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Abstract 

Objective: To evaluate the feasibility and accuracy of machine learning based texture analysis of 
unenhanced CT images in differentiating subclinical pheochromocytoma (sPHEO) from lipid-poor 
adenoma (LPA) in adrenal incidentaloma (AI). 
Methods: Seventy-nine patients with 80 LPA and 29 patients with 30 sPHEO were included in the 
study. Texture parameters were derived using imaging software (MaZda). Thirty texture features 
were selected and LPA was performed for the features selected. The number of positive features 
was used to predict results. Logistic multiple regression analysis was performed on the 30 texture 
features, and a predictive equation was created based on the coefficients obtained. 
Results: LPA yielded a misclassification rate of 19.39% in differentiating sPHEO from LPA. Our 
predictive model had an accuracy rate of 94.4% (102/108), with a sensitivity of 86.2% (25/29) and a 
specificity of 97.5% (77/79) for differentiation. When the number of positive features was greater 
than 8, the accuracy of prediction was 85.2% (92/108), with a sensitivity of 96.6% (28/29) and a 
specificity of 81% (64/79). 
Conclusions: Machine learning-based quantitative texture analysis of unenhanced CT may be a 
reliable quantitative method in differentiating sPHEO from LPA when AI is present. 
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Introduction 
The increased incidence of adrenal 

incidentaloma (AI) is mostly due to advancements in 
imaging techniques and increases in the volume of 
cross-sectional imaging carried out. The term AI refers 

to an incidentally identified adrenal mass greater than 
1 cm in diameter during an imaging examination 
performed for reasons other than the evaluation of 
adrenal glands. Histologically, the most common AIs 
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are adrenal adenoma (41%-52%), followed by 
metastatic diseases (19%), adrenocortical carcinoma 
(5-10%), myelolipoma (9%) and pheochromocytoma 
(8%) [1, 2]. When selecting optimal adrenal imaging 
modalities, computed tomography (CT) is one of the 
most widely chosen tools [3]. 

An AI is easily identified if it has certain 
diagnostic features. A cyst presents as a well-defined 
homogenous round mass without enhancement, and 
a myelolipoma has macroscopic fat deposits that are 
detectable on a CT scan. If an adenoma exhibits low 
density on a plain CT scan with CT attenuation values 
lower than 10 Hounsfield units (HU), it can be 
diagnosed with confidence (sensitivity of 71% and 
specificity of 98%) and is referred to as a fat-rich 
adenoma [4]. However, it remains difficult for 
radiologists and surgeons to differentiate some 
pheochromocytomas from lipid-poor adenomas 
(LPAs, those with CT attenuation values over 10 HU) 
because the imaging features for both conditions 
largely overlap [5-9]. Pheochromocytomas have a 
variable appearance on imaging, and some atypical 
pheochromocytomas that lack typical imaging 
characteristics can be easily misdiagnosed as 
adenomas, especially as LPA.  

Generally, an incidentally detected 
pheochromocytoma is asymptomatic and termed 
“subclinical pheochromocytoma (sPHEO)”. Although 
a sPHEO is usually clinically silent, it maintains 
secretory function. Failing to differentiate such 
pheochromocytomas from other tumors before 
surgery or biopsy may lead to a life-threatening crisis 
because these interventions may stimulate the tumor 
and result in an adrenergic storm [5, 9]. Therefore, 
identifying the possibility of this disease is of vital 
importance for avoiding potential catastrophic 
consequences and guiding further treatments. Thus, 
the ability to distinguish sPHEO from LPA is a 
worthwhile goal. However, making this distinction in 
conventional imaging analysis has been impossible 
thus far. 

Quantitative texture analysis (QTA) refers to the 
process of converting digital medical images into 
high-dimensional, mineable data via high-throughput 
extraction of quantitative descriptors, followed by 
subsequent data analysis and model building for 
improved decision-making support [10-12]. The recent 
results of QTA are promising in oncological practice, 
including tumor discrimination and subtype 
classification, as well as treatment response 
assessments [11, 13-16]. To the best of our knowledge, no 
previously published study has determined whether 
QTA can be applied to differentiate sPHEO from LPA 
in AI. Therefore, we wondered whether QTA could 
play an important role in making this distinction on 

unenhanced CT scans. The goal of our study was to 
determine the feasibility and accuracy of using 
machine learning-based QTA in differentiating 
sPHEO from LPA in AI on unenhanced CT images. 

Materials and methods 
Patients 

Ethical approval was obtained from Institutional 
Review Board of our Hospital, and written informed 
consents were waived for this retrospective study. 

 Our study was carried in accordance with 
relevant guidelines and regulations. Between January 
2013 to June 2016, all patients with surgically and 
pathologically confirmed sPHEO or adrenal adenoma 
were retrieved from the medical database of our 
hospital. Inclusion criterion was AI identified during 
an imaging examination performed for reasons other 
than the evaluation of adrenal glands. The exclusion 
criteria were (1) no preoperational CT images 
available; (2) existing unenhanced CT scan displaying 
a fat-rich adenoma for patients with adrenal 
adenoma, (3) adrenal lesion showing enhancement of 
greater than 100 HU on a CT scan for patients with 
pheochromocytoma; (4) no enhancement found in the 
lesion for patients with adrenal adenoma; and (5) CT 
performed on other machines other than 320-MDCT 
scanner (Aquilion ONE, Toshiba, Otawara, Japan). 
According to the inclusion/exclusion criteria (shown 
in Supplementary files), 80 LPAs (79 patients) and 30 
sPHEOs (29 patients) were ultimately enrolled in the 
present study. 

Imaging technique 
All patients underwent a uniform CT scanning 

protocol on a 320-multiple detector computed 
tomography (MDCT) scanner (Aquilion ONE, 
Toshiba, Otawara, Japan). After routine nonenhanced 
CT, arterial and portal venous-phase 
contrast-enhanced CT scans were performed, with 
fixed delay times of 28 s and 60 s, respectively, 
followed by intravenous administration of 90 - 100 ml 
of iodinated contrast material Ultravist 370 (Bayer 
Schering Pharma, Berlin, Germany) at a rate of 3.0 - 
3.5 ml/s for adults and 1.0 - 1.5 ml/s for children 
using a power injector (Ulrich CT plus 150, Ulrich 
Medical, Ulm, Germany). The precontrast and 
contrast-enhanced CT images were reconstructed 
with a thickness of 1 mm. The scanning parameters 
are listed in Supplementary table 1.  

Imaging analysis 
Images for each patient were reviewed by three 

abdominal radiologists with 8, 7 and 13 years of 
experience, who were blinded to patient information, 
including the pathological diagnosis. The radiologists 
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independently evaluated tumor shape, size, margin 
and heterogeneity, the presence of calcification and 
the CT attenuation value of the tumor. The findings 
were recorded by consensus.  

QTA features exaction, selection and texture 
analysis 

Details about QTA features exaction, selection 
and texture analysis were shown in supplementary 
files. Briefly, QTA features exaction was performed by 
using texture analysis software (MaZda Version 4.6, 
Institute of Electronics, Technical University of Lodz, 
Poland) [17]. Feature analysis was carried out using the 
B11 (version 3.3) application of MaZda. CT images 
processing [18], QTA features exaction, selection and 
texture analysis [19], as well as intra-observer (reader 1 
twice) and interobserver (reader 1 v reader 2) 
reproducibility evaluations, can be found in the 
Supplementary files. 

Development of an equation for differentiating 
sPHEO from LPA 

Logistic multiple regression analysis was 
performed using the 30 texture features selected in the 
above steps. We ultimately identified 4 texture 
features with good diagnostic accuracy when 
combined. Regression coefficients obtained for each 
texture feature were used to create an equation.  

Statistical analysis 
Statistical analyses were performed using SPSS 

(version 19, IBM), and a P value < 0.05 was considered 
significant. Quantitative data with a normal 
distribution are presented as the means ± SD, and the 
groups were compared using independent Student’s t 
test. Quantitative data with a non-normal distribution 
are presented as medians (interquartile ranges), and 
the groups were compared using a Wilcoxon 
rank-sum test. Patient sex ratios and lesion location 
ratios between the two groups were compared using a 
chi-square test. Receiver operating characteristic 
(ROC) curves were used to analyze the predictive 
value of every feature and compare the predictive 
value of the number of positive features and the 
equation.  

Results 
Clinical characteristics  

Demographic information and CT scan 
characteristics of the analyzed tumors are presented 
in Table 1. 

Age was significantly different between patients 
with LPAs (48 ± 12 years) and those with sPHEOs (42 
± 15 years) (P = 0.047). SPHEOs were significantly 
larger than LPAs (5.4 ± 2.2 cm vs 2.7 ± 1.8 cm) (P < 

0.001). The mean unenhanced CT attenuation value of 
sPHEOs was significantly higher than that of LPAs 
(37.2 ± 7.4 HU and 24.5 ± 9.9 HU respectively, P < 
0.001), and there was a significant difference in the 
location ratio among them (P = 0.002). There was no 
significant difference between the sex ratios of 
patients with either type of lesion (P = 0.141). 

 

Table 1. Characteristics of patients with LPA or sPHEO 

Characteristics LPA sPHEO P value 
Sex   P=0.141 
Men 37 9  
Women 42 20  
Age (y) 48±12 42±15 P=0.047 
Lesion size (mm) 26.5±18.2 53.6±22 P<0.001 
Location    
Left 46 8 P=0.009 
Right 
Both 

32 
1 

20 
1 

 

Unenhanced CT value 
(HU) 

24.5±9.9 37.2±7.4 P<0.001 

 

Feature selection and texture analysis 
Satisfactory inter- and intra-observer 

reproducibility of QTA features extraction was 
achieved. The interobserver intraclass correlation 
coefficients (ICCs) between reader 1 (first time) and 
reader 2 ranged from 0.754 to 0.855. The 
intra-observer ICC between reader 1’s twice feature 
extraction ranged from 0.792 to 0.893. Therefore, the 
features extracted by reader 1 were selected for 
subsequent analysis. 

A total of 30 texture features were selected from 
377 original parameters produced from all patient 
scans. This resulted in a misclassification rate of 
19.39% for differentiating sPHEOs from LPA on 
unenhanced CT images using LPA (Figure 1).  

 

 
Figure 1. Differentiating sPHEO from lipid-poor adenoma based on a dataset 
including all patients. Misclassification rate was 19.39% from a LPA of unenhanced CT 
scans. Classification results are represented graphically as the relationship between 
the most discriminating factors (MDFs). MDF 1, MDF 2 and MDF 3 are the most 
discriminating feature axes used in the LPA to represent the classification. 

 
Wilcoxon rank sum tests revealed that all 30 

texture features were significantly different between 
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sPHEO and LPA (P < 0.05) (Supplementary table 2). 
ROC curve analyses of the 30 texture features showed 
that all features had a good accuracy for making a 
differential diagnosis of sPHEO and LPA with a 
concordance rate greater than 80%, except for 
S(5,5)SumAverg, S(0,5)SumAverg and S(5,-5)Correlat 
(Supplementary table 3).  

Geo W6, GeoW13, S(5,5)SumAverg, WavEnHL_ 
s-3 and S(0,5)SumAverg were considered positive if 
their values were less than their cutoff points. For the 
remaining features, values greater than the cutoff 
point were considered positive. We used the number 
of positive features as a predictor. When the number 
of positive features exceeded 8, the accuracy of 
prediction was 85.2% (92/108), with a sensitivity of 

96.6% (28/29) and a specificity of 81% (64/79) 
(Supplementary table 4). 

Development of a prediction equation 
To screen for the most reliable independent 

features, we performed a logistic multiple regression 
analysis of the 30 features. The inclusion criterion was 
a P < 0.010, and the exclusion criterion was a P>0.05. 
Finally, GeoFmin, GeoS, 135dr_GLevNonU and 
GeoEr had a good diagnostic accuracy when 
combined (Table 2). The regression coefficients 
obtained for each feature were used for the 
construction of an equation to calculate a value, 
denoted P, to assess the nature of a lesion based on the 
given texture feature values: 

 

𝑝𝑝 =
1

1 + 𝑒𝑒[−(−8.728+0.624∗GeoFmin−0.636∗GeoS−0.051∗135dr_GLevNonU+0.731∗GeoEr)] 

 
P values greater than or equal to 0.5 and less 

than 1 suggest sPHEO, and P values greater than 0 
and less than 0.5 indicate LPA.  

 

Table 2. Logistic multiple regression analysis results 

Features Regression 
coefficient (B) 

Standard 
error 

Chi-square 
value 

P value Exp (B) 

GeoFmin 0.624 0.239 6.850 0.009 1.867 
GeoS -0.636 0.205 9.668 0.002 0.529 
135dr_GLevNonU -0.051 0.019 6.927 0.008 0.950 
GeoEr 0.731 0.298 6.023 0.014 2.077 
Constant -8.728 1.947 20.088 0.000 0.000 

 
Next, a back-substitution check was performed. 

This equation had a predictive accuracy of 94.4% 
(102/108), with a sensitivity of 86.2% (25/29) and a 
specificity of 97.5% (77/79) in differentiating sPHEO 
from LPA (Table 3).  

 

Table 3. Predictive effect of the equation 

Observed value Predictive value Total 
Fat-poor adenoma Subclinical 

pheochromocytoma 
Fat-poor adenoma 77 2 79 
Subclinical 
pheochromocytoma 

4 25 29 

Total 81 27 108 
 
The predictive values of two methods, using the 

number of positive features or the equation, were 
compared using ROC curves. The area under the ROC 
curve for the equation-based method was 0.952 
(0.897-1.000), which was slightly greater than that of 
the method using the number of positive features 
(0.917, 0.8946-0.988). However, there was no 
significant difference between these areas (P >0.05) 

(Figure 2). 

Discussion 
Although AI is a common clinical entity [1, 

2, 20, 21], it remains challenging to classify AIs if 
the tumors do not have typical imaging 
features. Among AIs, sPHEOs have been 
termed imaging “chameleons” due to their 
various imaging features that may mimic other 
lesions, such as LPA [6-8, 22, 23]. CT washout 
protocols are not reliable for differentiating 
sPHEO from LPA [6-8, 22]. Moreover, 
recognizing a sPHEO preoperatively is of vital 
importance because the presence of a sPHEO 
does not exclude the possibility of a 
hypertensive crisis [24, 25]. However, the 
problem of distinguishing sPHEOs from LPAs 
remains unsolved. In the present study, we 
introduce a new method termed machine 

 

 
Figure 2. ROC curves of the two predictive methods. Total score represents the number of 
positive features. Predicted probability represents the equation. 
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learning-based QTA, which converts images into 
higher dimensional data and mines these data, to 
address this problem. As expected, both our equation 
and the number of positive features derived from our 
analysis represent the first demonstration of an 
effective method to differentiate sPHEO from LPA, 
revealing the clinical significance of this type of 
analysis.  

In our study, the unenhanced CT attenuation 
values of sPHEOs were significantly greater than 
those of LPAs. The minimum unenhanced CT 
attenuation value of a sPHEO is 23 HU; therefore, 
none of the sPHEOs imaged in our study could be 
confused for a lipid-rich adenoma. This result is in 
accordance with the findings of Patel et al and 
Motta-Ramirez et al [8, 26] 

Our results show that the new method can 
differentiate sPHEO from LPA based on unenhanced 
CT images. According to our data, the classification 
accuracy was approximately 80% using LPA. Yan et al 
divided the classification results into several levels 
according to the misclassification rates in 
differentiating angiomyolipoma with minimal fat 
from renal cell carcinoma: excellent (misclassification 
rates ≤ 10%), good (10% < misclassification rate ≤ 
20%), moderate (20% < misclassification rates ≤ 30%), 
fair (30% < misclassification rates ≤ 40%), and poor 
(misclassification rates ≥ 40%) [16]. According to these 
criteria, our method resulted in good classification 
rates for sPHEO versus LPA.  

Our study provides reliable solutions for 
differentiating sPHEO from LPA on unenhanced CT 
scans. Both methods applied in this study yielded 
good results. When the number of positive features 
exceeded 8, the accuracy of prediction was 85.2% 
(92/108), with a sensitivity of 96.6% (28/29) and a 
specificity of 81% (64/79). The equation had a 
predictive accuracy rate of 94.4% (102/108), with a 
sensitivity of 86.2% (25/29) and a specificity of 97.5% 
(77/79) in differentiating sPHEO from LPA. The score 
of an adrenal lesion is easily obtained using the 
equation presented here, which includes the 
following QTA features: GeoFmin, GeoS, 
135dr_GLevNonU and GeoEr. Furthermore, the 
calculation can be performed with a computer, 
making it easy for radiologists and surgeons to obtain 
results that are more accurate than their subjective 
judgments. 

Although contrast-enhanced CT images were 
also available, we restricted our analysis to 
unenhanced CT images because we wanted to know if 
such analysis based on unenhanced CT images only is 
adequate for making a satisfactory distinction. If this 
analysis truly works, then it will help prevent 
unnecessary enhanced CT scans. In addition, the 

reliability of such analysis is closely related to the 
source of original data. Data extracted from 
unenhanced CT scans are much simpler than those 
extracted from enhanced CT scans as unenhanced CT 
images depend only on the inherent density of the 
tumor, while enhanced CT images are affected by 
many other factors, including differences in contrast 
materials and injection rate, as wells as the scan delay 
time. Unenhanced CT is easier to control, and the 
scans are easier to obtain. Additionally, in our study, 
we extracted all QTA features from the same CT 
scanner at our institution to reduce bias and variance. 
In a study by Ganeshan et al [27], significant textural 
differences in both nonenhanced and 
contrast-enhanced lung cancer CT images were 
identified. However, whether iodine contrast affects 
CT-based QTA remains unclear. Studies regarding the 
influence of enhancement on QTA are lacking, and 
further research may be needed to address this 
problem. 

This study had several limitations that may have 
influenced the results. There was a large discrepancy 
between the sample sizes for the two groups due to 
the difference in the relative incidence of the two 
types of lesions, as well as the strict exclusion criteria 
used in our study. The retrospective nature of the 
study may have also resulted in a number of 
limitations, including subject selection bias. In the 
future, a well-designed prospective study with 
enough cases should be carried out to test the 
reliability of our equation. In addition, due to the 
relatively small size of our study population, we did 
not divide our data into training and test datasets. 

Conclusion 
Based on unenhanced CT images, our results 

suggest that machine learning-based QTA is a feasible 
method for differentiating sPHEO from LPA when AI 
is present. 

Supplementary Material  
Supplementary figure, tables and methods.  
http://www.jcancer.org/v09p3577s1.pdf  
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