

Clinicopathological and prognostic role of ROC1 in neoplasms A PRISMA-compliant systematic review and meta-analysis

Nirui Shen, MD, Qingting Wang, PhD, Yuanjie Qiu, MD, Yan Wang, MD, Danyang Li, MD, Manxiang Li, MD, PhD* 💿

Abstract

Background: Regulator of cullins 1 (ROC1) is frequently overexpressed in multiple tumors, and many pieces of research demonstrate that ROC1 is associated with the prognosis and development of a diversity of neoplasms and it is able to serve as a promising prognostic biomarker. Here we performed this meta-analysis to evaluate the prognostic and clinicopathological significance of ROC1 in patients suffering from cancer.

Methods: We searched Pubmed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and WanFang database. The role of ROC1 in cancers was evaluated by pooled hazard ratios (HRs), odd ratios (ORs) and 95% confidence intervals (Cls).

Results: In total, 9 studies including 1002 patients were enrolled in this analysis. The pooled results showed that patients with high expression of ROC1 had poor overall survival (OS) (HR: 2.04, 95% Cl: 1.48–2.60, P < 0.001) and recurrence-free survival (RFS) (HR: 1.727, 95% Cl: 0.965–2.488, P < 0.001). Additionally, elevated expression of ROC1 was significantly correlated with advanced clinical Tumor Node Metastasis stage (OR: 2.708, 95% Cl: 1.856–3.951, P < 0.001), positive lymph node metastasis (OR: 1.968; 95% Cl: 1.294–2.993, P = .002), large tumor size (OR: 1.522, 95% Cl: 1.079–2.149, P = .017) and poor tumor differentiation (OR: 2.448, 95% Cl: 1.793–3.344, P < 0.001).

Conclusions: Elevated ROC1 expression predicted worse prognosis and advanced pathological parameters in various cancers. ROC1 was a significant prognostic biomarker for poor survival in human cancers.

Abbreviations: BLCA = bladder cancer, CIs = confidence intervals, DFS = disease-free survival, ESCC = esophageal squamous cell carcinoma, GC = gastric cancer, HCC = hepatocellular carcinoma, HRs = hazard ratios, IHC = immunohistochemistry, KM = Kaplan–Meier, LNM = lymph node metastasis, NOS = Newcastle–Ottawa scale, NSCLC = non-small cell lung cancer, ORs = odd ratios, OS = overall survival, PFS = progression-free survival, RFS = recurrence-free survival, RBX1 = RING box protein 1, ROC1 = regulator of cullins 1, TNM = tumor node metastasis.

Keywords: biomarker, clinicopathological features, meta-analysis, neoplasms, prognosis, ROC1

1. Introduction

Cancer plays an important cause of morbidity and mortality worldwide, around 28.4 million new cancer cases are predicted to come about in 2040, a 47% rise from 19.3 million cases in 2020, according to International Agency for Research on Cancer research.^[1] Studies have demonstrated that many biomarkers play significant roles in neoplasms but <1% of markers have been used for clinical practice.^[2] Therefore, it is meaningful to investigate ideal prognostic predictor to offer valuable information in early detection and prediction of clinical parameters in cancer patients, guiding suitable treatment.^[3]

*Correspondence: Manxiang Li, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi 710061, China (e-mail: manxiangli@hotmail.com). Regulator of cullins 1 (ROC1) coded by oncogene ROC1, also known as RING box protein 1 (RBX1), a small molecule protein with a highly conserved framework and function, is a member of RING finger family. ROC1 is a key component of the E3 ubiquitin ligase SCF protein complex, which targeting in degrading numerous active proteins then adjusting a large amount of crucial biological process such as signal transduction, transcription and cell cycle procedure, regulating cell growth and apoptosis. ROC1 has attracted great interest in recent years because of its abnormal expression in a diversity of cancer.^[4, 5] Aberrant expression of ROC1 has been detected in various tumors, including breast cancer, bladder cancer, liver cancer, gastric cancer and

http://dx.doi.org/10.1097/MD.00000000029806

Funding: This work was supported by the National Natural Science Foundation of China (Grant number: 81970050).

All authors have declared there are no conflicts of interest.

The datasets generated during and/or analyzed during the current study are publicly available.

PROSPERO Research registration identifying number: CRD42021275811.

Supplemental Digital Content is available for this article.

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Shen N, Wang Q, Qiu Y, Wang Y, Li D, Li M. Clinicopathological and prognostic role of ROC1 in neoplasms: a PRISMA-compliant systematic review and meta-analysis. Medicine 2022;101:26(e29806).

Received: 14 February 2022 / Received in final form: 17 May 2022 / Accepted: 27 May 2022

nonsmall lung cancer.^[5] Previous studies have demonstrated that high levels of ROC1 are intimately related to poor 5-year overall survival (OS) in gastric cancer, non-small cell lung cancer, esophageal cancer and liver cancer patients.^[6-9] In bladder cancer, esophageal squamous cell carcinoma and gastric cancer, ROC1 acts as an independent prognostic biomarker of recurrence-free survival (RFS).^[6, 10, 11] Overall, ROC1 promotes malignant progression of cancer and elevated ROC1 expression is positively associated with poor prognosis in tumors. On the other hand, increased ROC1 expression is associated with large tumor size, lymph node metastasis (LNM) and Tumor Node Metastasis (TNM) stage in a diversity of neoplasms.^[6, 8, 10, 12-15] So elevated expression of ROC1 could be a potential biomarker for identifying patients with poor prognostic factors and advanced clinical features, serving as a potential target for cancer therapy.^[9, 11, 16] Due to the limited sample size in present studies, we carried out this meta-analysis to elucidate the association of ROC1 between the prognosis and clinicopathologic characteristics in cancer patients, thus estimating the potential value of ROC1 as a promising prognostic predictor in human tumors.

2. Materials and methods

2.1. Literature searching strategies

We searched literature in Pubmed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI) and WanFang database. The keywords were as follows: "RBX1 protein" OR "ring-box 1 protein" OR "ROC1 protein" AND "cancer" OR "carcinoma" OR "neoplasm" OR "tumor" AND "prognosis" OR "survival" OR "diagnosis". The latest search ended on November 1, 2021. We followed the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines (see Supplementary PRISMA_2020_ checklist.docx http://links.lww.com/MD/G847).

3. Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) studies assessing the association between ROC1 levels with prognosis or clinicopathological parameters in humans; (2) studies classifying patients with high and low expression of ROC1 in tumor tissues; (3) research providing available data for extraction or calculation of hazard ratios (HRs) and 95% confidence intervals (CIs) for OS or RFS, or ORs for clinical parameters; (4) ROC1 protein expression was detected in cancer tissues by immunohistochemistry stain, immunoreactivity score (IRS) score or percentage of positive cells and categorized into "high" and "low" groups. The exclusion criteria were the following: (1) reviews, letters, conference reports and animal studies; (2) studies lacking enough data to obtain HRs and 95% CIs.

4. Data extraction and quality assessment

Two investigators (Nirui Shen and Qingting Wang) independently examined all literature based on the inclusion and exclusion criteria. The following data were carefully extracted from each included publication: (1) the family name of the first author, publication year, cancer type, sample size, follow-up time, detection method, outcome measures; (2) TNM stage, lymphatic node metastasis, tumor differentiation and tumor size; (3) HRs and 95% CIs for OS or RFS in each study. If HRs and 95% CIs were analyzed by multivariate and univariate analysis, the former was the priority. If studies solely provided Kaplan–Meier curves, Engauge Digitizer Version application was used to extract survival data.^[17] Study quality was evaluated by the Newcastle-Ottawa quality assessment Scale (NOS) and the quality of the study was considered as high if the score ≥ 7 .^[18]

5. Statistical analysis

We used pooled HRs and 95% CIs to assess the association between ROC1 levels and prognosis in different tumors. Heterogeneity was performed by Chi-squared based Q test and I² statistics. A fixed-effect model was used if the heterogeneity was not significant (P > 0.05 for Chi-squared test or I² < 50%) or the random-effect model was applied. Pooled odds ratios (ORs) and 95% CIs were used to evaluate the relationship between ROC1 levels and clinicopathological parameters. Subgroup analyses were classified by cancer type, sample size, follow-up months and HR estimation methods to analyze sources of heterogeneity. Sensitivity analysis was applied to examine the stability of the results, and the publication bias was evaluated by Funnel plots (P < 0.05 was considered significant). STATA software version 15.1 was used to perform all accessible data.

5.1. Ethical consideration

The institutional review board approval was not necessary because all the data in the study were retrieved from public databases.

6. Results

6.1. Study identification and characteristics

A total of 9 studies including 1002 patients were eligible in this analysis ultimately.^[6–10, 16, 19–21] The flow diagram was shown in Figure 1. All researches were published from June 2013 to October 2021. Patients were classified into high and low groups according to ROC1 expression levels. There were 5 cancer types containing bladder cancer, non-small cell lung cancer, liver cancer, gastric cancer, and esophageal cancer. OS was used to evaluate the prognostic value of ROC1 in 8 studies and RFS was used in 3 research. The major information of included studies was summarized in Table 1.

6.2. Association between ROC1 expression levels and OS

HRs for OS was accessible in 8 studies involving 912 patients for this analysis. No significant heterogeneity was found in studies ($I^2 = 0.0\%$, P = .864), so pooled HRs and their 95% CIs were computed via a fixed model. As shown in Figure 2, patients with high expression of ROC1 had a poor OS in various carcinomas (HR: 2.04, 95% CI: 1.48–2.60, P < 0.001). Then we performed subgroup analyses by cancer type, sample size, follow-up time and HR obtained measurements (Fig. 3). Subgroup analysis showed overexpression of ROC1 could predict a poor 5-year survival rate both in digestive system malignancy (HR: 2.012, 95% CI = 1.407-2.618, P < 0.001; $I^2 = 0.0\%$, P = .576) and nondigestive system malignancy (HR: 2.211, 95% CI: 0.666-3.756, P = .005; $I^2 = 0.0\%$, P = .871) (Fig. 3A). After stratified by sample size, the prognostic value of ROC1 was not altered in <100 people group (HR: 1.690, 95% CI: 0.901–2.479, P < 0.001; I² = 0.0%, *P* = 0.864) and >100 people group (HR: 2.403, 95% CI: $1.597-3.209, P < 0.001; I^2 = 0.0\%, P = .815)$ (Fig. 3B).

In addition, there was a notable association between increased ROC1 expression and poor OS in studies when follow-up time was < 90 months (HR: 2.078, 95% CI: 1.124-3.032, P < 0.001; I² = 0.0%, P = .959) and > 90 months (HR: 2.018, 95% CI: 1.319–2.716, P < 0.001; I² = 0.0%, P = .406) (Fig. 3C). HR estimation approach did not alter the association between ROC1 levels and OS in direct method subgroup (HR: 2.355, 95% CI: 1.441–3.268, P < 0.001; I² = 0.0%, P = .824) and indirect method subgroup (HR: 1.845, 95% CI: 1.129-2.561, P < 0.001; I² = 0.0%, P = .666) (Fig. 3D).

Figure 1. Flow chart of the studies identified in this meta-analysis.

6.3. Correlation between ROC1 expression levels and RFS

Three studies including 335 patients described HRs for RFS which contains bladder cancer, gastric cancer and esophageal squamous cell cancer. No significant heterogeneity was found among studies ($I^2 = 0.0\%$, P = .795), so we used a fixed-effect model. The pooled HR for RFS was 1.727 (95% CI: 0.965–2.488, P < 0.001) (Fig. 4), indicating a remarkable association between high ROC1 expression levels and worse RFS.

6.4. Correlation between ROC1 and clinicopathologic parameters

Seven articles demonstrated the association between ROC1 expression and clinical pathological parameters in bladder cancer, esophageal squamous cell carcinoma, gastric cancer, hepatocellular carcinoma and non-small cell lung cancer. High ROC1 expression level was significantly related to poor differentiation (OR: 2.448, 95% CI: 1.793–3.344, P < 0.001) via a fixed effect model (I² = 36.7%, P = .148) (Fig. 5A), advanced TNM stage (OR: 2.708, 95% CI: 1.856–3.951, P < 0.001) via a fixed effect model (I² = 11.8%, P = .339) (Fig. 5B), large tumor size (OR: 1.522, 95% CI: 1.079–2.149, P = .017) via a fixed effect model (I² = 37.5%, P = .156) (Fig. 5C) and positive LNM (OR: 1.968, 95% CI: 1.294–2.993, P = .002) via a fixed effect model (I² = 0.0%, P = .438) (Fig. 5D).

6.5. Sensitivity analysis and publication bias

To test the stability of this meta-analysis, after removing each study, the pooled HR was not notably changed, indicating that the results were stable (Fig. 6). Also, Egger test showed no obvious evidence for publication bias (P = .719, 95% CI: -1.799-2.424) (Fig. 7).

7. Discussion

Regulator of cullins 1 (ROC1), encoded by the oncogene ROC1, is a highly conservative member of RING finger family.^{[22,} ^{23]} ROC1 protein, which serving as a cyclin-dependent kinase inhibitor, promotes cell proliferation and against apoptosis under both physiological and pathological states. It plays an indispensable role in cell proliferation through preventing p27 accumulation in the embryonic development.^[4, 24] Importantly, ROC1 participates in tumorigenesis and tumor progression as an essential subunit of E3 ubiquitin-ligase SCF protein which degrades multiple proteins such as cell cycle proteins and transcription factors subsequently regulating cell growth and apoptosis.^[5] ROC1 is reported to be overexpressed in a variety of neoplasms, including liver cancer, gastric cancer, esophageal cancer, bladder cancer, non-small cell lung cancer, renal cell carcinoma (RCC), prostate cancer, ovarian cancer and melanoma.^{[5,} 12, 15, 25, 26] Thereby we conducted this meta-analysis to explore the potential connection between ROC1 expression and its

Table 1.

Main characteristics of 9 studies included in this meta-analysis.

Study	Cancer type	Test method	Sample size	Tumor size (large/small)		Lymphatic metastasis(yes/ no)	Tumor differentiation (poor/well- moderate)	Follow-up	Outcome measure	Hazards ratios	HR (95% CI)	NOS	ROC-1 high
Wang 2013	BLCA	IHC	70	15/15/26/14	NA	NA	22/6/19/23	85 mo	OS, RFS	KM	OS: 1.23 (0.06–25.08) RFS: 2.688 (1.048–6.892)	7	9–12
Yang 2013	HCC	IHC	151	54/33/28/36	NA	NA	36/20/46/49	90 mo	OS	KM	OS: 2.62 (1.55–4.42)	7	+++ to ++++
Migita 2014	GC	IHC	145	NA	NA	NA	NA	107 mo	OS, RFS	Direct	OS: 3.272 (1.544– 6.886)RFS: 1.73 (0.78–3.84)	8	48%
Xing 2016	NSCLC	IHC	192	76/56/29/31	32/39/73/48	26/34/79/53	80/53/25/34	5.5 yr	OS	Direct	OS: 2.66 (1.22–5.82)	7	5–12
Celik 2017	BLCA	IHC	90	NA	NA	NA	40/8/17/25	NA	NA	NA	NA	6	6–9
Zhang 2017	ESCC	IHC	95	48/26/11/6	NA	33/16/26/19	43/22/16/14	100 mo	OS	KM	OS: 1.54 (0.88–2.68)	7	+++ to ++++
Chen 2018	GC	IHC	83	37/32/4/10	20/34/20/9	32/29/9/13	27/25/13/17	80 mo	OS	Direct	OS: 2.735 (1.162–6.442)	7	+++ to ++++
Kunishige 2020	ESCC	IHC	120	NA	NA	NA	NA	65 mo	OS, RFS	Direct	OS: 2.023 (1.165–3.513) RFS: 1.63 (0.95–2.79)	8	>76.6%
Wu 2021	BLCA	IHC	56	10/4/19/23	8/14/21/13	12/3/17/24	21/11/8/16	82 mo	OS	KM	OS: 1.86 (0.70–4.93)	8	+++ to ++++

BLCA = Bladder cancer; DFS = Disease-free survival; ESCC = Esophageal squamous cell carcinoma; C = Gastric cancer; HCC = Hepatocellular carcinoma; HR = Hazard ratio; HC = Immunohistochemistry; IRC = immunoreactivity score; KM = Kaplan-Meier; NA = Not available; NOS = Newcastle-Ottawa scale; NSCLC = non-small cell lung cancer; OS = Overall survival; PFS = progression-free survival; RFS = Recurrence-free survival; Staining intensity = to ++++.

Figure 2. Forest plot to assess ROC1 expression and overall survival (OS). CI = confidence interval; HR = hazard ratio.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Study			%	Study			%
$ \begin{array}{c} \mbox{tr} 122 (0.0, 25.0) \\ \mbox{tr} 22 (0.0, 25.0) \\ \mbox{tr} 14 (0.0, 0.4.0) \\ \mbox{tr}$			HR (95% CI)	Weight			HR (95% CI)	Weight
$ \begin{array}{c} \label{eq:harder} \begin{tabular}{ \begin{tabular}{l \label{eq:harder} \begin{tabular}{l \label{eq:harder} \begin{tabular}{l \begin{tabular}{l \label{eq:harder} \begin{tabular}{l \la$								
$ \begin{array}{c} \mbox{cpc} 205 \mbox{cpc} 106 \mbox{cpc} 10$	• • • •							
No 2021 1 $160 (20, 48)$ 7, 10 2, 20 (107, 3, 79 1, 331 1, 40 (2, 70, 48) 7, 10 2, 20 (107, 3, 79 1, 331 1, 40 (2, 70, 48) 7, 10 2, 20 (107, 3, 79 1, 331 1, 40 (2, 70, 48) 7, 10 2, 20 (107, 3, 79 1, 50 1, 50 1		•				le:		
backed (equard = 0.0%, p = 0.87) 221 (87, 3.70 327 (15, 6.80) 41 = 2.27 (15, 6.80) 422 (15, 4.42) 527 (15, 6.80) 41 = 2.27 (15, 6.80) 41 = 2.27 (15, 6.80) 42 = 2.27 (15, 6.80) 41 = 2.27 (15, 6.80) 41 = 2.27 (15, 6.80) 42 = 2.27 (15, 6.80) 41 = 2.27 (15, 6.80) 42 = 2.27 (15, 6.80	King 2016	-	2.66 (1.22, 5.82)	6.00	Zhang 2017	+	1.54 (0.88, 2.68)	39.21
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Wu 2021	•	1.86 (0.70, 4.93)	7.10	Chen 2018	-	2.73 (1.16, 6.44)	4.56
Spectra matiguancy Image 2013 Image 2013 Image 2014 Image 2014 <thimage 2014<="" th=""> Image 2014 <th< td=""><td>Subtotal (I-squared = 0.0%, p = 0.871)</td><td>\diamond</td><td>2.21 (0.67, 3.76)</td><td>13.31</td><td>Wu 2021</td><td>•</td><td>1.86 (0.70, 4.93)</td><td>7.10</td></th<></thimage>	Subtotal (I-squared = 0.0%, p = 0.871)	\diamond	2.21 (0.67, 3.76)	13.31	Wu 2021	•	1.86 (0.70, 4.93)	7.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Subtotal (I-squared = 0.0%, p = 0.864)	Q	1.69 (0.90, 2.48)	51.07
angla 2014 a 3.27 (154, 6.89) 4.49 Yang 2013 2.26 (155, 4.42) 15.42 bmag 2017 a 1.54 (0.88, 2.68) 9.92 11 Mga 2014 3.27 (154, 6.49) 4.45 bmag 2019 2.27 (154, 6.89) 9.21 Mga 2014 3.27 (154, 6.49) 4.45 bmag 2010 2.20 (164, 3.25) 2.304 Kurshiga 2020 2.20 (164, 3.25) 2.304 backball (lequard = 0.0%, p = 0.864) 2.24 (1.48, 2.60) 100.00 0.000 0.000 0.000 VDTE: Weights are from random effects analysis 0 2.1 2.51 0 2.51 Starty 5 0 2.27 (116, 6.44) 5.64 0.200 0.000 90 1.23 (106, 25.00) 0.200 1.54 (0.89, 260) 0.200 1.54 (0.89, 260) 0.200 91 1.23 (106, 25.00) 0.200 1.23 (106, 25.00) 0.200 1.54 (0.89, 260) 0.200 1.54 (0.89, 260) 0.200 1.54 (0.89, 260) 0.200 1.54 (0.89, 260) 0.200 1.54 (0.89, 260) 0.200 1.54 (0.89, 260) 0.200 (1.90, 260) 1.54 (0.89, 260) 0.200 (1.90, 260) 1.54 (0.89, 260) <	Digestive system malignancy							
Damag 2017 + 1.54 (0.88, 2.68) 3.921 Miglia 2014 3.27 (1.54, 6.89) 4.45 Constrainting 2.02 (1.61, 3.51) 2.2.40 6.00 0.00	Yang 2013	+-	2.62 (1.55, 4.42)	15.42	>100			
$\begin{array}{c} 218 \\ \text{cmm lage 2020} \\ $	Migita 2014		3.27 (1.54, 6.89)	4.45	Yang 2013	-	2.62 (1.55, 4.42)	15.42
Subtracting 2020 2.02 (1:16, 3.51) 2.04 (1:4, 2.62) 86.69 2.04 (1:4, 2.62) 86.69 2.04 (1:4, 2.62) 2.04 (1:4, 2.62) 2.04 (1:4, 2.62) 1.0000 2.04 (1:4, 2.62) 2.04 (1:	Zhang 2017	+	1.54 (0.88, 2.68)	39.21	Migita 2014	-	3.27 (1.54, 6.89)	4.45
Statutar (1 squared = 0.0%, p = 0.876) 2.01 (141, 2.62) 66.69 Subtoal (1 squared = 0.0%, p = 0.816) 2.40 (1.60, 3.21) 4.83 Overail (1 squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 NOTE: Weights are from random effects analysis 2.04 (1.48, 2.60) 100.00 NOTE: Weights are from random effects analysis 2.04 (1.48, 2.60) 100.00 NOTE: Weights are from random effects analysis 2.04 (1.48, 2.60) 100.00 NOTE: Weights are from random effects analysis 2.04 (1.48, 2.60) 100.00 NOTE: Weights are from random effects analysis 2.04 (1.48, 2.60) 100.00 Statutor 4.65% C/I Weight 7.5 Statutor 7.6	Dhen 2018	1	2.73 (1.16, 6.44)	4.56	Xing 2016	<u> </u>	2.66 (1.22, 5.82)	6.00
Overall (Hequared = 0.0%, p = 0.864) 2.04 (148, 2.60) 100.00 NOTE: Weights are from random effects analysis -2.51 0 25.1 Study -2.5.1 0 25.1 Budy -2.51 0 25.1 Budy -2.51 0 25.1 Budy -2.51 0 25.1 Budy -2.51 0 25.1 Study -2.51 0 25.1 Budy -2.22 (15.6, 56.0) 0.20 5.00 Character = 0.0%, p = 0.864) -2.62 (15.5, 442) 15.42 Study -2.22 (15.1, 5.51) 2.04 -2.62 (15.5, 442) 15.42 Ming 2013 -2.82 (12.5, 442) 15.42 2.82 (15.5, 442) 15.42 Ming 2013 -2.82 (15.5, 442) 15.42 2.82 (15.5, 442) 15.42 Ming 2014 -2.82 (15.5, 442) 15.42 2.82 (15.5, 442) 15.42 Ming 2014 -2.82 (15.5, 442) 15.42 2.82 (15.5, 442) 15.42 Ming 2014 -2.82 (15.6, 442) 15.42 2.82 (15.6, 442) 15.42 Ming 2014 -2.82 (Kunishige 2020	+	2.02 (1.16, 3.51)	23.04	Kunishige 2020	+	2.02 (1.16, 3.51)	23.04
NOTE: Weights are from random effects analysis NOTE: Weights are from random effects analysis 25.1 0 25.1 3tudy 5 0 25.1 90 HR (95% C) Weight 90 123 (0.06, 25.06) 0.20 273 (1.16, 6.44) 4.56 273 (1.16, 6.44) 4.56 273 (1.16, 6.44) 4.56 2020 20 2.02 (1.16, 3.51) 2.30.4 Nu 2021 3.26 (1.22, 5.82) 6.00 10 1.24 (0.08, 25.08) 0.20 10 1.24 (0.08, 25.08) 0.20 112 (0.06, 25.08) 0.20 1.24 (0.06, 25.08) 0.20 123 (0.06, 25.08) 0.20 1.23 (0.06, 25.08) 0.20 124 (1.18, 3.51) 2.30.4 1.46 (0.70, 4.39) 7.10 Note: Weights are from random effects analysis 1.54 (0.88, 268) 39.21 Note: Weights are from random effects analysis 1.54 (0.88, 268) 39.21 Subtomal (1.45 guarent = 0.0%, p = 0.406) 2.62 (1.52, 5.82) 6.00 1.54 (0.88, 268) 38.21 2.00 2.02 (1.16, 3.51) 2.30.4 1.55 (0.80, p = 0	Subtotal (I-squared = 0.0%, p = 0.576)	0	2.01 (1.41, 2.62)	86.69	Subtotal (I-squared = 0.0%, p = 0.815)	\diamond	2.40 (1.60, 3.21)	48.93
NOTE: Weights are from random effects analysis NOTE: Weights are from random effects analysis 25.1 0 25.1 3tudy 5 0 25.1 90 HR (95% C) Weight 90 123 (0.06, 25.06) 0.20 273 (1.16, 6.44) 4.56 273 (1.16, 6.44) 4.56 273 (1.16, 6.44) 4.56 2020 20 2.02 (1.16, 3.51) 2.30.4 Nu 2021 3.26 (1.22, 5.82) 6.00 10 1.24 (0.08, 25.08) 0.20 10 1.24 (0.08, 25.08) 0.20 112 (0.06, 25.08) 0.20 1.24 (0.06, 25.08) 0.20 123 (0.06, 25.08) 0.20 1.23 (0.06, 25.08) 0.20 124 (1.18, 3.51) 2.30.4 1.46 (0.70, 4.39) 7.10 Note: Weights are from random effects analysis 1.54 (0.88, 268) 39.21 Note: Weights are from random effects analysis 1.54 (0.88, 268) 39.21 Subtomal (1.45 guarent = 0.0%, p = 0.406) 2.62 (1.52, 5.82) 6.00 1.54 (0.88, 268) 38.21 2.00 2.02 (1.16, 3.51) 2.30.4 1.55 (0.80, p = 0								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Overall (I-squared = 0.0%, p = 0.864)	\$	2.04 (1.48, 2.60)	100.00	Overall (I-squared = 0.0%, p = 0.864)	\$	2.04 (1.48, 2.60)	100.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NOTE: Weights are from random effects analysis							
Study y Study y Study y Study y y Study y					NOTE: Weights are from random effects analysis			
PD HR (95% C)) Weight ID HR (95% C)) Weight 90 1.23 (0.06, 25.08) 0.20 1.23 (0.06, 25.08) 0.20 yhen 2018 2.73 (1.16, 6.44) 4.56 1.20 (0.06, 25.08) 0.20 2.62 (1.55, 4.42) 1.54 (0.88, 2.68) 3.21 yu 2021 2.02 (1.16, 3.51) 2.304 2.02 (1.20, 2.303) 3.4.91 90 2.02 (1.20, 2.303) 3.4.91 3.27 (1.54, 6.89) 4.45 yu 2021 2.02 (1.20, 2.72) 6.00 1.84 (1.13, 2.56) 6.194 90 90 90 1.84 (1.13, 2.56) 6.194 90 1.84 (1.13, 2.56) 6.194 1.84 (1.13, 2.56) 6.194 91 2.62 (1.55, 4.42) 1.542 Migita 2014 3.27 (1.54, 6.89) 4.45 101 cettly 1.54 (0.88, 2.68) 39.21 1.54 (0.88, 2.68) 39.21 1.54 (0.88, 2.68) 39.21 110 cettly 1.54 (0.88, 2.68) 39.21 1.54 (0.88, 2.68) 39.21 1.54 (0.88, 2.68) 39.21 110 cettly 1.54 (0.88, 2.68) 39.21 1.54 (0.88, 2.68) 39.21 1.54 (0.84, 2.63) 2.04 (1.48, 2.60) 2.04 (1.48, 2.60) 2.04 (1.48, 2.60) 2.04 (1.48, 2.60) 2.04 (1.48, 2.60) 2.04 (1.48, 2.60) 2.04 (-25.1	0	25.1			0	25.1	
Vang 2013 + 1.23 (0.06, 25.08) 0.20 Vang 2013 + 1.23 (0.06, 25.08) 0.20 Shen 2018 2.73 (1.16, 6.44) 4.56 Yang 2013 + 1.23 (0.06, 25.08) 0.20 Multiple 2020 + 2.02 (1.16, 3.51) 23.04 Zhang 2017 + 1.54 (0.88, 2.68) 39.21 Vu 2021 + 1.86 (0.70, 4.93) 7.10 Wu 2021 + 1.86 (0.70, 4.93) 7.10 90 - - 0.56 (1.22, 5.42) 15.42 Migita 2014 - 3.27 (154, 6.89) 4.45 fing 2016 - 2.66 (1.22, 5.82) 6.00 Chen 2018 2.73 (1.16, 6.44) 4.56 thang 2017 + 1.54 (0.88, 2.68) 39.21 Kunishige 2020 + 2.02 (1.16, 3.51) 2.304 subtotal (l-squared = 0.0%, p = 0.864) + 1.54 (0.88, 2.68) 39.21 Kunishige 2020 + 2.02 (1.16, 3.51) 2.304 subtotal (l-squared = 0.0%, p = 0.864) - 2.04 (1.48, 2.60) 100.00 Overall (l-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00		0	1 25.1	%	-25.1 D	0	25.1	%
http://www.spin-spin-spin-spin-spin-spin-spin-spin-	Study	0			-25.1 D Study	0		% Weight
Lumishige 2020 2.02 (1.16, 3.51) 23.04 Znang 2017 1.64 (0.88, 2.68) 3.921 Nu 2021 1.86 (0.70, 4.93) 7.10 Wu 2021 1.86 (0.70, 4.93) 7.10 subtotal (I-squared = 0.0%, p = 0.859) 2.08 (1.12, 3.03) 34.91 Subtotal (I-squared = 0.0%, p = 0.866) 1.84 (1.13, 2.56) 61.94 -90 - - Directly - - - rang 2013 - 2.26 (1.25, 5.42) 15.42 Migita 2014 - 3.27 (1.54, 6.89) 4.45 Cing 2016 2.66 (1.22, 5.82) 6.00 Chen 2018 2.73 (1.16, 6.44) 4.56 Chang 2017 1.54 (0.88, 2.68) 39.21 Kunishige 2020 - 2.02 (1.16, 3.51) 2.3.04 Subtotal (I-squared = 0.0%, p = 0.406) 2.02 (1.32, 2.72) 65.09 Subtotal (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00	Study D	0			-25.1 D Study ID			
Nu 2021 1.86 (0.70, 4.93) 7.10 Wu 2021 1.86 (0.70, 4.93) 7.10 Subtoal (I-squared = 0.0%, p = 0.959) 2.08 (1.12, 3.03) 34.91 Subtoal (I-squared = 0.0%, p = 0.666) 1.84 (1.13, 2.56) 61.94 90 - - 2.62 (1.55, 4.42) 15.42 Migita 2014 3.27 (1.54, 6.89) 4.45 (sigta 2014 - 3.27 (1.54, 6.89) 4.45 Xing 2016 - 2.66 (1.22, 5.82) 6.00 (ang 2016 2.66 (1.22, 5.82) 6.00 Chen 2018 2.73 (1.16, 6.44) 4.56 2hang 2017 1.54 (0.88, 2.68) 39.21 Kunishige 2020 - 2.02 (1.16, 3.51) 2.3.04 Subtoal (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00	Study D	0	HR (95% CI)	Weight	Study ID Indirectly	0	HR (95% CI)	Weight
Subtotal (I-squared = 0.0%, p = 0.959) 2.08 (1.12, 3.03) 34.91 Subtotal (I-squared = 0.0%, p = 0.666) Directly Directly Directly 3.27 (1.54, 6.89) 4.45 Xing 2016 2.66 (1.22, 5.82) 6.00 Chen 2016 2.66 (1.22, 5.82) 6.00 Chen 2018 2.02 (1.16, 3.51) 2.02 (1.32, 2.72) 65.09 Subtotal (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 1.54 (0.88, 2.68) 3.92.1 Kunishige 2020 2.02 (1.16, 3.51) 2.3.04 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 	Study D <90 Wang 2013	0	HR (95% CI) → 1.23 (0.06, 25.08)	Weight 0.20	Left Study D Indirectly Wang 2013	0 0	HR (95% CI) → 1.23 (0.06, 25.08)	Weight 0.20
Subtotal (I-squared = 0.0%, p = 0.959) 2.08 (1.12, 3.03) 34.91 Subtotal (I-squared = 0.0%, p = 0.866) Incertiv Directly Directly 3.27 (1.54, 6.89) 4.45 Xing 2016 2.66 (1.22, 5.82) 6.00 Chen 2016 2.66 (1.22, 5.82) 6.00 Chen 2018 2.02 (1.16, 3.51) 2.02 (1.32, 2.72) 65.09 Subtotal (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 1.54 (0.88, 2.68) 3.9.21 Kunishige 2020 2.02 (1.16, 3.51) 2.3.04 Subtotal (I-squared = 0.0%, p = 0.824) 2.04 (1.48, 2.60) 0.000 Overall (I-squared = 0.0%, p = 0.824) 2.04 (1.48, 2.60) 0.000 Overall (I-squared = 0.0%, p = 0.824) 2.04 (1.48, 2.60) 0.000 	Study D <90 Wang 2013 Chen 2018	•	HR (95% Cl) 123 (0.06, 25.08) 2.73 (1.16, 6.44)	Weight 0.20 4.56	-25.1 D Study ID Indirectly Wang 2013 Yang 2013	*	HR (95% Cl)	Weight 0.20 15.42
•90 · · · · · · · · · · · · · · · · · · ·	Study D <90 Wang 2013 Chen 2018 Kunishige 2020	• •	HR (95% Cl)	Weight 0.20 4.56 23.04	Laboration Control Con	*	HR (95% Cl) 1.23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 2.68)	Weight 0.20 15.42 39.21
Ang 2013 - 2.62 (1.55, 4.2) 15.42 Mgla 2014 - 3.27 (1.54, 6.89) 4.45 Mgla 2014 3.27 (1.54, 6.89) 4.45 Xing 2016 - 2.66 (1.22, 5.82) 6.00 Xing 2016 2.66 (1.22, 5.82) 6.00 Chen 2018 - 2.73 (1.16, 6.44) 4.56 Zhang 2017 1.54 (0.88, 2.68) 39.21 Kunishige 2020 - 2.02 (1.16, 3.51) 2.3.04 Subtotal (I-squared = 0.0%, p = 0.864) Que (1.32, 2.72) 65.09 Subtotal (I-squared = 0.0%, p = 0.824) Que (1.48, 2.60) 2.00 (1.48, 2.60) 0.00 Overall (I-squared = 0.0%, p = 0.864) Que (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) Que (1.48, 2.60) 100.00	Study D <90 Wang 2013 Chen 2018 Kunishige 2020 Wu 2021	* *	HR (95% Cl) 1.23 (0.06, 25.08) 2.73 (1.16, 8.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93)	Weight 0.20 4.56 23.04 7.10	Laboration of the second secon	•	HR (95% Cl) 1.23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 2.68) 1.86 (0.70, 4.93)	Weight 0.20 15.42 39.21 7.10
Yang 2013 2.62 (1.55, 4.2) 15.42 Migita 2014 3.27 (1.54, 6.89) 4.45 Xing 2016 2.66 (1.22, 5.82) 6.00 Chen 2018 2.73 (1.16, 6.44) 4.56 2.02 (1.63, 2.51) 2.04 (1.48, 2.60) 3.00 (1.48, 2.60) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 3.27 (1.54, 6.89) 4.45 Vang 2016 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 3.27 (1.54, 6.89) 4.45	Study D <90 Wang 2013 Chen 2018 Kunishige 2020 Wu 2021	* *	HR (95% Cl) 1.23 (0.06, 25.08) 2.73 (1.16, 8.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93)	Weight 0.20 4.56 23.04 7.10	Laboration of the second secon	•	HR (95% Cl) 1.23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 2.68) 1.86 (0.70, 4.93)	Weight 0.20 15.42 39.21 7.10
Migita 2014 3.27 (1.54, 6.89) 4.45 Xing 2016 2.66 (1.22, 5.82) 6.00 King 2016 2.66 (1.22, 5.82) 6.00 Chen 2018 2.73 (1.16, 6.44) 4.56 Zhang 2017 1.54 (0.88, 2.68) 39.21 Kunishige 2020 2.02 (1.16, 3.51) 2.3.04 Subtotal (I-squared = 0.0%, p = 0.864) Q.04 (1.48, 2.60) 100.00 Subtotal (I-squared = 0.0%, p = 0.864) Q.04 (1.48, 2.60) 2.00 (0.56, p = 0.864) Q.04 (1.48, 2.60) 100.00	Study D +90 Wang 2013 Chan 2018 Kunishiga 2020 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.959)	* *	HR (95% Cl) 1.23 (0.06, 25.08) 2.73 (1.16, 8.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93)	Weight 0.20 4.56 23.04 7.10	-25.1 D Study ID Indirectly Wang 2013 Yang 2013 Yang 2013 Zhang 2017 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.666)	•	HR (95% Cl) 1.23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 2.68) 1.86 (0.70, 4.93)	Weight 0.20 15.42 39.21 7.10
Org 2016 2.66 (1.22, 5.82) 6.00 Chen 2018 2.73 (1.16, 6.44) 4.56 2hang 2017 1.54 (0.88, 2.68) 39.21 Kunishige 2020 2.02 (1.16, 3.51) 23.04 Subtotal (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00	Study D 190 Wang 2013 Chen 2018 Kunishige 2020 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.969)	* *	HR (95% Cl) 1.23 (0.06, 25.08) 2.73 (1.16, 8.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93) 2.08 (1.12, 3.03)	Weight 0.20 4.56 23.04 7.10 34.91	-25.1 D Study ID Indirectly Wang 2013 Yang 2013 Yang 2013 Yang 2013 Zhang 2017 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.666) Directly	•	HR (95% Cl) 1.23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 2.68) 1.86 (0.70, 4.93) 1.84 (1.13, 2.56)	Weight 0.20 15.42 39.21 7.10 61.94
Chang 2017 1.54 (0.88, 2.68) 39.21 Kunishige 2020 2.02 (1.6, 3.51) 2.3.04 Subtotal (I-squared = 0.0%, p = 0.406) 2.02 (1.32, 2.72) 65.09 Subtotal (I-squared = 0.0%, p = 0.824) 2.35 (1.44, 3.27) 38.06 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00	Study D S0 Wang 2013 Chen 2018 Kunishige 2020 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.959) -90	* *	HR (95% Cl) 1.23 (0.06, 25.08) 2.73 (1.16, 6.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93) 2.08 (1.12, 3.03) 2.62 (1.55, 4.42)	Weight 0.20 4.56 23.04 7.10 34.91 15.42	-25.1 D Study ID Indirectly Wang 2013 Yang 2013 Zhang 2013 Zhang 2013 Zhang 2017 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.866) Directly Migita 2014	•	HR (95% CI) 1.23 (0.06, 25.08) 2.82 (1.55, 4.42) 1.54 (0.88, 2.68) 1.86 (0.70, 4.93) 1.84 (1.13, 2.56) 3.27 (1.54, 6.89)	Weight 0.20 15.42 39.21 7.10 61.94 4.45
Subtotal (I-squared = 0.0%, p = 0.406) 2.02 (1.32, 2.72) 65.09 Subtotal (I-squared = 0.0%, p = 0.824) 2.35 (1.44, 3.27) 38.06 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00	Study D <90 Wang 2013 Chen 2018 Kunishiga 2020 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.959) -90 Yang 2013 Kligita 2014	* *	HR (95% Cl) 1.23 (0.06, 25.08) 2.73 (1.16, 6.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93) 2.08 (1.12, 3.03) 2.62 (1.55, 4.42) 3.27 (1.54, 6.89)	Weight 0.20 4.56 23.04 7.10 34.91 15.42 4.45	-25.1 D Study ID Indirectly Wang 2013 Yang 2013 Zhang 2013 Zhang 2017 Wu 2021 Subtotal (I-equared = 0.0%, p = 0.666) Directly Migita 2014 Xing 2016	•	HR (95% Cl) 1.23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 2.68) 1.86 (0.70, 4.93) 1.84 (1.13, 2.56) 3.27 (1.54, 6.89) 2.66 (1.22, 5.82)	Weight 0.20 15.42 39.21 7.10 61.94 4.45 6.00
Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00 Overall (I-squared = 0.0%, p = 0.864) 2.04 (1.48, 2.60) 100.00	Study D <90 Wang 2013 Zhen 2018 Kunishige 2020 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.959) -90 Yang 2013 Kingta 2014 King 2016	+ + +	HR (95% Cl) 1.23 (0.06, 25.08) 2.73 (1.16, 6.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93) 2.08 (1.12, 3.03) 2.62 (1.55, 4.42) 3.27 (1.54, 6.89) 2.66 (1.22, 5.82)	Weight 0.20 4.56 23.04 7.10 34.91 15.42 4.45 6.00	-25.1 D Study ID Indirectly Wang 2013 Yang 2013 Zhang 2013 Zhang 2017 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.666) Directly Migita 2014 Xing 2016 Chen 2018	+ + + ↓	HR (95% Cl) 1 23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 2.68) 1.86 (0.70, 4.93) 1.84 (1.13, 2.56) 3.27 (1.54, 6.89) 2.66 (1.22, 5.82) 2.73 (1.16, 6.44)	Weight 0.20 15.42 39.21 7.10 61.94 4.45 6.00 4.56
	Study Study (S0)	+ + + + +	HR (95% Cf) 1.23 (0.06, 25.08) 2.73 (1.16, 6.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93) 2.08 (1.12, 3.03) 2.68 (1.12, 3.03) 2.62 (1.55, 4.42) 3.27 (1.54, 6.89) 2.66 (1.22, 5.82) 1.54 (0.88, 2.68)	Weight 0.20 4.56 23.04 7.10 34.91 15.42 4.45 6.00 39.21	-25.1 D Study ID Indirectly Wang 2013 Yang 2013 Yang 2013 Zhang 2017 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.866) Directly Migita 2014 Xing 2016 Chen 2018 Kurishige 2020	• • • •	HR (95% Cf) 1.23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 2.68) 1.86 (0.70, 4.93) 1.84 (1.13, 2.56) 3.27 (1.54, 6.89) 2.86 (1.22, 5.82) 2.73 (1.16, 6.44) 2.02 (1.16, 3.51)	Weight 0.20 15.42 39.21 7.10 61.94 4.45 6.00 4.56 23.04
NOTE: Weights are from random effects analysis	Study Study D =90 Vang 2013 Chen 2018 Cunishige 2020 Vu 2021 Subtotal (I-squared = 0.0%, p = 0.959) =90 Yang 2013 Migita 2014 Ang 2016 Zhang 2017	+ + + + +	HR (95% Cf) 1.23 (0.06, 25.08) 2.73 (1.16, 6.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93) 2.08 (1.12, 3.03) 2.68 (1.12, 3.03) 2.62 (1.55, 4.42) 3.27 (1.54, 6.89) 2.66 (1.22, 5.82) 1.54 (0.88, 2.68)	Weight 0.20 4.56 23.04 7.10 34.91 15.42 4.45 6.00 39.21	-25.1 D Study ID Indirectly Wang 2013 Yang 2013 Yang 2013 Zhang 2017 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.866) Directly Migita 2014 Xing 2016 Chen 2018 Kurishige 2020	• • • •	HR (95% Cf) 1.23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 2.68) 1.86 (0.70, 4.93) 1.84 (1.13, 2.56) 3.27 (1.54, 6.89) 2.86 (1.22, 5.82) 2.73 (1.16, 6.44) 2.02 (1.16, 3.51)	Weight 0.20 15.42 39.21 7.10 61.94 4.45 6.00 4.56 23.04
	Study D 90 Wang 2013 Chen 2018 Kunishige 2020 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.959) 90 Gang 2013 Aligita 2014 King 2016 Enang 2017 Subtotal (I-squared = 0.0%, p = 0.406)	* * * *	HR (95% Cl) 1.23 (0.06, 25.08) 2.73 (1.16, 6.44) 2.02 (1.16, 3.51) 1.86 (0.70, 4.93) 2.08 (1.12, 3.03) 2.68 (1.12, 5.82) 1.54 (0.88, 2.68) 2.02 (1.32, 2.72)	Weight 0.20 4.56 23.04 7.10 34.91 15.42 4.45 6.00 39.21 65.09	25.1 Study D Indirectly Wang 2013 Yang 2013 Yang 2013 Yang 2013 Zhang 2017 Wu 2021 Subtotal (I-squared = 0.0%, p = 0.866) Directly Migita 2014 Xing 2016 Chen 2018 Kunishige 2020 Subtotal (I-squared = 0.0%, p = 0.824)	• • • • •	HR (95% Cl) 1.23 (0.06, 25.08) 2.62 (1.55, 4.42) 1.54 (0.88, 268) 1.86 (0.70, 4.93) 1.84 (1.13, 2.56) 3.27 (1.54, 6.89) 2.66 (1.22, 5.82) 2.73 (1.16, 5.44) 2.02 (1.16, 3.51) 2.35 (1.44, 3.27)	Weight 0.20 15.42 39.21 7.10 61.94 4.45 6.00 4.56 23.04

Figure 3. Stratified analyses to assess ROC1 expression and overall survival (OS). (A) subgroup analysis of HR of OS by cancer type; (B) subgroup analysis of HR of OS by sample size; (C) subgroup analysis of HR of OS by follow-up time; (D) subgroup analysis of HR of OS by HR obtained measurements.

Figure 4. Forest plot to assess ROC1 expression and recurrence-free survival (RFS).

Figure 5. Forest plots to assess ROC1 expression and clinicopathological features. (A) differentiation; (B) tumor node metastasis (TNM) stage; (C) tumor size; (D) LNM.

prognostic values in cancers. Our results showed that ROC1 was able to serve as a potential prognostic biomarker in multiple tumors.

This was the first meta-analysis comprehensively reviewed the prognostic value of ROC1 in various cancers. A total of 9 studies including 1002 patients within 5 cancer types were included in our analysis. We demonstrated that aberrant high levels of ROC1 was notably associated with worse overall survival, poor tumor differentiation, advanced clinical TNM stage, large tumor size and positive LNM in neoplasms, indicating that increased ROC1 was a promising prognostic biomarker in clinicopathologic parameters in a diversity of cancers. In addition, we discovered that high levels of ROC1 was associated with poor RFS in bladder cancer, gastric cancer and esophageal squamous cell cancer. Collectively, our study concluded that ROC1 could serve as a novel prognostic biomarker with poor tumor progression.

ROC1 regulates cell survival, apoptosis and cellular senescence through multiple signal pathways thus promotes carcinogenesis in various human cancer cells.^[23] Jia et al have found that silencing of ROC1 remarkably inhibits cancer cells growth via induction of G2/M arrest, apoptosis, and senescence through accumulation of cyclin B1 and Cdc2, collection of Puma, and p53/p21 and p16/pRB independent ways.^[27] In liver neoplasms, Yang et al have discovered that knockdown of

ROC1 significantly inhibits the growth of cancer cells through inducing p21-dependent cell senescence, and stimulates autophagy by inhibiting of DEPTOR-mTOR (mammalian target of rapamycin) axis. A study by Zhang et al indicates that slowing ROC1 activity with siRNA inhibition significantly curbs the growth of liver cancer through regulation of apoptosis factor ATF4, DNA damage factor P-H2AX and Neddylation pathway which is a novel modulator of the tumor microenvironment.^{[9,} ^{28-30]} In bladder cancer, aberrant ROC1 expression excessively degrade some cyclin dependent kinase inhibitors (e.g., p21, p27) and participates in ROC1-SUFU-GUI2 axis, boosting cancer cell growth.^[31, 32] Wu et al have showed that ROC1 controls p-IkBa ubiquitination and regulates NF-kB signaling, stimulating p65 expression and activating several crucial genes subsequently promoting bladder cancer cell growth.^[10, 16] In gastric cancer, Chen et al have demonstrated that depletion of ROC1 expressively impedes the growth of gastric cancer cells via p21-mediated cellular senescence and mitochondrial-dependent apoptosis, and ROC1 suppression can notably inhibit proliferation and invasion of gastric cancer cells.^[7,13] Kunishige et al have concluded that downregulation of ROC1 significantly disrupt the proliferation of esophageal cancer cells through regulation of p21.^[6] Celik et al have demonstrated that overexpression of ROC1 is associated with advanced clinical stage and high prostate specific antigen (PSA) levels in prostate cancer patients

and depletion of ROC1 crucially induces apoptosis, senescence, autophagy and G2/M arrest in prostate cancer cells.^[12] Several studies have indicated that overexpression of ROC1 is connected with higher Fuhrman grade and ROC1silencing remarkably hinders cancer cells growth and survival through G2/M arrest, senescence and apoptosis by accumulation of WEE1, p21, p27, NOXA, and BIM in renal cell carcinoma (RCC).[14, ^{25]} Elevated ROC1 expression is associated with poor clinical features in ovarian cancer and reduced expression of ROC1 can inhibit ovarian cancer cells proliferation via ubiquitination of TP53 through the miR-194-5p/ROC1 pathway, finally blocking cancer cells growth and invasion. Additionally, ROC1 is found to be associated with chromosome instability in ovarian cancer cells.^[15, 33] In skin cancer, Zhang et al have investigated that downregulation of ROC1 significantly impeded the progression of malignant melanoma through miR-135b/ROC1 axis.[34] Therefore, those positive proof indicate that ROC1 plays principle roles in tumor progression and can act as a promising prognostic maker for human cancers.

Nevertheless, our analysis had some limitations. Firstly, only 9 studies including 1002 patients were involved in this analysis and fewer studies about RFS were enrolled in the analysis, which prevented us from obtaining adequate evidence. Secondly, some survival data were extracted from Kaplan–Meier curves which may affect the pooled HR. To minimize the inaccuracy, 2 researchers independently extracted data from survival curves. Thirdly, the cutoff values defining high/low ROC1 expression were not uniform, which may influence the pooled outcomes. Fourthly, this meta-analysis included some retrospective studies. Therefore, more multicenter, large sample size trials are required to get more accurate conclusions.

8. Conclusions

In conclusion, we demonstrated that ROC1 had a noticeable prognostic value in numerous tumors. Increased ROC1 can act as a promising prognostic biomarker for poor OS and RFS, advanced TNM stage, poor differentiation, large tumor size and positive LNM in human neoplasms.

Author contributions

NRS, QTW, and MXL are responsible for the study design, definition of intellectual content, data analysis, manuscript preparation and editing; YJQ and YW performed the searches and screened the potential studies, extracted data and assess the risk of bias. NRS and DYL arbitrated any disagreements during the review. All review authors critically reviewed, revised and approved the final version of this manuscript.

Conceptualization: Nirui Shen, Qingting Wang, Manxiang Li. Methodology: Yuanjie Qiu, Yan Wang.

Software: Danyang Li, Nirui Shen.

Writing original draft: Nirui Shen, Qingting Wang.

Writing revision & editing: Nirui Shen, Manxiang Li.

Acknowledgment

The authors thanked all researchers for their contributions.

References

- Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
- [2] Kern SE. Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res. 2012;72:6097–101.
- [3] Jayanthi VSPKSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron. 2017;91:15–23.
- [4] Sun Y, Tan M, Duan H, et al. SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions. Antioxid Redox Signal. 2001;3:635–50.
- [5] Shi L, Du D, Peng Y, et al. The functional analysis of Cullin 7 E3 ubiquitin ligases in cancer. Oncogenesis. 2020;9:98.
- [6] Kunishige T, Migita K, Matsumoto S, et al. Ring box protein-1 is associated with a poor prognosis and tumor progression in esophageal cancer. Oncol Lett. 2020;20:2919–27.
- [7] Chen P, Luo X, Che Z, et al. Targeting of the C-Jun/BCL-XL/P21 axis accelerates the switch from senescence to apoptosis upon ROC1 knockdown in gastric cancer cells. Cell Physiol Biochem. 2018;48:1123–38.
- [8] Xing R, Chen K-B, Xuan Y, et al. RBX1 expression is an unfavorable prognostic factor in patients with non-small cell lung cancer. Surg Oncol. 2016;25:147–51.
- [9] Yang D, Li L, Liu H, et al. Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells. Cell Death Differ. 2013;20:235–47.
- [10] Wang W, Qiu J, Liu Z, et al. Overexpression of RING box protein-1 (RBX1) associated with poor prognosis of non-muscle-invasive bladder transitional cell carcinoma. J Surg Oncol. 2013;107:758–61.
- [11] Al-Sharaky DR, Kandil MAE-H, Aiad HAS, et al. ROC-1, P21 and CAIX as markers of tumor aggressiveness in bladder carcinoma in Egyptian patients. Diagn Pathol. 2020;15:33.
- [12] Celik ZE, Kaynar M, Dobur F, et al. Association of ring box-1 protein overexpression with clinicopathologic prognostic parameters in prostate carcinoma. Urol Oncol. 2016;34:336.e7–336.e12.
- [13] Chen X, Wang Y, Zang W, et al. miR-194 targets RBX1 gene to modulate proliferation and migration of gastric cancer cells. Tumour Biol. 2015;36:2393–401.
- [14] Wang Y, Tan M, Li H, et al. Inactivation of SAG or ROC1 E3 ligase inhibits growth and survival of renal cell carcinoma cells: effect of BIM. Transl Oncol. 2019;12:810–8.
- [15] Bungsy M, Palmer MCL, Jeusset LM, et al. Reduced RBX1 expression induces chromosome instability and promotes cellular transformation in high-grade serous ovarian cancer precursor cells. Cancer Lett. 2021;500:194–207.
- [16] Wu Q, Zhou X, Li P, et al. ROC1 promotes the malignant progression of bladder cancer by regulating p-IκBα/NF-κB signaling. J Exp Clin Cancer Res. 2021;40:158.
- [17] Zhang M, Li G, Wang Y, et al. PD-L1 expression in lung cancer and its correlation with driver mutations: a meta-analysis. Sci Rep. 2017;7:10255.

- [18] Lo CK, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments. BMC Med Res Methodol. 2014;1:14–45.
- [19] Migita K, Takayama T, Matsumoto S, et al. Prognostic impact of RING box protein-1 (RBX1) expression in gastric cancer. Gastric Cancer. 2014;17:601–9.
- [20] Celik ZE, Kaynar M, Karabagli P, et al. The relation between Ring Box-1 protein overexpression and tumor grade and stage in bladder urothelial cell carcinoma. Cancer Biomark. 2017;20:389–94.
- [21] Zhang J, Li S, Shang Z, et al. Targeting the overexpressed ROC1 induces G2 cell cycle arrest and apoptosis in esophageal cancer cells. Oncotarget. 2017;8:29125–37.
- [22] Périn JP, Seddiqi N, Charbonnier F, et al. Genomic organization and expression of the ubiquitin-proteasome complex-associated protein Rbx1/ROC1/Hrt1. Cell Mol Biol (Noisy-le-grand). 1999;45:1131–7.
- [23] Wei D, Sun Y. Small RING finger proteins RBX1 and RBX2 of SCF E3 ubiquitin ligases: the role in cancer and as cancer targets. Genes Cancer. 2010;1:700–7.
- [24] Tana M, Davisb SW, Saundersc TL, et al. RBX1/ROC1 disruption results in early embryonic lethality due to proliferation failure, partially rescued by simultaneous loss of p27. Proc Natl Acad Sci USA. 2009;106:6203–8.
- [25] Altintas E, Kaynar M, Celik ZE, et al. Expression of Ring Box-1 protein and its relationship with Fuhrman grade and other clinical-pathological parameters in renal cell cancer. Urol Oncol. 2020;38:6.e17–22.
- [26] Nai G, Marques M. Role of ROC1 protein in the control of cyclin D1 protein expression in skin melanomas. Pathol Res Pract. 2011;207:174–81.
- [27] Jia L, Soengas MS, Sun Y. ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M arrest, apoptosis, and senescence. Cancer Res. 2009;69:4974–82.
- [28] Yang D, Zhao Y, Liu J, et al. Protective autophagy induced by RBX1/ ROC1 knockdown or CRL inactivation via modulating the DEPTOR-MTOR axis. Autophagy. 2012;8:1856–8.
- [29] Zhang Z, Zhang J, Tian J, et al. A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1). J Nanobiotechnology. 2021;19:323.
- [30] Lisha Zhou YJ, Qin L, Lihui L, et al. Neddylation: a novel modulator of the tumor microenvironment. Mol Cancer. 2019;18:77.
- [31] Wang W, Chen H, Liu Z, et al. Regulator of cullins-1 expression knockdown suppresses the malignant progression of muscle-invasive transitional cell carcinoma by regulating mTOR/DEPTOR pathway. Br J Cancer. 2016;114:305–13.
- [32] Wang W, Qiu J, Qu P, et al. Regulator of cullins-1 (ROC1) negatively regulates the Gli2 regulator SUFU to activate the hedgehog pathway in bladder cancer. Cancer Cell Int. 2021;21:75.
- [33] Zhou M, Cheng H, Fu Y, et al. Long noncoding RNA DARS-AS1 regulates TP53 ubiquitination and affects ovarian cancer progression by modulation miR-194-5p/RBX1 axis. J Biochem Mol Toxicol. 2021;35:e22865.
- [34] Zhang XH, Xin ZM. MiR-135b-5p inhibits the progression of malignant melanoma cells by targeting RBX1. Eur Rev Med Pharmacol Sci. 2020;24:1309–15.