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Simple Summary: Although most genes are expected to transcribe both alleles evenly in diploid
animals, some genes show monoallelic expression (MAE). The expressed allele can be determined ran-
domly or by parental origin (known as genomic imprinting). Here, we conducted genome-wide and
transcriptome-wide screening of MAE genes in Korean cattle (Hanwoo) and identified tissue-specific
MAE pattens. The effects of MAE genes on phenotypic variation were evaluated by association
analysis with the breeding values of five traits that were used in a Hanwoo breeding program.

Abstract: Hanwoo, an indigenous Korean cattle breed, has been genetically improved by selecting
superior sires called Korean-proven bulls. However, cows still contribute half of the genetic stock of
their offspring, and allelic-specific expressed genes have potential, as selective targets of cows, to
enhance genetic gain. The aim of this study is to identify genes that have MAEs based on both the
genome and transcriptome and to estimate their effects on breeding values (BVs) for economically
important traits in Hanwoo. We generated resequencing data for the parents and RNA-sequencing
data for the muscle, fat, and brain tissues of the offspring. A total of 3801 heterozygous single
nucleotide polymorphisms (SNPs) in offspring were identified and they were located in 1569 genes.
Only 14 genes showed MAE (seven expressing maternal alleles and seven expressing paternal
alleles). Tissue-specific MAE was observed, and LANCL1 showed maternal allele expression across
all tissues. MAE genes were enriched for the biological process of cell death and angiogenesis, which
included ACKR3 and PDCL3 genes, whose SNPs were significantly associated with BVs of lean meat
production-related traits, such as weight at 12 months of age, carcass weight, and loin eye area. In
the current study, monoallelically expressed genes were identified in various adult tissues and these
genes were associated with genetic capacity in Hanwoo.

Keywords: Hanwoo; monoallelic expression; adult tissues; polymorphism; breeding value

1. Introduction

Genomic imprinting is a unique epigenetic phenomenon in which certain genes have
monoallelic expression (MAE) based on allelic parental origins [1]. That is, the maternal
or paternal allele is suppressed during expression of the imprinted gene. Since the first
discovery of genomic imprinting in mice in the 1980s, more than 100 imprinted genes
have been reported in mice and humans [2] and are listed in the web-based imprinted
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gene database (http://www.geneimprint.com/, accessed on 1 October 2021). Furthermore,
imprinting status varies in tissue- and developmental stage-specific ways [3].

For farm animals in selective breeding programs, these imprinted genes have impor-
tant implications since the genetic merits of reciprocal heterozygotes at imprinted loci have
different effects on phenotypes [4]. The effects of genomic imprinting on quantitative trait
loci (QTL) for economical traits have been identified in cattle [5], pigs [6,7], and sheep [8].
In addition, the associations between polymorphisms of imprinted genes and quantitative
traits have also been reported in livestock species. For example, insulin-like growth factor
2 (IGF2) and insulin-like growth factor 2 receptor (IGF2R), which are expressed paternally
and maternally, respectively, and were associated with growth traits and meat quality
in cattle [9,10]. In cattle, Killian et al. first reported the imprinted gene M6P/IGF2R in
cattle and suggested that the different imprinting status of M6P/IGF2R in species provided
clues into divergent evolution [11]. Several studies also identified MAE of Nesp55, XIST,
IGF2, PEG3, and H19 [12–14]; these studies used a polymorphism-based approach for
target candidate genes, which were chosen based on previous literature regarding genomic
imprinting in other species. Next, genome-wide screening of MAE genes was applied for
conceptus [15] and multiple adult tissues [16].

These studies implied that the imprinting genes and their causative SNPs could pro-
vide information on the genetic variations caused by genomic imprinting. The integration
of imprinting parent-of-origin effects associated with trait(s) of interest in genomic selec-
tion has been proposed to predict future phenotypes in livestock species [17]. Therefore,
the aims of this study were to screen MAE genes for three types of tissues in Hanwoo
by genome and transcriptome-based approaches and to provide new insights into the
relationship between SNPs of MAE genes and the breeding values of five traits that were
implemented in the national genetic evaluation system of Hanwoo.

2. Materials and Methods
2.1. Experimental Animals and Sample Collection

To identify MAE in Hanwoo, three animals from a family (father, mother, and off-
spring) were provided by the Hanwoo Experiment Station, National Institute of Animal
Science, South Korea. The peripheral blood samples were collected for DNA extraction
from all animals. For RNA-sequencing, tissue samples, such as muscle (the longissimus
muscle and femoral muscle), fat (backfat and abdominal fat), and brain (pituitary gland
and hypothalamus) were collected from the offspring after slaughtering at 37 months of
age.

2.2. Extraction of DNA and RNA

Genomic DNA was extracted from the peripheral blood using the QIAamp DNA
Blood Maxi Kit (Qiagen, Gaithersburg, MD, USA) based on the manufacturer’s instruc-
tions. In addition, total RNA of offspring was extracted from the six tissues using TRIzol
reagent (Life Technologies Co., Grand Island, NY, USA) based on the manufacturer’s
instructions. DNA and RNA quantity and quality were confirmed using agarose gel
electrophoresis and Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies Inc.,
Wilmington, DE, USA).

2.3. Sequencing

We produced indexed shotgun paired-end libraries with approximately 500 bp inserts
that were generated using TruSeq Nano DNA Library Prep Kit (Illumina, San Diego, CA,
USA) following the standard Illumina sample-preparation protocol. Briefly, 200 ng of gDNA
was fragmented by Covaris M220 (Woburn, MA, USA), resulting in a median fragment size
of approximately 500 bp followed by end repair, A-tailing, and indexed adapter ligation
(approximately 125 bp adapter). Then, gel-based size selection from 550 to 650 bp was
conducted for the adapter-ligated DNA, and PCR amplification was performed for eight
cycles for libraries. The size-selected libraries were analyzed by an Agilent 2100 Bioanalyzer
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(Agilent Technologies, Palo Alto, CA, USA) to determine the size distribution and check for
adapter contamination. The resulting libraries were sequenced in an Illumina HiSeq 2500
(2 × 125-bp paired-end sequences) sequencer.

To construct cDNA libraries with the TruSeq RNA library kit (Illumina, San Diego,
CA, USA), 1 µg of total RNA was used. The protocol consisted of polyA-selected RNA
extraction, RNA fragmentation, random hexamer primed reverse transcription, and 100 nt
paired-end sequencing by Illumina HiSeq 2000 (Illumina, San Diego, CA, USA). The
libraries were quantified by qPCR according to the qPCR Quantification Protocol Guide
and qualified using an Agilent Technologies 2100 Bioanalyzer (Agilent Technologies, Palo
Alto CA, USA).

2.4. Identification of MAE Genes

The sequence reads were mapped to the Bos taurus reference genome (UMD 3.1.78)
using Bowtie2 [18] and TopHat [19] with default settings for re-seq and RNA-seq, respec-
tively. Variant calling was performed for resequencing data and RNA-sequencing data
using the Genome Analysis Toolkit (GATK, version 3.6) HaplotypeCaller with standard
settings [20]. The SNPs with QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < −12.5,
and ReadPosRankSum < −8.0 were filtered out. The SNPs located in the exon regions
were screened based on the SNP annotation using SnpEff software [21] and only exonic
SNPs with GQ ≥ 20 and DP ≥ 10 for re-seq data of sire and dam remained to get their
genotypes correctly.

To access the parental origin of the expressed allele in the offspring, homozygote SNPs
with opposite alleles from the parents were evaluated. Then, MAE SNPs were determined
based on allelic expression patterns in the RNA-seq data of each tissue. For considering
correct allele assignment, SNPs with GQ ≥ 20 and DP ≥ 10 from RNA-seq data were used.

2.5. Association Analysis and Functional Enrichment Analysis

A total of 203 Korean-proven bulls (KPN)s were used in the estimation of the effects of
MAE SNPs on breeding values of five traits that are routinely evaluated in Hanwoo [22].
Genotype data and estimated breeding values (BVs), including weight at 12 months of age
(WT12), carcass weight (CWT), loin eye area (LEA), backfat thickness (BFT), and marbling
(MAR), for these animals were provided by the Hanwoo Improvement Center, National
Agricultural Cooperative Federation, Korea. The association analysis was performed using
the general linear model procedure in the SAS statistical software package (SAS Institute
Inc., Cary, NC, USA). Park et al. investigated the genetic architecture of these traits and
reported that the traits had moderate and high heritability estimates [22]. The previous
studies on the association between genotypes and BVs considered BVs estimates of all
additive genetic effects without the other environmental effects—and no environmental
factor was included in the model [23,24]. Therefore, we followed their approaches in the
association analysis for MAE SNPs. The statistical model was as follows: yij = µ + Gi + eij,
where yij is the breeding value, µ is the general mean, Gi is the fixed effect of genotype i,
and eij is the random error. Statistical significance was determined by p < 0.05. Association
results are shown as the least-square means and standard error.

We identify the enriched gene ontology (GO) terms or the Kyoto encyclopedia of
genes and genomes (KEGG) pathways for MAE genes using the database for annotation,
visualization, and integrated discovery (DAVID) bioinformatics resources [25]. The results
with p < 0.1 were considered significant enrichments. The networks based on association
results and enriched terms were visualized in Cytoscape [26].

3. Results
3.1. Identification of SNPs with MAE

To determine monoallelic expressions of SNPs with heterozygous genotypes in off-
spring, whole genome resequencing for blood samples from sire and dam and RNA-
sequencing for six tissues from offspring were conducted. Descriptive statistics for the
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sequencing data are in Table S1. After trimming the raw reads from re-sequencing, an
average of 488 million (M) clean reads per sample were obtained, of which on average 94.2%
were aligned with the bovine reference genome sequences. RNA-seq libraries generated
an average of 49 M clean reads from six tissues. On average, 92.4% of clean reads were
mapped to the genome.

From variants calling for the parents’ resequencing data, a total of 5,898,127 SNPs
were identified, of which 96,139 SNPs (1.63%) were assigned to gene coordinates. To obtain
heterozygous exonic SNPs in offspring, we screened SNPs in which sire and dam were
homozygous with opposite alleles. A total of 3801 SNPs remained, which were within
1569 annotated bovine genes. Using variant calling for all transcriptome data of six tissues
from the offspring, the expressed alleles at these SNP loci were determined and used in
the identification of allele-specific expression patterns and parental origin of the expressed
alleles. Figure 1 shows 20 SNPs with MAE in at least 1 tissue of offspring in which 8 were
missense variants, 4 were synonymous variants, and 8 were 3’-UTR variants. These SNPs
were assigned to 14 genes located across 12 different chromosomes.
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Figure 1. SNPs with monoallelic expressions in Hanwoo.

3.2. Tissue-Specific MAE Genes

Figure 2 shows a tissue-specific MAE status of genes and the parental origin of their
expressed allele. The number of genes in which maternal alleles were expressed and the
number of genes in which paternal alleles were expressed were both seven. Only LanC
like 1 (LANCL1), whose maternal allele was expressed, showed MAEs across all three
tissues, and the MAE status of the other genes varied depending on the tissue. There were
two muscle specific MAE genes: death associated protein kinase 2 (DAPK2) and phosducin
like 3 (PDCL3); three fat specific MAE genes: N-6 adenine-specific DNA methyltransferase 1
(N6AMT1), atypical chemokine receptor 3 (ACKR3), aprataxin and PNKP like factor (APLF); and
three brain-specific MAE genes: protein disulfide isomerase family A member 4 (PDIA4), OCIA
domain containing 2 (OCIAD2), and ZNF470. The remaining five genes showed MAEs in
two types of tissues.
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As shown in Table 1, we compared the identified genes with databases that provide
the gene status of autosomal monoallelic expression or imprinting in multiple species, such
as dbMAE (https://mae.hms.harvard.edu, accessed on 1 October 2021) and Geneimprint
(http://www.geneimprint.com/, accessed on 1 October 2021). Ten of the 14 MAE genes in
this study were overlapped with MAEs in mice and/or humans in dbMAE, supporting
the adequacy of the MAE screening approach in this study. In addition, sarcoglycan epsilon
(SGCE) was reported as an imprinted gene with a paternal allele expression in cattle, mice,
humans, and pigs, corresponding to its MAE status in this study. The comparison results
indicated that four genes, PDCL3, N6AMT1, TRIM26, and ZNF470, were novel MAE genes
in cattle.

Table 1. Genes with monoallelic expressions in muscle, fat, and brain tissues of Hanwoo.

Gene Database

Ensembl ID Symbol Expressed Allele dbMAE 1 Geneimprint 2

ENSBTAG00000015066 LANCL1 Maternal M -
ENSBTAG00000011820 DAPK2 Maternal M and H -
ENSBTAG00000009962 PDCL3 Paternal - -
ENSBTAG00000008527 SRSF6 Maternal M -
ENSBTAG00000014653 SPNS1 Paternal M and H -
ENSBTAG00000001412 N6AMT1 Maternal - -
ENSBTAG00000018424 ACKR3 Maternal M -
ENSBTAG00000021282 SGCE Paternal M and H C, M, H, and P
ENSBTAG00000018401 APLF Paternal M and H -
ENSBTAG00000017468 NUCB2 Maternal M -
ENSBTAG00000035744 TRIM26 Paternal - -
ENSBTAG00000017143 PDIA4 Paternal M -
ENSBTAG00000001839 OCIAD2 Paternal M -
ENSBTAG00000046101 ZNF470 Maternal - -

Abbreviations: BTA, Bos taurus chromosome; C, cattle; H, human; M, mouse; P, pig. 1 dbMAE, https://mae.hms.
harvard.edu, accessed on 1 October 2021. 2 Geneimprint, http://www.geneimprint.com/, accessed on 1 October 2021.

https://mae.hms.harvard.edu
http://www.geneimprint.com/
https://mae.hms.harvard.edu
https://mae.hms.harvard.edu
http://www.geneimprint.com/
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3.3. Association Anlaysis with BVs and Functional Annotations of MAE Genes

Table 2 shows the results of association analysis using the KPN population. The BVs
for five major selection traits for Hanwoo, including WT12, CWT, LEA, BFT, and MAR,
were obtained from the Hanwoo Improvement Center. In the KPN population, 16 of
20 MAE SNPs were polymorphic, covering 11 MAE genes. The frequencies of homozygotes
of minor alleles were very low in most SNPs except for APLF, which had three completely
linked SNPs. Therefore, the genotypes with very low frequencies (<10%) at each locus
were excluded from statistical analysis. A total of six genes showed significant associations
with at least one trait (Table 2). The SNPs of N6AMT1, PDLA4, and PDCL3 (rs466790251,
rs109714759, and rs109714759, respectively) were significantly associated with three traits:
WT12, CWT, and LEA (p < 0.05). The ACKR3 SNP (rs384940597) influenced breeding values
of WT21 (p < 0.001) and CWT (p = 0.018), and the APLF SNPs showed association with only
CWT (p < 0.049). Only SNPNS1 influenced MAR (p = 0.027).

Table 2. Effects of MAE SNPs on breeding values of traits measured in Hanwoo.

Gene SNP ID Allele
Genotype Frequency 1

Associated Traits
(p-Value)AA AB BB

N6AMT1 rs466790251 G/A 124
(0.61)

71
(0.35)

8
(0.04) 2

WT12 (p = 0.005)
CWT (p < 0.001)
LEA (p < 0.001)

ACKR3 rs384940597 T/C 122
(0.60)

73
(0.36)

8
(0.04) 2

WT12 (p < 0.001)
CWT (p = 0.018)

PDIA4 rs109714759 C/T 157
(0.77)

45
(0.22)

1
(0.00) 2

WT12 (p < 0.001)
CWT (p = 0.003)
LEA (p = 0.005)

PDCL3 rs133723669 T/C 124
(0.61)

71
(0.35)

8
(0.04) 2

WT12 (p = 0.030)
CWT (p = 0.042)
LEA (p < 0.001)

APLF
rs136662956
rs133791032
rs135512132

A/G
G/A
C/T

80
(0.39)

97
(0.48)

26
(0.13) CWT (p = 0.049)

SPNS1 rs134811009 A/G 182
(0.90)

21
(0.10)

0
(0.00) 2

LEA (p = 0.004)
MAR (p = 0.027)

Abbreviations: WT12, breeding value for weight at 12 months of age; CWT, breeding value for carcass weight;
LEA, breeding value for loin eye area; MAR, breeding value for marbling. 1 The genotypes were represented by
the combination of alleles A and B, of which B indicated the minor allele. 2 Genotype that was excluded from the
association analysis.

The functional annotation for MAE genes revealed that biological processes, including
cell death, positive regulation of epithelial cell proliferation, regulation of intrinsic apoptotic
signaling pathway, regulation of immune system process, and angiogenesis were enriched
for MAE genes despite a limited number of identified MAE genes. There was no enriched
KEGG pathway.

Figure 3 shows the relationship network among MAE genes, associated traits, and bio-
logical functions. ACKR3, whose maternal allele was expressed, was involved in multiple
functions, such as cell death, angiogenesis, immune system, and apoptotic signaling, and
had an impact on weight gain-related traits, such as WT and CWT. In addition, PDCL3 SNP
was associated with three traits (WT12, CWT, and LEA) and was associated with biological
processes such as cell death, angiogenesis, epithelial cell proliferation, and protein folding.
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4. Discussion

The objectives of this study were to identify MAE genes and to investigate their
biological features and relationships with BVs of economically essential traits in Hanwoo.
We performed resequencing and RNA-sequencing in three adult animals in the same
family to apply a SNP-based MAE evaluation approach as described by Lim et al. [16]. To
overcome the limited number of animals, only the SNPs in which the sire and dam had
different homozygous genotypes with sufficient depth of reads at the loci were determined
as heterozygous SNPs for offspring. Based on this, we further specified parental origins of
expressed alleles from the transcriptome data of various tissues from offspring, providing
the basis for a possible imprinting study.

A total of 1569 genes were evaluated, of which 14 were assessed for MAE. Most of the
identified genes have been reported to show MAE patterns in humans and mice as well,
based on dbMAE (https://mae.hms.harvard.edu/, accessed on 1 October 2021), while
the MAE of four genes (PDCL3, N6AMT1, TRIM26, and ZNF470) were newly found in
this study. The database of Geneimprint (http://www.geneimprint.com/, accessed on
1 October 2021) provides information on the paternal imprinting status of SGCE across
multiple species, which is supported by previous reports in humans [27,28], mice [29], and
pigs [30]. The paternal allele of SGCE was expressed in adult mouse tissues (brain, heart,
and kidney) [31] and human peripheral blood leukocytes [27]. SGCE encodes epsilon-
sarcoglycan and is associated with embryonic lethality and myoclonus–dystonia syndrome.
In addition, SGCE is broadly expressed in embryos, and bovine SGCE expression peaked
during an early embryonic stage [32]. We also identified paternal expression of bovine
SGCE in adult fat and brain tissues corresponding to a previous report on the adult human
brain [33]. Therefore, we hypothesize that the imprinting status of SGCE is maintained over
an organism’s lifetime. However, significant effects of the SGCE SNP (rs381607194) on the

https://mae.hms.harvard.edu/
http://www.geneimprint.com/
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BVs were not found in the KPN population. It is possible that individuals with deficiencies,
such as myoclonus–dystonia syndrome, are not selected as KPNs. However, the minor
allele frequency was sizable (0.28); therefore, further validation of SGCE genomic variants
in the commercial population is required.

In this study, SNPs with MAEs were classified as missense variants, synonymous
variants, and 3′UTR variants based on their molecular consequences. Most of the significant
associations with BVs in KPNs were found in missense variants and 3′UTR variants, with
the exception of the PDIA4 SNP. The missense variants that alter the encoded amino acids
could lead to changes in the structures and/or functions of proteins and previous studies
have reported its impact on not only production traits, such as fat content, mortality, and
milk yield, but also gene expression levels in cattle [34–36]. In addition, genomic variation
in the 3′UTR of genes may affect the binding affinity of microRNAs, and its impact on
phenotypic variations have been investigated in cattle [37–39].

The MAE patterns were identified across the genome and showed a tissue-specific
manner in Hanwoo, corresponding to the previous report [16]. Similar trends in MAEs
that were widespread on autosomes and varied between cell types have been reported in
mice [40] and humans [41]. Xu et al. [42] reported the relationships between tissue-specific
MAE and DNA methylation in bovine AXL. In general, methylation in the promoter regions
of one of the two alleles of the gene often leads to allele silencing (reviewed by [43]). In this
study, only LANCL1 showed an MAE pattern across all tissues with an expression of the
maternal allele. LanCL1 is homologous with a prokaryotic enzyme related to antimicrobial
peptide synthesis, whose expression in the brain has previously been reported in mice [44]
and cattle [45]. In our population, however, there was no relationship with the traits
utilized in the study. One of the muscle-specific MAE genes, PDCL3, encodes a chaperone
protein, which is involved in angiogenesis by interacting with vascular endothelial growth
factor receptor 2 [46]. The relationships between polymorphism in exon of PDCL3 and
economic traits, such as feed conversion ratio in broiler chickens, have been previously
reported [47]. As shown in the functional network in Figure 3, PDCL3 was connected to
multiple biological processes, such as angiogenesis, cell death, epithelial cell proliferation,
and protein folding, and had significant associations with growth (WT12) and lean meat
production ability (CWT and LEA). Interestingly, all genes (N6AMT1, APLF, and ACKR3)
that had fat-specific MAEs showed significant associations with at least one trait. N6AMT1
is involved in the methylation of release factor 1 during termination of translation and is
considered to be essential for embryo viability [48]. In addition, polymorphisms of N6AMT1
were significantly related to arsenic metabolism in humans [49]. APLF, which has a GO
term of regulation of immune system processes, was known to be involved in the cellular
response to DNA strand breaks in human cells [50]. The network revealed that ACKR3 was
involved in various terms related to the immune system, apoptotic signaling, cell death,
and angiogenesis, supporting its effects on CWT and WT12. Previous studies have reported
that ACKR3, known as C-X-C chemokine receptor 7, is related to the function of myeloid
lineage [51], and autoimmune diseases [52]. Additionally, ACKR3 is characterized by the
expression of maternal alleles, implying that it is a possible target for cows to enhance gene
combination effects.

The parental differentiation of the trait-associated genes leads to changes in genetic
variance and genetic gain in the population compared to non-imprinted genes or SNPs.
The use of imprinted genetic markers could be designed more effectively in the breeding
program. Among eight SNPs, two SNPs, PDIA4 and SPNS1, with the expression of paternal
alleles, are included in the bovine SNP chips and thus they may be more easily integrated
into genomic selection for bulls. Additionally, the MAE genes with expression of maternal
alleles such as N6AMT1 and ACKR3 could be the targets of marker-assisted selection
for cows.
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5. Conclusions

We identified 14 MAE genes in various adult tissues in Hanwoo and investigated
their impacts on WT12, CWT, LEA, BFT, and MAR. Based on biological features and
the relationships with genetic potentials for important economic traits, PDIA4, SPNS1,
N6AMT1, and ACKR3 were considered selective targets for breeding programs in Hanwoo.
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