat
swarm optimization (CSO), krill herd (KH), and bacterial
foraging optimization (BFO). The classifiers used in this
work are support vector machine (SVM) and BPNN trained
using the conjugate gradient algorithm.

The rest of the paper is organized as follows: the abbre-
viation used in the manuscript is presented in Section 2.
An outline of the related work is presented in Section 3.
An outline of the datasets used is presented in Section 4.
The framework of the proposed classifier is presented in Sec-
tion 5. The results and discussions are presented in Section
6. Finally, conclusion and scope for future work are pre-
sented in section 7.

2. Abbreviations Used

Table 1 presents the abbreviation used in the rest of the man-
uscript in alphabetic order.

3. Literature Survey

Leema et al. [25] in their work have experimented the sig-
nificance of fixing the appropriate values of parameters to
train artificial neural networks using the backpropagation
algorithm. The parameters are initial weight selection, bias,
activation function used, number of hidden layers, number
of neurons per hidden layer, number of training epochs,
minimum error, and momentum term. Twelve backpropa-
gation learning algorithms have been used in this study.
Experimentation has been carried out using three clinical

2 Computational and Mathematical Methods in Medicine



datasets from the UCI ML repository, namely, PID, hepa-
titis, and WBC datasets.

Elgin et al. [26] in their work have proposed a clinical-
decision making system to diagnose allergic rhinitis. A wrap-
per approach that uses GA and the accuracy of ELM classifier
as the fitness function has been used for feature selection. The
selected features have been trained using ELM classifier.
Intradermal skin test dataset of 872 patients collected from
Good Samaritan Lab Services and Allergy Testing Centre,
Chennai, has been used in this work, and an accuracy of
97.7% has been achieved.

Sreejith et al. [27] in their work have proposed a frame-
work for classifying clinical datasets which uses an embedded
approach for feature selection and a DISON for classification.
The feature selection is performed by computing the feature
importance of every attribute using an extremely randomized
tree classifier. Classification is performed using DISON
which is a feed forward neural network whose weights and
bias are optimized in two stages first, by using a strawberry
optimization algorithm and then by using a gradient descent
BP algorithm. Vertebral column, PID, CHD, and SHD data-
sets from the UCI ML repository have been used for experi-
mentation. The framework has achieved an accuracy of
87.17% for vertebral column, 90.92% for PID, 93.67% for
CHD, and 94.5% for SHD.

Sreejith et al. [28] in their work have proposed a frame-
work for CDSS which addresses the data imbalance problems
associated with clinical dataset. The datasets are rebalanced
using SMOTE enhanced using Orchard’s algorithm. The fea-
ture selection is performed using a wrapper approach where
CMVO is used to select the feature subsets, and RF classifier
is used to evaluate the goodness of the features. The arith-
metic mean of MCC and F-score computed using the RF

Table 1: Abbreviations used.

Abbreviation Phrase

ABCO Artificial bee colony optimization

ACO Ant colony optimization

ANN Artificial neural networks

BCS Binary cuckoo search

BFA Binary firefly algorithm

BFO Bacterial foraging optimization

BP Back propagation

BPNN Back propagation neural network

CAD Computer-aided diagnosis

CDC Counts of dimension to change

CDSS Clinical decision support system

CFCSA Hybrid crow search optimization algorithm

CGA Conjugate gradient algorithm

CHD Cleveland heart disease

CMVO Chaotic multiverse optimization

CSM Cosine similarity measure

CSO Cat swarm optimization

CT Computed tomography

DE Differential evolution

DGA Distance-based genetic algorithm

DISON
Diverse intensified strawberry optimized neural

network

DNN Deep neural network

E.coli Escherichia Coli Bacteria

ECSA Enhanced crow search algorithm

ELM Extreme learning machine

FBFO Feature selected by bacterial foraging optimization

FCM Fuzzy C-means

FCSO Feature selected by cat swarm optimization

FFO Firefly optimization

FKH Feature selected by krill herd

GA Genetic algorithm

GSO Glowworm swarm optimization

HCC Hepatocellular carcinoma

HD Hepatitis

IBPSO Improved binary particle swarm optimization

ILP Indian liver patient

ISSA Improved Salp swarm algorithm

KH Krill herd

k-NN k-nearest neighbors

LO Lion optimization

LR Logistic regression

MCC Mathew’s correlation coefficient

MFO Moth-flame optimization

ML Machine learning

MPNN Multilayer perceptron neural network

MR Mixed ratio

NB Naive Bayes

PCC Pearson correlation coefficient

Table 1: Continued.

Abbreviation Phrase

PID Pima Indian diabetes

PSO Particle swarm optimization

RD Random diffusion

RDM Rough dependency measure

RF Random forest

RoIs Regions of interest

SHD Statlog heart disease

SMOTE Synthetic minority oversampling technique

SMP Seeking memory pool

SPC Self-position consideration

SRD Seeking range of the selected dimension

SVC Support vector classification

SVM Support vector machine

TS Thoracic surgery

UCI University of California Irvine

VCD Vertebral column dataset

WBC Wisconsin breast cancer

WDBC Wisconsin diagnostic breast cancer

WOA Whale optimization algorithm
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Table 2: Outline of the datasets used.

Dataset name No. of instances No. of features∗ No. of missing values
Class labels with no. of instances
associated with each class label

Interpretation of
class labels

WDBC 569 31 Nil M (212)/B (357) M-malignant, B-benign

SHD 270 13 Nil 2 (120)/1 (150) 2-present, 1-absent

HCC 165 49 826 0 (63)/1 (102) 0-dies, 1-lives

HD 155 18 167 1 (32)/2 (123) 1-die, 2-live

VCD 310 6 Nil 0 (210)/1 (100) 0-abnormal, 1-normal

CHD 303 13 Nil 1 (139)/2 (164) 1-presence, 2-absence

ILP 583 10 Nil 1 (416)/2 (167) 1-diseased, 2-nondiseased
∗ without class label.

Clinical dataset

Training set Testing set

Trained classifiers using
FCSO / FKH / FBFO

CSO / KH / BFO

Classifier training subsystem

Feature subset selection

Diagnostic results

Trained classifiers using 
FCSO / FKH / FBFO

BPNN Training using
conjugate gradient algorithm

Trained classifier Diagnostic results

Training set Testing set

Performance evaluation

Performance evaluation

Classifier testing subsystem

Data preprocessing
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Figure 1: System framework.
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classifier is used as the fitness function. Finally, an RF classi-
fier, comprising of 100 decision trees which uses information
gain ratio as the split criteria, is used for classifying the clin-
ical data. Three clinical datasets from the UCI ML repository,
namely, ILP, TS, and PID datasets, have been used for exper-
imentation. The proposed framework achieved 0.65 MCC,
0.84 F-score, and 82.46% accuracy for ILP; 0.74 MCC, 0.87
F-score, and 86.88% accuracy for TS; and 0.78 MCC, 0.89
F-score, and 89.04% accuracy for PID datasets.

Isaac et al. [29] in their work have proposed a CAD sys-
tem to diagnose pulmonary emphysema from chest CT
slices. Spatial intuitionistic fuzzy C-means clustering algo-
rithm has been used to segment the lung parenchyma and
extracting the RoIs. From the RoIs, shape, texture, and run-
length features have been extracted, and feature selection
has been performed using a wrapper approach using four
bioinspired algorithms with the classification accuracy of
SVM as the fitness function. The bioinspired algorithms used
are MFO, FFO, ABCO, and ACO. Tenfold crossvalidation
technique has been used, and each feature set has been

trained using an ELM classifier. Two independent datasets,
one dataset consisting of CT slices collected from hospitals
and the second dataset consisting of CT slices from a bench-
mark repository, have been used for classification. A maxi-
mum classification accuracy of 89.19% for MFO, 91.89%
for FFO, 83.78% for ABCO, 86.49% for ACO, and 75.68%
without feature selection have been achieved.

Elgin et al. [30] in their work have performed feature
selection and instance selection using a wrapper approach
that employs cooperative coevolution with the classification
accuracy of the random forest classifier as the fitness func-
tion. The optimal feature set is used to train a random forest
classifier. Seven datasets, namely, WDBC, HD, PID, CHD,
SHD, VCD, and HCC from the UCIML repository have been
used for experimentation. An accuracy of 97.1%, 82.3%,
81.01%, 93.4%, 96.8%, 91.4%, and 72.2% for datasets WDBC,
HD, PID, CHD, SHD, VCD, and HCC datasets have been
achieved, respectively.

Anter et al. [31] in their work have developed CFCSA by
integrating chaos theory and the FCM method to find the
optimal feature subset. Ten clinical datasets from the UCI
ML repository have been used for experimentation. The fea-
tures of each clinical dataset have been normalized, and then
random chaotic motion has been incorporated into CFCSA
in the form of chaotic maps. The objective function of the
FCM has been used as the fitness function, in which the crow
with the best fitness has been considered the best solution.
Comparison has been done with chaotic ant lion optimiza-
tion, binary ant lion optimization, and the binary crow search
algorithm, and it has been inferred that CFCSA outperforms
these algorithms in all the datasets used for experimentation.

Elgin et al. [32] in their work have proposed a
correlation-based ensemble feature selection using a wrapper
approach that employs three bioinspired algorithms using
differential evolution, lion optimization, and glowworm
swarm optimization with the accuracy of the AdaboostSVM
classifier as the fitness function. Tenfold crossvalidation tech-
nique has been used, and the optimal features selected have
been used to train a gradient descent BP neural network with
variable learning rates. Two clinical datasets from the UCI

Table 3: Outline of training and testing instances of each Cs.

Instances WDBC dataset SHD dataset HCC dataset HD dataset VCD dataset CHD dataset ILP dataset

Total number of instances
before SMOTE

569 270 165 155 310 303 583

Total number of instances
after SMOTE

780 270 228 251 410 303 750

Number of training instances
for FCSO/FKH/FBFO classifiers

468 162 137 151 246 182 450

60% of the total number of instances after SMOTE

Number of testing instances
for FCSO/FKH/FBFO classifiers

312 108 91 100 164 121 300

40% of the total number of instances after SMOTE

Number of training instances
for super learner

250 86 73 80 131 97 240

80% of the total testing instances∗ for FCSO/FKH/FBFO classifiers

Number of testing instances for 62 22 18 20 33 24 60

Super learner 20% of the total testing instances∗ for FCSO/FKH/FBFO classifiers
∗Each instance refers to the classification result pertaining to each instance of the testing set for FCSO, FKH, and FBFO classifiers and the class label
corresponding to each instance of the testing set.

Table 4: Outline of the parameters used in CSO.

Parameter Description

SMP
SMP is used to define the size of the seeking
memory of each cat. Each cat selects possible
neighborhood position from a set of solutions.

SRD
SRD is used to define the seeking
range of the selected dimension.

CDC
CDC is a count of dimensions
to be changed in seeking mode.

SPC
SPC indicates whether the cat
is in the current position or not.

N Number of cats

MR Mixed ratio of cats

C Constant value

D Size of dimension

R Random number in the range of [0,1]
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ML repository, namely, hepatitis and WDBC have been used
for experimentation. An accuracy of 93.902% for hepatitis
and 98.734% for WDBC datasets have been achieved.

Sweetlin et al. [33] in their work have proposed a CAD
system to diagnose pulmonary tuberculosis from chest CT
slices. The region growing algorithm has been used for seg-
menting the lung fields followed by edge reconstruction.
The manifestations of pulmonary tuberculosis, namely, cavi-
ties, consolidations, and nodules have been considered to be
RoIs. After extracting the RoIs, and from the RoI, texture fea-
tures, run-length features and shape features have been
extracted, and feature selection has been performed using a

wrapper approach that employs the BCS algorithm with the
accuracy of one-against-all multiclass SVM classifier as the
fitness function. The Cuckoo search algorithm has been
implemented in two ways, first, by using entropy measure
and second, without using entropy measure. Using the
selected feature training is performed using one-against-all
multiclass SVM classifier. An accuracy of 85.54% for BCS
algorithm with entropy measure and 84.65% accuracy for
BCS algorithm without entropy measure have been achieved.

Sweetlin et al. [34] in their work have proposed a CAD
system to diagnose pulmonary hamartoma nodules from
chest CT slices. Otsu’s thresholding method has been used

Input: training set
Process:
Step 1: initialize the population ofN cats (solutions) at random. Each solution is of length n, where n represents the number of features.
If the corresponding feature is selected, it is represented as “1;” else, it is represented as “0.” Initialize the parameters, namely, SMP,
SRD, CDC, SPC, MR, C, and R.
Step 2: calculate the fitness value of each cat (solution) using the SVM classifier, where the accuracy of the SVM classifier is considered
as the fitness function. The solution that has the maximum fitness value obtained so far is considered as the best solution.
Step 3: assign the cats to perform seeking mode. Seeking mode refers to the cats at rest and its movement to the next position by looking
around itself.
Step 3a: create j (SMP) copies of the current cat. All the copies are considered to be candidate solutions.
Step 3a. i: if the value of SPC is true, one among the candidates retain the position, while the rest changes its position with respect to a
randomly selected SRD.
Step 3a. ii: if the value of SPC is false, then all the candidates change their position by a randomly selected CDC.
Step 3b: calculate the probability of each solution being selected using Equation (2) to find the best solution that has the maximum
chance to survive. If all the solutions produce the same fitness value, then the probability value is considered as “1.”
Pi = jFSi − FSbj/FSmax − FSmin, where 0 < i < j:(2)
In the above formula, Pi is the probability of the current cat i, FSmax is the maximum fitness value, and FSmin is the minimum fitness
value. The values of FSb are assigned FSmaxðFSb = FSmaxÞ if maximum fitness has to be calculated. The values of FSb are assigned FSmin
ðFSb = FSminÞ if minimum fitness has to be calculated. In our work, the value of FSb is assigned to FSmax.
Step 4: perform tracing mode. In this mode, the cats update their position based on the velocity. Calculate the velocity ðVt+1

k,d Þ and
update the position ðxt+1k,d Þ of each cat using Equation (3) and Equation (4).
Vt+1

k,d =Vt
k,d + R × C × ðxtbest,d − xtk,dÞ, °Where d = 1, 2,⋯::,D,(3)

xt+1k,d = xtk,d +Vt
k,d:(4)

In the above formula, xtk,d andVt
k,d are the position and velocities of current cat k at iteration t: The best solution set from the cats in the

population is denoted by xtbest,d ; d denotes the dimension to be changed; C is a constant, and R is a random number between 0 and 1.
Step 5: update the best solution that has the maximum fitness value. If the solution in the previous iteration has low fitness value, then
replace it with the current best solution; otherwise, retain the previous best solution.
Step 6: repeat step 2 to step 5 for a maximum number of iterations or until the convergence of solution is reached. The solution with the
maximum fitness value obtained by the classifier is considered as the optimal feature subset.
Output: optimal feature subset.

Algorithm 1:

Table 5: Outline of the parameters used in the KH algorithm.

Parameter Definition Value

V f Maximum foraging speed Vf = 0:02m/s−1

RDmax Maximum random diffusion speed RDmax ∈ 0:002 − 0:01ð Þm/s−1

Nmax Maximum induction speed Nmax = 0:01m/s−1

wn Inertia weight of the motion induced wn ∈ 0, 1ð Þ
wf Inertia weight of the foraging motion wf ∈ 0, 1ð Þ
Ct Step-length scaling factor Constant no:between 0, 2½ �
δ Random directional vector Randomnumbers −1, 1½ �
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to segment lung parenchyma from the CT slices. Nodules are
considered to be the RoIs and from the RoIs, texture features,
shape features and run-length features have been extracted.
Feature selection has been performed using filter evaluation
measures, namely, CSM and RDM with the ACO algorithm.
The features selected by ACO-CSM and ACO-RDM have
been used to train three classifiers, namely, SVM, NB, and
J48 decision tree classifiers. Maximum classification accuracy
of 94.36% for SVM classifier trained with 38 features selected
using ACO-RDM has been achieved.

Sweetlin et al. [35] in their work have proposed a CAD
system to diagnose pulmonary bronchitis from CT slices of
the lung. Optimal thresholding has been used to segment
the left and right lung fields from the lung CT slices. The RoIs
are identified, and from the RoIs, texture and shape features
have been extracted. Feature selection has been performed
using a hybrid ACO algorithm combined with tandem run
recruitment based on cosine similarity, and the accuracy of
the SVM classifier has been used as the fitness function.
The selected features have been used to train a SVM classifier.

An accuracy of 81.66% for ACO with tandem run strategy,
78.10% for ACO without tandem run strategy, and 75.14%
without feature selection has been achieved.

Raj et al. [36] in their work have proposed DGA for feature
selection to develop a CAD system to diagnose lung disorders
from chest CT slices. The entire dataset has been split into
two sets one set containing 90% of the entire dataset and the
other set containing 10% of the entire dataset. Out of the
90%, 50% has been used as training set and the other 50% as
validation set for evaluating the objective function. The set con-
taining 10% of the entire dataset has been used as testing set.
The objective function has been defined as the sum of the
squared deviation of each data in the training set of each class
from each data in the validation set of the corresponding class.
GA has been used for feature selection by minimizing the pro-
posed objective function, resulting in the proposed DGA. The
GA has been iterated over several generations to obtain indi-
viduals that are best fit with respect to the objective function.
Classification has been performed using k-NN classifier to clas-
sify the RoIs into one of four classes, namely, bronchiectasis,

Input: training set
Process:
Step 1: initialize the population of N krill herds (solutions) at random. Each solution is of length n, where n represents the number of
features. If the corresponding feature is selected, it is represented as “1,” else as “0.” Initialize the parameters maximum induced motion
Nmax, foraging speed V f , maximum random diffusion speed RDmax, wn, wf , Ct , and δ.
Step 2: calculate the fitness value of each krill herd (solution) using the SVM classifier, where the accuracy of the SVM classifier is con-
sidered as the fitness function. The solution with the highest fitness value is considered as the global best solution.
Step 3: update the position of each krill ðxi ðt + ΔtÞÞ using Equations (6) and (7) based on movement induced by other krill individuals,
foraging activity, and random diffusion.
xi ðt + ΔtÞ = xi ðtÞ + ΔtðNi + Fi + RDiÞ,(6)
WhereΔt = Ct ∑

d
j=1ðUBj − LBjÞ, where j = 1, 2,⋯:d:(7)

In the above formula, xiðtÞ is the current position of the krill; Δt is the scaling factor of the velocity vector;Ni is the induced motion; Fi

is the foraging motion; RDi is the random diffusion of the ith krill individual; Ct is the step-length scaling factor; d is the total number of
krill individuals; UBj is the upper bounds of variable j, and LBj is the lower bounds of variable j.
Step 4: each krill individual maintains a high density and change their position due to their mutual effect. The direction of individual
krill is maintained by target effect, local effect, and repulsive effect. The induced movement Ni by other krills is calculated using Equa-
tions (8) and (9).
Ni =Nmax × αi +wn ×Nt

i ,(8)
Where, αi = αi

local + αi
target:(9)

In the above formula, Ni is the induced motion; Nmax is the maximum induction speed; αi is the induced direction; wn is the inertia
weight of the motion induced; Nt

i is the last induced motion; αi
local is estimated from the local effect, and αi

target is the target effect.
Step 5: calculate the foraging motion Fi using Equations (10) and (11). It is mainly based on the current location of the food and the
previous experience about the food location.
Fi =V f × βi +wf × Ft

i ,(10)
Where, βi = βi

food + βi
best:(11)

In the above formula, Vf is the maximum foraging speed; βi is the foraging motion; wf is the inertia weight of the foraging motion; Ft
i

is the last foraging motion; βi
f ood is the food attractive, and βi

best is the effect of the best fitness of the ith krill.
Step 6: calculate the random motion for random diffusion RDi using Equation (12) which is characterized with high diffusion speed
and a random vector.
RDi = RDmax × ð1 − I/ ImaxÞ × δ:(12)
In the above formula, RDmax is the maximum random diffusion speed; δ is the random directional vector; I is the current iteration
number, and Imax is the maximum number of iterations.
Step 7: repeat steps 2 to 6 for a maximum number of iterations or until the convergence of solution is reached. The solution with the
maximum fitness value obtained by the classifier is considered as the optimal feature subset.
Output: optimal feature subset.

Algorithm 2:
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tuberculosis, pneumonia, and normal. An average accuracy of
88.16% with feature selection and an average accuracy of
86.46% without feature selection have been achieved.

Zawbaa et al. [37] in their work have performed feature
selection using a wrapper approach that uses the MFO algo-
rithm with the accuracy of k-NN classifier as the fitness func-
tion. Eighteen datasets from the UCI ML repository have
been used for experimentation among which four are clinical
datasets. Comparison has been done with PSO and GA, and
it has been inferred that MFO outperforms in fourteen data-
sets among which three are clinical datasets.

Shu-Chuan et al. [38] in their work have presented an
algorithm called CSO by modeling the natural behavior of
cats. The CSO algorithm considered two biological charac-
teristics of cats, namely, seeking mode and tracking mode.
Cats spend utmost of the time when they are awake on rest-
ing. Nevertheless, during their rests, their perception is really
high, and they are well aware of what is happening around
them. Cats continuously observe their environment wisely
and consciously and when they perceive a prey, they advance
towards it rapidly. Although resting, they move their position
cautiously and slowly, occasionally even stay in the original
position. Seeking mode has been used to represent this
behavior into the CSO, and the tracing mode has been used
to represent the behavior of cats advancing towards a prey
into the CSO. The performance of CSO has been evaluated
by applying CSO, standard PSO, and PSO with weighting
factor into six benchmark functions. The results obtained
reveal that the proposed CSO performs better compared to
PSO and PSO with weighting factor.

Gandomi et al. [39] in their work have proposed a swarm
intelligence algorithm named KH algorithm to solve optimi-
zation tasks and is centered on the imitation of the herding
behavior of krill swarms with respect to precise biological
and environmental processes. The fitness function of each
krill individual has been defined as the least distance of each
individual krill from food and from the highest density of the
herd. Three vital actions considered to define the time-
dependent position of an individual krill are, one, movement
induced by other krill individuals, two, foraging activity, and
three, random diffusion. The KH algorithm is tested using
twenty benchmark functions and compared with eight algo-
rithms. Experimentation results indicate that the KH algo-
rithm can outperform these familiar algorithms.

Chen et al. [40] have proposed a cooperative bacterial
foraging optimization algorithm (CBFO). Two cooperative
methods are used to solve complex optimization problems
in the original BFO [41] and achieved significant improve-
ment. The serial heterogeneous cooperation on the implicit
space decomposition level and the hybrid space decomposi-
tion level are the two methods used to improve the original
BFO. The authors have compared the performance of two
CBFO variants with the original BFO, PSO, and GA on four
commonly used benchmark functions. The experimental
results indicated that the CBFO achieved a better perfor-
mance over the original BFO, PSO, and GA.

Chen et al. [42] have proposed an adaptive bacterial for-
aging optimization (ABFO) for optimizing functions. The
adaptive foraging approaches are used to increase the perfor-
mance of the original BFO. It is achieved by enabling the
original BFO to adjust the run-length unit parameter dynam-
ically during the time of algorithm implementation. The
experimental results are compared with the original BFO,
PSO, and GA using 4 benchmark functions. The proposed
ABFO indicates the better performance over the original
BFO and competitive with the PSO and GA.

From the literature, it is evident that classifier training
using relevant features enhances the accuracy of the classifier.
It can also be inferred that wrapper-based feature selection
that employs bioinspired algorithms performs better in
numerous cases compared to traditional feature selection
methods.

4. Outline of the Datasets Used

Seven clinical datasets from the UCI ML repository, namely,
WDBC, SHD, HCC, HD, VCD, CHD, and ILP have been
used for binary classification. An outline of each dataset used
is presented in Table 2.

5. System Framework

The framework for feature selection and classification of clin-
ical datasets using bioinspired algorithms and super learner is
presented in Figure 1. The major building blocks of the
framework are data preprocessing, feature selection, classifier
training, classifier testing, and dataset construction for super
learner, super learner training, and testing. Each building
block is outlined below.

Table 6: Outline of the parameters used in the BFO algorithm.

Parameter Description

p Number of features

S Number of bacteria

Sr Number of bacteria in the reproduction steps

Nre No. of reproductive steps

Ned No. of elimination-dispersal steps

Nc No. of chemotactic steps

Ns No. of swimming steps

L ið Þ Bacteria step size length

Ped Elimination probability

∅ ið Þ Direction of ith bacteria

x Index of the chemotactic process

y Index of the reproduction process.

z Index of the elimination-dispersal process

θi The ith bacterium position

θ A bacterium on the optimization domain

J last The highest objective function value

Δ ið Þ A random vector and its value lie between -1
and 1

Jcc θ, θi x, y, zð Þ
� �

Cell-to-cell attractant effect to nutrient
concentration
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5.1. Preprocessing. Each (Cs) has been subjected to prepro-
cessing prior to feature selection to enhance the quality of
data. Mean imputation has been used to handle missing
values, and SMOTE is used to handle the class imbalance
problem in each Cs by generating additional instances from
the minority class.

Normalization has been used to scale the value of a feature
so that the value will fall in a specified range and is predomi-
nantly useful for constructing a classifier involving a neural
network. Training a classifier using normalized data will
speedup learning. In this work, the range is 0 to 1, and min-
max normalization is being used. When an attribute “A” in a

Input: training set
Process:
Step 1: initialize the population of S bacteria (solutions) at random. Each solution is of length p, where p represents the number of fea-
tures. If the corresponding feature is selected, it is represented as “1,” else as “0.” Initialize the parameters p, Nc, Ns, Nre, Ned , Ped , and
LðiÞ (where subscript i in LðiÞ can range from 1,2,…S), θi,x = 0, y = 0, and z = 0.
Step 2: calculate the fitness value of each bacterium (solution) using the SVM classifier, where the accuracy of the SVM classifier is
considered as the fitness function.
Step 3: in the elimination-dispersal process, due to environmental changes, the bacteria are eliminated or dispersed from current loca-
tion. This process is used to strengthen the ability of global optimization. Initiate the elimination-dispersal process and increase the
value of z from 0 to Ned .
Step 4: in the reproduction process, the low healthy bacteria die and rest of the other healthiest bacteria are divided into two bacteria.
The new bacteria are placed on the same position of their parent. this process is used to maintain the population rate of bacteria. Ini-
tiate the reproduction process and increase the value of y from 0 to Nre.
Step 5: in the chemotactic process, the E. coli bacterium performs two actions during the entire life time, namely, tumble and swim.
Initiate the chemotactic process and increase the value of x from 0 to Nc.
Step 6: execute the chemotactic process. Each bacterium i moves into a chemotactic process, where i = 1, 2,⋯:S,
Step 6a: calculate the objective function Jði, x, y, zÞ for each bacterium using Equation (13).
Jði, x, y, zÞ = Jði, x, y, zÞ + Jccðθ, θiðx, y, zÞÞ:(13)
Assign the value of objective function Jði, x, y, zÞ in to J last.
Step 6b: perform tumbling action for each bacterium using Equation (14). This action will enable the bacteria to change the present
direction for a period of time.

∅ðiÞ = ΔðiÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðiÞTΔðiÞ

q
:(14)

In the above formula, T is the maximum number iterations, and ΔðiÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðiÞTΔðiÞ

q
is a random forward direction of movement.

Step 6c: based on the tumbled direction obtained by the bacteria, each bacteria move to a random position using Equation (15).
θiðx + 1, y, zÞ = θiðx, y, zÞ + LðiÞ ×∅ðiÞ:(15)
In the above formula, θiðx, y, zÞ is the ith bacterium position in the xth chemotaxis, yth reproduction, and zth elimination-dispersal pro-
cedure, and θiðx + 1, y, zÞ means the ith bacterium position in the x + 1th chemotaxis, yth reproduction, and zth elimination-dispersal
procedure.
Step 6d: compute the objective function value Jði, x + 1, y, zÞ using Equation (16).
Jði, x + 1, y, zÞ = Jði, x + 1, y, zÞ + Jccðθ, θiðx + 1, y, zÞÞ:(16)
Step 6e: perform swim action and assign the value of swim length m = 0.
Step 6f: when the number of steps Ns in the swim process is greater than the swim length (m), then increase the m value to 1 ðm =
m + 1Þ: If the value of Jði, x + 1, y, zÞ > J last replace the J last value using the current best objective value Jði, x + 1, y, zÞ, then assign
the swim length m =Ns.
Step 7: if x <Nc, then go to step 5. Else, go to step 8.
Step 8: execute the reproduction process. In this reproduction process, the accumulated cost of bacterium ð Jihealth Þ is calculated using
equation (17).

Jihealth =∑Nc+1
x=1 Jði, x, y, zÞ:(17)

The accumulated cost of bacterium ð Jihealth Þ represents the health of the bacterium. Bacteria will be sorted in descending order based
on the Jihealth value. If the accumulated cost of bacterium is high, it means that the bacterium did not get enough nutrition or food dur-
ing its entire lifetime. They are considered to have low health and set to die. The remaining healthy bacteria are divided into two. The
reproduced bacteria are positioned at the same place as their parents.
Step 8a: if the number of defined reproduction steps Nre is not achieved ð y <Nre Þ, then go to step 4.
Step 9: execute the elimination-dispersal process. Based on the elimination probability (Ped), this process is used to keep the number of
bacteria in the population unchanged. If a bacterium is eliminated, a random search is initialized to move to a new position to avoid
local optimum, after a certain number of reproduction movements.
Step 10: repeat the process from step 3 to step 9 until the number of elimination dispersal steps ðNedÞ is greater than the value of z:
Otherwise, terminate the process.
Output: optimal feature subset.

Algorithm 3:
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clinical dataset Cs is subject to min-max normalization, the
minimum value (minA) and maximum value (maxA) in the
value set of “A” are first identified, and normalization is per-
formed using the formula presented in equation (1).

a′ = a −minA
maxA −minA

newmaxA − newminA

� �
+ newminA : ð1Þ

If the formula “a′” is the normalized value of an attribute “a,”
when a is drawn from the value set of “A.” Sincemin-max nor-
malization is being used to normalize the values in the range 0
to 1, the value of newmaxA is 1 and newminA is 0.

The number of instances in each Cs used for constructing
and testing the classifier prior to generating additional sam-
ples using SMOTE, the number of instances in each Cs after
generating additional samples using SMOTE, the number of
instances in the training set ðTsÞ, and the number of
instances in the testing set ðTtÞ is presented in Table 3. After

preprocessing, each Cs is split into training set (60%) and
testing set (40%).

5.2. Feature Selection. Feature selection is performed on each
Ts used for experimentation to select the optimal features for
training the classifier. Selecting the optimal features from the
Ts will improve the classification accuracy. A wrapper
approach that uses three bioinspired algorithms, namely,
CSO, KH, and BFO with the accuracy of the SVM classifier
is used to perform feature selection. An outline of CSO,
KH, and BFO used for feature selection is presented below.

5.2.1. Outline of the CSO Algorithm for Feature Selection.
CSO is inspired and modeled based on two main postures
of cats, namely, resting and tracing. Mimicking the resting
behavior of a cat is named as seeking mode, and mimicking
the tracing behavior of a cat is named as tracing mode. The
seeking mode relates to a local search process, whereas the

Training set

CSO

SVM classifier

CSO Feature
database

SVM classifier

KH

KH Feature
database

SVM classifier

BFO

BFO feature
database

BPNN Training using
conjugate gradient

algorithm

BPNN Training using
conjugate gradient

algorithm

BPNN Training using
conjugate gradient

algorithm

Trained BPNN classifier
using FBFO

Trained BPNN classifier
using FKH

Trained BPNN classifier
using FCSO

Figure 2: Classification using BPNN.

Table 7: Parameter settings for BPNN.

BPNN parameter
Bioinspired
algorithm

WDBC
dataset

SHD
dataset

HCC
dataset

HD
dataset

VCD
dataset

CHD
dataset

ILP
dataset

Number of input nodes

CSO 15 9 20 16 3 6 5

KH 17 10 39 10 3 10 8

BFO 18 9 35 19 2 11 5

Number of hidden
nodes

CSO 30 18 40 32 6 12 10

KH 34 20 78 20 6 20 16

BFO 36 18 70 38 4 22 10
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tracing mode relates to a global search process. The vital
parameters that play an important role in CSO are outlined
in Table 4. Tracing mode relates to cat’s movement while
chasing a prey, for example, chasing a rat.

The steps to select the optimal feature subset using CSO
is outlined below (Algorithm 1):

5.2.2. Outline of the KH Algorithm for Feature Selection. The
KH algorithm is centered on the imitation of the herding
behavior of krill swarms with respect to precise biological
and environmental processes. Krill density is reduced by
predators, namely, seals, penguins, or seabirds. The herd-

ing of the krill individuals includes, one, increasing the
krill density and two, reaching the food. The fitness func-
tion of each krill individual has been defined as the least
distance of each individual krill from food and from the
highest density of the herd.

Three vital actions considered to define the time-
dependent position of an individual krill are one, movement
induced by other krill individuals, two, foraging activity, and
three, random diffusion.

Krill individuals attempt to maintain a high density and
hence move due to their mutual effect. Local swarm density,
target swarm density, and repulsive swarm density are used

Input: training set (FCSO, FKH, FBFO).
Step 1: initialize the parameters, namely, weights and bias, number of hidden layers, and learning rate of the BPNN.
Step 2: the number of hidden nodes are calculated using Equation (18).
H = 2n:(18)
In the above formula, H is the number of hidden nodes, and n is the number of input nodes.
Step 3: the input of the hidden layer is calculated using Equation (19).
Ih =∑wijOj +∅j:(19)
In the above formula, Ih is the input of the hidden layer; wij is the weights of each input nodes; ∅j is the bias.
Step 4: the output of the hidden layer is calculated using Equation (20).
Oj = 1/1 + e−I j ,(20)
where Oj is the output of the j

th hidden layer, and I j is the input to the neuron from the previous layer.
Step 5: calculate the error rate in the predicted output using Equation (21).

Error Rate ðMSEÞ =∑0
i=1ðZk

i − Ck
i Þ

2
:(21)

In the above formula, Zk
i is the expected output, and Ck

i is the obtained output.
Step 6: update the new weights and bias based on the learning rate and error rate using CGA.
Step 7: repeat the steps from 2 to 5 until the error rate converges.
Output: three BPNN classifiers trained using FCSO, FKH, and FBFO.

Algorithm 4:

Testing set
Class label of each testing instance

BFO feature databaseKH feature databaseCSO feature database

Trained BPNN using
FBFO

Trained BPNN using
FKH

Trained BPNN using
FCSO

Performance
evaluation

Classification
results

Performance
evaluation

Training/testing set for
super learner

Classification
results

Performance
evaluation

Classification
results

Figure 3: Classifier testing.
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Trained classifier

Training/Testing set for
super learner

Testing setTraining set

BPNN Training using conjugate
gradient algorithm

Diagnostic results

Performance evaluation

Figure 4: Super learner training and testing.

Table 8: Parameter settings for super learner.

Name of the parameter WDBC dataset SHD dataset HCC dataset HD dataset VCD dataset CHD dataset ILP dataset

Initial population size 250 86 73 80 131 97 240

Number of input nodes 3 3 3 3 3 3 3

Number of hidden nodes 6 6 6 6 6 6 6

Table 9: Performance of FCSO, FKH, and FBFO classifiers and super learner on WDBC dataset.

Feature selection algorithm Size of feature subset TN FP FN TP Accuracy Sensitivity Specificity Precision F-score

CSO 15 137 4 6 165 96.79 96.49 97.16 97.63 0.97

KH 17 139 2 5 166 97.76 97.08 98.58 98.81 0.98

BFO 18 139 2 8 163 96.79 95.32 98.58 98.79 0.97

Super learner — 22 0 2 39 96.83 95.12 100.00 100.00 0.98

Table 10: Performance of FCSO, FKH, and FBFO classifiers and super learner on Statlog dataset.

Feature selection algorithm Size of feature subset TN FP FN TP Accuracy Sensitivity Specificity Precision F-score

CSO 9 53 8 9 38 84.26 80.85 86.89 82.61 0.82

KH 10 53 8 11 36 82.41 76.60 86.89 81.82 0.79

BFO 9 51 10 10 37 81.48 78.72 83.61 78.72 0.79

Super learner — 10 1 2 9 86.36 81.82 90.91 90.00 0.86

Table 11: Performance of FCSO, FKH, and FBFO classifiers and super learner on HCC dataset.

Feature selection algorithm Size of feature subset TN FP FN TP Accuracy Sensitivity Specificity Precision F-score

CSO 20 43 9 9 31 80.43 77.50 82.69 77.50 0.78

KH 39 48 4 13 27 81.52 67.50 92.31 87.10 0.76

BFO 35 47 5 20 20 72.83 50.00 90.38 80.00 0.62

Super learner — 10 1 0 8 94.74 100.00 90.91 88.89 0.94
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to estimate the direction of motion. Food location and prior
experience about the food location are the two parameters
used to estimate the foraging motion. Random diffusion is
used for the exploration of the search space. In the KH algo-
rithm, the population diversity is improved by means of the
diffusion function, which is integrated into the krill individ-
uals. Random diffusion is the net movement of each krill
individual from high-density to low-density regions.

The motion velocity of krill particle applies the Lagrang-
ian model [43] as shown in Equation (5).

dxi
dt

=Ni + Fi + RDi: ð5Þ

In the above formula, dxi/dt is the motion velocity of krill
particle i, Ni is the induced motion, Fi is the foraging
motion, and RDi is the random diffusion of the ith krill indi-
vidual. The vital parameters that play an important role in
the KH algorithm are outlined in Table 5.

The steps to select the optimal feature subset using KH is
outlined below (Algorithm 2):

5.2.3. Outline of the BFO Algorithm for Feature Selection. The
bacterial foraging optimization (BFO) algorithm imitates the
pattern exhibited during the foraging process of Escherichia
coli bacteria, that includes chemotaxis, swarming, reproduc-
tion, and elimination-dispersal operations [41]. The basic
idea behind the foraging strategy of E. coli bacteria is to
obtain the maximum nutrition in a unit time. The chemo-
taxis strategy involves the searching of nutrition by taking
small movements such as tumbling, moving, and swimming,
using its locomotory organ called flagella. The swarming
strategy deals with the communication between bacteria.
When the bacteria discover high amount of nutrients, they
will release chemical substances to attract other bacteria. If
they are in danger, they will tend to prevent other bacteria.
The reproduction process involves splitting of healthier bac-
terium into two bacteria, and the low healthy bacteria are set
to die. Finally, the elimination-dispersal strategy involves
replacing the low health bacterium by randomly generated
new ones. The vital parameters that play an important role
in the BFO algorithm are outlined in Table 6.

The steps involved in finding the optimal feature subset
using the BFO algorithm is outlined below:

Table 12: Performance of FCSO, FKH, and FBFO classifiers and super learner on hepatitis dataset.

Feature selection algorithm Size of feature subset TN FP FN TP Accuracy Sensitivity Specificity Precision F-score

CSO 16 47 2 10 42 88.12 80.77 95.92 95.45 0.88

KH 10 45 4 6 46 90.10 88.46 91.84 92.00 0.90

BFO 19 47 2 12 40 86.14 76.92 95.92 95.24 0.85

Super learner — 8 1 1 11 90.48 91.67 88.89 91.67 0.92

Table 13: Performance of FCSO, FKH, and FBFO classifiers and super learner on vertebral column dataset.

Feature selection algorithm Size of feature subset TN FP FN TP Accuracy Sensitivity Specificity Precision F-score

CSO 3 74 10 17 63 83.54 78.75 88.10 86.30 0.82

KH 3 81 3 13 67 90.24 83.75 96.43 95.71 0.89

BFO 2 80 4 17 63 87.20 78.75 95.24 94.03 0.86

Super learner — 19 2 4 8 81.82 66.67 90.48 80.00 0.73

Table 14: Performance of FCSO, FKH, and FBFO classifiers and super learner on Cleveland heart disease dataset.

Feature selection algorithm Size of feature subset TN FP FN TP Accuracy Sensitivity Specificity Precision F-score

CSO 6 60 8 12 42 83.61 77.78 88.24 84.00 0.81

KH 10 56 12 11 43 81.15 79.63 82.35 78.18 0.79

BFO 11 53 15 13 41 77.05 75.93 77.94 73.21 0.75

Super learner — 13 2 2 8 84.00 80.00 86.67 80.00 0.80

Table 15: Performance of FCSO, FKH, and FBFO classifiers and super learner on Indian liver patient dataset.

Feature selection algorithm Size of feature subset TN FP FN TP Accuracy Sensitivity Specificity Precision F-score

CSO 5 103 62 33 102 68.33 75.56 62.42 62.20 0.68

KH 8 104 61 40 95 66.33 70.37 63.03 60.90 0.65

BFO 5 101 64 34 101 67.33 74.81 61.21 61.21 0.67

Super learner — 26 15 3 16 70.00 84.21 63.41 51.61 0.64
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5.3. Classifier Training. Each Cs is preprocessed and split into
training set ðTs − 60%Þ and testing set (Tt − 40%). A wrap-
per approach that uses three bioinspired algorithms CSO,
KH, and BFO with the classification accuracy of SVM as
the fitness function has been used for feature selection. The
features selected by each bioinspired algorithm are used to
train three BPNNs independently using CGA. The number
of hidden layers for each BPNN is 1, and the activation func-
tion used in the hidden layer is sigmoid. The learning rate is
1e–07, and the maximum number of iterations is 100. Since
the classification is binary, each BPNN has only one output
node, and the activation function used in the output layer is
sigmoid. Figure 2 elaborates the process of training BPNN
classifiers.

The number of training instances for FCSO, FKH, and
FBFO classifiers is presented in Table 3. Though majority
of the features selected by each bioinspired algorithm over-
lap, it has been inferred that the number of features selected
by each algorithm is not the same. The parameter settings
for each classifier is presented in Table 7.

The steps to train the BPNN classifier using three BPNN
classifier and trained using CSO, KH, and BFO algorithms
are outlined below:

5.4. Classifier Testing and Dataset Construction for Super
Learner. After training the classifier with 60% of the prepro-
cessed Cs ðTsÞ, classifier testing is performed using the
remaining 40% of the of the preprocessed Cs ðTtÞ. Figure 3

Table 16: Comparison of the proposed work and existing work using clinical dataset.

Author/year Method/reference
Accuracy %

WDBC SHD HCC HD VCD CHD ILP

Ayon et al. (2020)
DNN [45] — 98.15 — — — 94.39 —

SVM [45] — 97.41 — — — 97.36 —

Bai Ji et al. (2020) IBPSO with k-NN [46] 96.14 — — — — — —

Elgin et al. (2020) Cooperative coevolution and RF [30] 97.1 96.8 72.2 82.3 91.4 93.4 —

Magesh et al. (2020) Cluster-based decision tree [47] — — — — — 89.30 —

Rabbi et al. (2020) PCC and AdaBoost [48] — — — — — — 92.19

Rajesh et al. (2020) RF classifier [49] — — 80.64 — — — —

Salima et al. (2020) ECSA with k-NN [50] 95.76 82.96 — — — — —

Singh J et al. (2020) Logistic regression [51] — — — — — — 74.36

Sreejith et al. (2020) CMVO and RF [28] — — — — — — 82.46

Sreejith et al. (2020) DISON and ERT[27] — 94.5 — — 87.17 93.67 —

Tougui et al. (2020) ANN with Matlab [52] — — — — — 85.86 —

Tubishat et al. (2020) ISSA with k-NN [53] — 88.1 — — 89.0 — —

Abdar et al. (2019) Novel nested ensemble nu-SVC [54] — — — — — 98.60 —

Anter et al. (2019) CFCSA with chaotic maps [31] 98.6 — — 68.0 — 88.0 68.4

Aouabed et al. (2019)
Nested ensemble nu-SVC, GA and

multilevel balancing [55]
— — — — — 98.34 —

Elgin et al. (2019) DE, LO and GSO with Adaboost SVM [32] 98.73 — — 93.9 — — —

Książek et al. (2019) SVM [56] — 97.41 — — — 97.36 —

Sayed et al. (2019)
Novel chaotic crow search algorithm

with k-NN [57]
90.28 78.84 — 83.7 — — 71.68

Abdar et al. (2018) MPNN and C5.0 [58] — — — — — — 94.12

Abdullah et al. (2018)
k-NN [59] — — — — 85.32 — —

RF [59] — — — — 79.57 — —

Sawhney et al. (2018) BFA and RF [60] — — 83.50 — — — —

Abdar et al. (2017)
Boosted C5.0 [61] — — — — — — 93.75

CHAID [61] — — — — — — 65.0

Zamani et al. (2016) WOA with k-NN [62] — 77.05 — 87.10 — — —

Abdar (2015)
SVM with rapid miner [63] — — — — — — 72.54

C5.0 with IBM SPSS modeller [63] — — — — — — 87.91

Santos et al. (2015)
Neural networks and augmented

set approach [64]
— — 75.2 — — — —

Chiu et al. (2013) ANN and LR [65] — — 85.10 — — — —

Mauricio et al. (2013) ABCO with SVM [66] — 84.81 — 87.10 — 83.17 —

Proposed CSO, KH, BFO, and super learner 96.83 86.36 94.74 90.48 81.82 84.00 70.00
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elaborates the process of testing the three classifiers and also
throws light on the process of training the super learner.

Feature selection is performed on the testing set by que-
rying the FCSO, FKH, and FBFO databases. The instances of
the testing set containing the features selected by the CSO
are used to test the FCSO classifier; similarly, the instances
of the testing set containing the features selected by the
KH and BFO are used to test the FKH and FBFO classifier.
The performance of the FCSO, FKH, and FBFO classifiers
are evaluated using the results obtained from the testing set.

The classification result of each instance of the testing set
for FCSO, FKH, and FBFO classifiers and the class label cor-
responding to each instance of the testing set will be the can-
didate instances for training and testing the super learner.

5.5. Super Learner Training and Testing. As outlined in Sec-
tion 5.4, the classification result pertaining to each instance
of the testing set for FCSO, FKH, and FBFO classifiers and
the class label corresponding to each instance of the testing
set will be the candidate instances for training and testing
the super learner. Figure 4 elaborates the process of training
and testing of the super learner. The training set comprises
of 80% of the instances, and the testing set comprises of
20% of the instances. The number of training and testing
instances for the super learner is presented in Table 3.

Super learner is a type of ensemble classifier [44]. In this
work, a BPNN classifier trained using CGA is used as the
super learner. The parameter settings for the super learner
are presented in Table 8.

The super learner is trained using the steps presented in
Section 5.3 for training the BPNN classifier using CGA, and
the performance of the super learner is evaluated using the
testing set.

6. Results and Discussions

Seven clinical datasets from the UCI ML repository, namely,
WDBC, SHD, HCC, HD, VCD, CHD, and ILP have been
used for experimentation. The performance of the FCSO,
FKH, and FBFO classifiers and super learner is evaluated in
terms of accuracy, sensitivity, specificity, precision, and F
-score, which are calculated based on true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
using Equations (22), (23), (24), (25), and (26).

Accuracy =
TP + TN

TP + TN + FP + FN
: ð22Þ

In the above formula, TP is the number of positive instances
predicted as positive by the classifier, TN is the number of
negative instances predicted as negative by the classifier, FP
is the number of negative instances predicted as positive by
the classifier, and FN is the number of positive instances pre-
dicted as negative by the classifier.

Sensitivity =
TP

TP + FN
, ð23Þ

Specificity = TN
TN + FP

, ð24Þ

Precision =
TP

TP + FP
, ð25Þ

F − score =
2TP

2TP + FP + FNð Þ : ð26Þ

Accuracy, sensitivity, specificity, precision, and F − score
obtained using FCSO, FKH, and FBFO classifiers and super
learner for the datasets WDBC, SHD, HCC, HD, VCD,
CHD, and ILP are presented in Tables 9–15.

The super learner has achieved a classification accuracy
of 96.83% for WDBC, 86.36% for SHD, 94.74% for HCC,
90.48% for HD, 81.82% for VCD, 84.0% for CHD, and
70.0% for ILP. The classification accuracy of the proposed
work has been compared with the performance of the exist-
ing work on clinical datasets and the comparison results
summarized in Table 16.

7. Conclusion and Scope for Future Work

A CAD system that employs a super learner to diagnose the
presence or absence of a disease has been implemented in this
work. Seven Cs from the UCI ML repository, namely,
WDBC, SHD, HCC, HD, VCD, CHD, and ILP have been
used for experimentation. Each Cs is preprocessed, and the
preprocessed Cs is split into training and testing sets. A
wrapper-based feature selection approach using three bioin-
spired algorithms, namely, CSO, KH, and BFO, with the
accuracy of SVM classifier has been used to select the optimal
feature subsets. The selected feature subsets are used to train
three BPNN classifiers using CGA, and the performance of
the trained classifiers is evaluated. The classification results
obtained for each instance of the testing set of the three clas-
sifiers and the class label associated with each instance of the
testing set will be the candidate instances for training and
testing the super learner. The super learner achieved a classi-
fication accuracy of 96.83% for WDBC, 86.36% for SHD,
94.74% for HCC, 90.48% for HD, 81.82% for VCD, 84.0%
for CHD, and 70.0% for ILP.

CAD systems to diagnose disorders in the human body
from different imaging modalities such as X-ray, computed
tomography, magnetic resonance imaging, and positron
emission tomography are gaining importance. This work
can be extended by developing CAD systems to diagnose dis-
orders from the medical images acquired through different
imaging modalities. Features based on shape, texture, and
run length can be extracted from the images, and the feature
selection algorithms used in this work can be used to select
the relevant features. The relevant features can be used to
build classifier models to predict the presence or absence of
disorders from the images.
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