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1 Challenges in COVID-19 data handling

Accessing massive collections of prior medical literature and handling the

ongoing data deluge create challenges for health-care data consumers

(e.g., clinicians and researchers) who need to make timely data-driven deci-

sions related to the COVID-19 pandemic response. Current practice still

heavily relies on time-consuming and onerous manual methods to search,

compile, and select the articles that are relevant for gaining insights to shape

outcomes (Ioannidis, Salholz-Hillel, Boyack, & Baas, 2020). The COVID-

19 pandemic demands swift actions from researchers and clinicians, and

there is a dire need for robust tools to help them manage the datasets in

research tasks, and also to enable them collaborate with other experts based

on critical evidence (Kricka et al., 2020). The tools also need to be integrated

within unified data-sharing platforms that increase accessibility to specialized

literature and support data analytics automation to expedite, e.g., search and

analysis processes. Even more importantly, the tools need to be accessible in

a flexible and scalable manner by utilizing cloud-based deployments with

necessary interfaces to integrate open-source tools and health-care social

networks.
1.1 Cloud- and AI-based data pipeline platform
Data pipelines are increasingly being used to combine data from multiple

sources, allow access to multiple users, and include multiple data analytics

tools to orchestrate data collection and processing. To handle such data
159
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Fig. 1 Cloud-based data pipeline orchestration platform components for COVID-19
evidence-based analytics.
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pipelines, exemplar open technologies such as Observational Health Data

Sciences and Informatics (OHDSI) (Hripcsak et al., 2015) have been devel-

oped, which are yet to be customized and explored for the COVID-19

response purposes. The open architecture of such technologies makes it

feasible to integrate open-source data analytics tools and create interactive

interfaces to perform data processing. In this chapter, we describe

“OnTimeEvidence,” a cloud-based data pipeline orchestration platform

built on OHDSI for COVID-19 evidence-based text (e.g., publications)

and data (e.g., electronic health records) analytics as shown in Fig. 1. More

specifically, we describe how OnTimeEvidence leverages the concept of a

modern data pipeline platform that uses a technology agnostic architecture

on the Amazon Web Services (AWS) cloud platform (Wiggins, 2018) and

integrates AI-based analytic tools.

Both structured and unstructured data from multiple sources [i.e.,

Synthetic Public Use Files (SynPUF) (Borton et al., 2010) health-care data,

Kaggle COVID-19 Open Research Dataset (CORD-19) (Ekin Eren,

Solovyev, Raff, Nicholas, & Johnson, 2020)] can be stored in a repository

that uses redshift data-warehouse services in AWS, and follows the Com-

mon DataModel (CDM) standard (Makadia &Ryan, 2014). The repository

can be utilized for multiple data processing tasks involving, e.g., natural lan-

guage processing, machine learning depending on assigned roles of users

who have relevant entitlements for managing data access and processing.

Users manage the data processing tasks in their customized analytics work-

spaces that provide the necessary tools to retrieve and analyze the data with

user-friendly Jupyter Notebooks and R Studio interfaces. A particular open-

source tool that we integrate in OnTimeEvidence is the Domain-specific

Topic Model (DSTM)-based publication analytics tool (Zhang, Calyam,

Joshi, Nair, & Xu, 2018) that helps users in inferring latent patterns across

COVID-19 or other scientific domain literature documents. Using a

detailed case study, we show how OnTimeEvidence helps health-care data
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consumers to submit data requests and retrieve the data in a secure, consis-

tent, and standard manner to analyze COVID-19-related literature. Users

are also provided with access to analytic tools which help them to

(a) conduct knowledge discovery tasks while reducing the manual burden

in compiling and analyzing large datasets and (b) run data analytic processes

on disparate systems with minimal automation.
1.2 Chapter organization
In this book chapter, we first present the background of open technologies

and issues around cloud-hosted data processing pipelines with AI-based

tools. Next, we introduce our OnTimeEvidence platform and detail its

architecture components. Following this, we present a case study to show

the benefits of deploying OnTimeEvidence to help with COVID-19-

related data analytics requiring data access control and use of versatile ana-

lytic workspaces. Lastly, we list a set of open issues for how cloud- and

AI-based platforms could be further developed to not only handle

COVID-19 crisis, but also support needs of health-care data consumers

to unlock the promise of “precision medicine” that can help better cure can-

cer and other diseases (Friedman, Letai, Fisher, & Flaherty, 2015).
2 Background and related works

In this section, we first provide a background on existing exemplar cloud-

based data pipeline orchestration solutions (i.e., the OHDSI on AWS plat-

form) that motivate our OnTimeEvidence platform design. Next, we

describe best practices in cloud-based health-care data analytics and sharing.

Lastly, we summarize latest advances in cloud-based data processing pipeline

schemes that can benefit health-care data consumers.
2.1 OHDSI on AWS infrastructure
The OHDSI program is committed to promote the importance of health

data analytics through the development and release of open-source data ana-

lytics tools (i.e., ATLAS, ACHILLES, ATHENA) (Hripcsak et al., 2015).

These tools have common features which allow them to interact with a

CDM (Makadia & Ryan, 2014) that can be implemented using multiple

database management systems (e.g., Postgresql, Redshift). Through proper

extraction, transformation, and loading (ETL) processes, disparate structured

and unstructured data sources can be integrated into the CDM repository
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under a well-defined data structure that will allow the analytic tools to utilize

templates to run standardized data analytic processes and generate insightful

results.

Our OnTimeEvidence platform builds on the open-source OHDSI on

AWS solution, and extends the out-of-the-box automated CloudFormation

deployment that includes a Redshift data-warehouse infrastructure instance.

This instance hosts the CDM repository physical model, and the data ana-

lytic tools that allow OnTimeEvidence users to interact with the CDM. As

part of the OnTimeEvidence deployment, we have loaded the SynPUF

dataset into the CDM. The deployment of this platform takes a few hours

but it removes the manual burden in the design, development, and deploy-

ment efforts required by a regular IT infrastructure process with manual

steps. We complemented the data repository by adding tables to store the

CORD-19 metadata about COVID-19 literature, and loaded the related

dataset into those tables. On top of this infrastructure, we developed a cen-

tralized role-based data access model to provide entitlements to authorize

users to access both datasets and analytic resources. To facilitate the data

retrieval and analysis tasks, we developed embedded data request forms

within a JupyterLab environment that enables researchers to submit data

requests and retrieve the required data within the Jupyter workspace. Once

the user-requested data is available, users have access to various analytic

tools, and can run correlation rules on multiple datasets. Thereby, they

can produce relevant diagnostics to discover insights for COVID-19-related

research tasks.
2.2 Cloud-based health-care data management
Multiple solutions have been developed to store and share health-care data

in cloud environments, keep those records secure in such environments,

provide analytic services related to health big data, and preserve data privacy.

In the context of data accessibility, the work in Health-care Data Gateway

(Yue, Wang, Jin, Li, & Jiang, 2016) aims to securely store Electronic Health

Record (EHR) data in a cloud-based platform and uses a Blockchain-based

secure storage layer. Data sharing is supported among multiple users (i.e.,

physicians, researchers, government institutions, private organizations)

based on role assignments. Similarly, in their work, Matos, Pardal, Adao,

Silva, and Correia (2018) proposed a system to store EHR in a public cloud,

and their focus was on ensuring data confidentiality and integrity by using an

access control mechanism based on the lattice model. Using such a model,
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users can define a hierarchy of data access levels (i.e., private, clinic, research,

public). Identify and access management solutions focusing more on cloud-

based data sharing while preserving privacy as have been proposed by

H€orandner, Krenn, Migliavacca, Thiemer, and Zwattendorfer (2016),

Sharma, Chen, and Sheth (2018), and Barik, Dubey, and Mankodiya

(2017). In these works, once a user authentication is complete, data access

from multiple client devices can be allowed or patient data can be collected

from multiple sources. However, none of these prior works provide user-

customized analytics workspaces, which in turn leads to users having to

manage any retrieved data manually outside of their platforms.

Access management best practices related to centralization need to be

carefully designed (Cohen &Nissim, 2018). Among the access management

best practices, role-based access control (RBAC) has been the most popular

one (Dinakarrao et al., 2019). RBAC restricts platform users’ permissions to

their roles and only permits users access to privileges that they absolutely

need to perform their job functions. For example, health-care students of

an organization should not have access to digital financial records of patients.

In addition, RBAC also helps facilitate identity security, operational pro-

cesses, and cybersecurity visibility. As part of our access management best

practices, it is important to assign clear, delineated roles to all users. Ideally,

this includes privileged users such as faculty members with Institutional

Review Board (IRB) approved projects having more entitlements com-

pared to regular users such as students. Moreover, RBAC implementations

need to ensure that no user should receive permissions outside his/her role.

However, if projects demand the assignment of temporary privileges, those

privileges should expire within a set time limit to ensure long-term security

of the data access.
2.3 Cloud-based data processing pipelines
Prior works have exemplified the need to provide open-source, cloud-based

frameworks for the deployment of data processing pipelines. In the work by

Garcı́a et al. (2020) a distributed cloud-based framework has been devel-

oped, viz., DEEP to enable researchers to process and train their machine

learning data science models. The DEEP framework integrates serverless

architecture to ease the transition from deployment to production. In a sim-

ilar fashion, VariantSpark (Bayat et al., 2020) is a distributed machine learn-

ing framework that performs association analysis to effectively identify

variants with complex phenotypes. It features a multilayer parallelization
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that allows the framework to scale the whole genome population dataset for

developing an in-depth analysis using its machine learning pipelines. Simm-

han et al. (2013) resolved the critical concern of optimizing supply-demand

needs of customers in a Smart Grid Project by developing a robust cloud

framework that leverages machine learning and data processing pipelines.

In recent work related to the COVID-19 pandemic, Tuli, Tuli, Tuli,

and Gill (2020) resolved the need to handle increasing rate of COVID-19

through a data-driven model deployed on a cloud-based framework that

predicts the growth of the pandemic. Abdel-Basset, Chang, and Nabeeh

(2020) developed an intelligent framework of emerging AI-based technol-

ogies for helping with the COVID-19 pandemic response. Their work sug-

gests that these disruptive technologies can be integrated in IoT and IoMT

devices using cloud platforms. Abdel-Basset, Chang, & Mohamed, 2020

sought to resolve the image segmentation problem in COVID-19 chest

X-rays by developing a novel machine learning framework that utilizes slime

mold and whale optimization algorithms. This problem involves a threshold

mechanism that builds a binomial classification to determine whether a

patient has the COVID-19 virus. Similarly, Abdel-Basset, Chang, Hawash,

Chakrabortty, and Ryan (2021) addressed the issue of providing accurate

classification of COVID-19 in CT scans by developing a deep learning

architecture that leverages a semisupervised few-shot segmentation algo-

rithm for image segmentation. The work by Otoom, Otoum, Alzubaidi,

Etoom, and Banihani (2020) presents an Internet of things (IoT)-based

framework that performs real-time monitoring and tracking of COVID-

19 data. The framework entails the aggregation of data from multiple

resources in a cloud infrastructure where stakeholders (e.g., health physi-

cians) can monitor patients through data processing algorithms. A study

by Ashraf et al. (2020) developed a smart surveillance system for effective

remote monitoring of human health conditions and close interactions.

Similarly, Hossain, Muhammad, and Guizani (2020) developed a mass sur-

veillance system through a hierarchical edge computing service using 5G

wireless connectivity and deep learning algorithms.

OnTimeEvidence builds upon the above works and uses data-driven

models deployed on OHDSI to allow researchers to effectively perform

knowledge discovery pertinent to the COVID-19-related datasets. We

develop a data-driven modeling scheme through our existing Domain-

specific Topic Model (DSTM) (Zhang et al., 2018), which is an extension

of the Latent Dirichlet allocation (Blei, Ng, & Jordan, 2003) to discover the

relationships between words and tools/resources (e.g., drugs and genes)
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related to the COVID-19 pandemic. In addition, we also use Gibbs sam-

pling algorithm (Griffiths & Steyvers, 2004) to infer latent patterns within

the COVID-19 domain in an unsupervised manner.
3 OnTimeEvidence architecture and component
implementation

In this section, we introduce our OnTimeEvidence platform and its com-

ponents as illustrated in Fig. 2. The core component of the data pipeline

orchestration is built on top of the open-source OHDSI on AWS. The

AWS CloudFormation is used to deploy OnTimeEvidence along with

the data access and process management module, entitlement database,

and access admin console. We leverage the JupyterLab included with

OHDSI on AWS to facilitate users’ data access and interaction, and create

extensions such as the user data request forms and the data processing models

in order to provide the analytic workspace for health-care data and COVID-

19 publications analysis as well as result sharing. We have uploaded the Syn-

PUF Medicare and the CORD-19 datasets to a relational repository on the

OHDSI Red-shift data warehouse service, and the related health-care data

and COVID-19-related literature information are available for process

testing and validation of user utility.
Fig. 2 Components of OnTimeEvidence data pipeline orchestration built on top of the
OHDSI on AWS infrastructure.
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3.1 OHDSI components of OnTimeEvidence
OnTimeEvidence uses various OHDSI components featuring in-built data

repositories and software capabilities. The deployment of OHDSI compo-

nents provides an enterprise class, multiuser, and scalable health-care data

sharing and analytics functionality. As shown in Fig. 2, OHDSI components

include the OMOP-CDM deployed on a Redshift data warehouse. The

CDM schema allows the integration of disparate data sources into a common

format (model) and common representation (terminology, vocabulary, cod-

ing) allowing the definition and execution of standard analytic processes.

Once data is available in the CDM, evidence knowledge can be generated

using the analytic tools included with the OHDSI on AWS platform (i.e.,

Athena, ATLAS), and the analytic models and tools available in the analytic

workspace available via Jupyter Notebooks or R-Studio. TheOHDSI com-

ponents include out-of-the-box open source analytic tools such as

(i) ATLAS, a web-based application for researchers to conduct analyses

on data loaded to the OMOP-CDM through the creation of cohorts based

on drug exposure or diagnosis of a particular condition. The cohort results

are visualized in the tool’s user interface, or stored in a relational repository

to be used by other analytic tools; (ii) ACHILLES, an application used to

analyze the database hosting the CDM and evaluate data quality; and

(iii) ATHENA, a tool that is used to generate and load standardized data

vocabularies into the CDM repository.

OnTimeEvidence extends OHDSI through the integration of the fol-

lowing new components we have developed: (i) a role-based user access

and workflow management component to keep control on the authentica-

tion and authorization of the data, and ensure data privacy and security com-

pliance; this functionality allows users to submit data requests, which are

fulfilled by OnTimeEvidence based on the role-based user access privileges

and (ii) the functionality that allows users to perform publication analytics

(considering knowledge pattern mining of hundreds or thousands of articles)

and big data analytics (considering millions of patient-related records) rele-

vant to COVID-19. The original OHDSI features are complemented by the

above two components and the result is a robust platform for researchers to

analyze data with open-source tools, and find correlations as well as gain

insights all within the same platform. Consequently, OnTimeEvidence

reduces the burden of researchers to handle large-scale data compilation

and analysis in cloud infrastructures, and enables them to focus on their sci-

entific research goals instead.
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3.2 Access and authorization management
Herein, we provide the details regarding the data access and workflow man-

agement components in OnTimeEvidence. For user management, we cre-

ated a centralized role-based access control mechanism to manage users’

credentials and privileges through an administrator interface. The user

account creation workflow process steps are illustrated in Fig. 3. Users are

first asked via the OnTimeEvidence web interface to provide essential data

to validate their privileges and necessary data requirements for their analytics

tasks. Users are accordingly granted role privileges by the administrator using

roles such as student, faculty, or independent researcher depending on the

data access requirements and user status in an institution. Once the admin-

istrator verifies user credentials, a user account corresponding to a group is

created on the OHDSI database server through an administrator web inter-

face that runs customized shell scripts in the backend to automate the user

account creation and group mapping. After user account creation, admin-

istrators can also dynamically regulate the level of access provided to users

thus protecting sensitive and proprietary data. A large number of roles con-

sisting of a combination of access to different attributes can be stored in the

entitlement database to allow administrators on creating user accounts with

flexibility in access control rules governing the platform.

The control actions performed by the administrator utilize the HTTPS

protocol to connect and communicate with the application and database

server in a secure manner. Administrator password and user access request

form are secured on a separate database system (disjoint with the original
Fig. 3 Role-based access control enabled by a web interface and entitlement database
using automated shell scripts.
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OHDSI components, e.g., CDM) identified as the entitlement database

server in the architecture schematics shown in Fig. 2. The role-based access

control and separation of concern for user access request form and admin-

istrator authentication on a different entitlement (database) server reduces

the attack surface on the overall platform. To increase security, we enforce

strong passwords (at least eight characters with uppercase and lowercase let-

ters, numbers, and special characters) for authentication of users and the

administrator. We have added further security measures by using the bcryptjs

library for hashing the password and other user data at rest. Field level

encryption is used for protecting sensitive user data such as details about

the project or their privileges. This ensures that the actual explicit password

and data are not accessible to hackers even if they have access to the entitle-

ment database. To save the users from malicious security attacks, strict pro-

tocols such as form and data validations are put in place at each layer of the

control flow. Consequently, a malicious user cannot execute attacks such as

SQL injection attacks on the application or database server. Data validation

at the application layer is also performed to prevent users from storing

undesired data on the web server.
3.3 COVID-19 literature selection and analysis
The OnTimeEvidence platform can be used with customized analytics

workflows in which health-care data consumers (e.g., clinicians, health pro-

fessionals) access COVID-19 literature in their scientific research tasks. In

clinical fields, researchers commonly follow a systematic literature review

procedure known as the evidence-based practice (Sackett, 1997). Health-

care data consumers commonly adopt this method for synthesizing and

reviewing articles based on the inherent evidence levels that are pertinent

to their research. Specifically, a hierarchical evidence-based framework,

viz., Levels of Evidence Pyramid (Murad, Asi, Alsawas, & Alahdab,

2016), is used. The Levels of Evidence Pyramid illustrate the reduced quan-

tity of publications with respect to the increase in high-quality information

(e.g., background information to systematic reviews). However, it remains a

challenge for clinical researchers to sort and filter information based on high-

quality evidence in a timely manner.

To simplify literature data selection and analysis for COVID-19

researchers, we implement new components in the OnTimeEvidence plat-

form to cater to the user’s needs by reducing their manual steps in scientific

workflows as illustrated in Fig. 4. The implemented tasks performed include:



Fig. 4 COVID-19 literature selection and analysis workflow process in OnTimeEvidence
for knowledge discovery.
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(i) a literature selection form that allows a user to query search terms related

to the levels of evidence, (ii) the functionality to process the literature selec-

tion, and, in response, generation of a new Jupyter Notebook with an

embedded SQL query to execute the information requested by the user,

and (iii) use the JupyterLab workspace to allow the user to conduct a pub-

lication and/or collaborative analysis and store the results for sharing them

via the platform.

The above OnTimeEvidence component for literature selection and

analysis described uses a relational data structure and process to upload

and store the metadata related to the COVID-19 literature. For the purposes

of this work, we have collected over 10,000 publication records from the

Kaggle COVID-19 Open Research Dataset (CORD-19) (Ekin Eren

et al., 2020). This dataset is stored on an Amazon Redshift database server

that hosts CDM data models as shown in Fig. 2. With the publication

archives stored in the Red-Shift cluster, the user is able to search for articles

by using the request form through a data access request form on a JupyterLab

interface. The form allows the user to submit a COVID-19 literature selec-

tion based on the selected Level of Evidence. Following this approach, the

data access request form processes the health-care data consumers’ requests

and generates the SQL query to retrieve the related literature selected. In this

process, we have developed an intuitive client-interface form that is ren-

dered on the JupyterLab workspace within the default view for data

consumers, i.e., the request form is displayed whenever users have been

given accesses by the administrator in the workspace, and they can use it

to submit a new publications data access request.

Fig. 5 illustrates the process of the CDM to execute the SQL query and

generate a new Jupyter Notebook on the user’s workspace once the data



Fig. 5 Integration between a Jupyter Notebook and the CDM via a SQL query to retrieve data and perform data analytics for a given COVID-19
research task.
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request form is submitted and processed from the user’s query. The user will

use this notebook to execute the query against the CDM and retrieve the

required data. The user does not have to know the structure or content

of the CDM repository to retrieve data as the query provides the required

definition to fulfill the data request. However, if the user has some knowl-

edge of the CDM structure and data content, it will be possible for the user

to modify the query and retrieve a new dataset. The scope of the data being

accessed by the user will be limited by the user’s role. Therefore, even if the

user attempts to access data not allowed for the related role, the correspond-

ing query will not work due to the access security mechanism. This feature

allows the user to explore only the data that the user has access to when using

the initial SQL query statement or modify the queries in the user data request

submission. New SynPUF data following the CDMmodel can also be added

and processed in the OnTimeEvidence platform for varying analytics chal-

lenges by the researchers and administrators. Once the SQL query provides a

required list of selected articles, the user will be able to conduct analytic tasks

using the Python libraries available in the JupyterLab environment, generate

the required results, and store or share those results within the same

environment.
3.4 Data processing using domain-specific topic model
With the implementation of new components on top of OHDSI, OnTi-

meEvidence enables the collection of external resources and deployment

of machine learning models via open-source tools. In this section, we illus-

trate the utility of open-source tools in OnTimeEvidence to filter high-

quality information and reduce the time-expensive workflow steps involved

in performing knowledge discovery over COVID-19 publication archives

using data processing pipelines.

Particularly, we detail our Domain-specific Topic Model (DSTM)

(Zhang et al., 2018)-based tool that can be used to deploy statistical and

deep generative models for guiding researchers to rapidly discover high-

quality information (in terms of Evidence Levels) from aggregated medical

resources (e.g., publication databases, information on drugs and genes).

DSTM extends the Latent Dirichlet Allocation (LDA) (Blei et al., 2003)

model to discover domain-specific topics and latent knowledge patterns

among the topics and users’ interests. The LDAmodel is a powerful tool that

is capable of representing a document through a Dirichlet distribution of

random topics and, in parallel, represents each topic as a distribution of
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key terms. Our DSTM also utilizes inference algorithms such as variational

inference and Gibbs sampling (Griffiths & Steyvers, 2004) to infer those

latent parameters. DSTM learns two distinct multinomial distributions

(Dai, Ding, Wahba, et al., 2013) to generate random topics: (i) topic distri-

butions that are distributions over terms and (ii) document distributions that

also are distributions over topics. Given that LDA generates random topics

in the scientific literature, we have configured our DSTM tool to generate

domain-specific topics through the aggregation of scientific terms related to

the COVID-19 research areas.

In utilizing the LDA model for identifying the distribution of topics and

their respective terms, we leveraged our DSTM (Zhang et al., 2018) to dis-

cover the latent patterns of specific scientific drug and gene terms in salient

medical information from the COVID-19 Vaccine Tracker (Milken Insti-

tute, 2020) and Virtual Incident Procurement (ViPR) (Pickett et al., 2012).

Clinical researchers commonly refer to important criteria including drugs

and gene tools to further study the issues relating to infectious disease,

immunology, and epidemic/pandemic control. Hence, we simplify the

computational complexity of our generative model by generating each word

based on a drug or a gene.

As shown in Fig. 6, our DSTMworks automatically learns the latent pat-

terns underlying the datasets. Each document represents the collected doc-

ument from the CORD-19 Kaggle dataset. We decompose a scientific

paper into a list of information about the research topic, and related drugs
Fig. 6 Domain-Specific Topic Model (DSTM) deployed on OnTimeEvidence works as an
analysis engine to discover the relationships among research topics, drugs, and genes.
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and genes mentioned in the publication. The goal of DSTM is to learn the

relationships among the research topics, drugs, and genes using an unsuper-

vised machine learning approach. To train the DSTM, we only need to

input a collection of COVID-19 articles, a list of drugs, and a list of genes.

After completion of the training phrase, the DSTM can help users to analyze

the most popular research topics in the articles as well as help rank the most

commonly investigated drugs or genes based on each topic. Our DSTM can

also effectively help scientists query COVID-19 relevant drugs and genes

based on their research topics, or search relevant COVID-19 research topics

based on specific drugs and genes.
4 OnTimeEvidence COVID-19 case study

Herein, we demonstrate the utility of the OnTimeEvidence platform for

COVID-19-related data analytics in the form of a case study. As part of

the data access management in OnTimeEvidence, we created multiple user

profiles, assigned profiles to users, and ran tests related to data access based

on the defined profiles. As shown in Fig. 7, we validated basic security

checks, e.g., the web interface for the access request form to create user cre-

dentials with necessary validations. Thus we ensured that we prevent SQL

injection attacks and fake malicious user(s) creation.We remark that the web
Fig. 7 Sequence diagram of the OnTimeEvidence steps to allow secure access to the
analytics workspaces.
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interface can be configured to be more secure by having a user community

domain in the AWS certificate manager (ACM) service.
4.1 Secure access
The OnTimeEvidence web interface-related files are hosted on a S3 bucket

with security options to allow exclusive subdomains accessibility. Traffic can

be routed from our custom domain to this S3 bucket on a SSL channel to

securely transfer user data and facilitate user communications. The filled user

data in the forms are stored in an user entitlement database server (built with

MongoDB). The entitlement dB is on a three-cluster sharded server hosted

on AWS for high availability, and has services available such as field level

encryption to encrypt the data at rest. Sharding is also useful for improving

responsiveness and capacity of the entitlement dB. Nodejs is used in the

application server that connects the OnTimeEvidence web interface (cre-

ated usingAngularjs) to the entitlement dB. The database credentials are hid-

den on the application server and are not accessible to nonauthorized users.

Further, we use the bcryptjs library to encrypt the administrator’s password so

that the password is secured even at rest in the entitlement dB, i.e., a third

party having access to the encrypted administrator password will not be

able to access the data. We connect to the CDM on AWS Redshift

through our nodejs powered application server. Such a setup allows us to

run database query commands on the CDM model to create users with

requested credentials and then assign them into certain groups (associated

with their roles) for access on certain CDM schema elements in the enti-

tlement dB (Figs. 8 and 9).
Fig. 8 Administrator web interface to authenticate, authorize, and manage users in the
data processing pipeline.



Fig. 9 Role assignment process for restricting and/or allowing users to access
functionalities of the data processing pipeline.
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4.2 System login and data request
Once the users are provisioned with the proper access roles, a researcher can

access the OHDSI environment with the assigned OnTimeEvidence plat-

form credentials. By default, the user will be taken to the JupyterLab envi-

ronment where data request forms are available (as shown in Fig. 10) to
Fig. 10 Data access interface form integrated in the JupyterLab workspace for health-
care data consumers.
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allow the submission of a particular CORD-19 request or SynPUF health-

care data request. Based on the user’s role and the particular data request

elements submitted by the researcher, the access management module, inte-

grated as an extension to the OHDSI platform in OnTimeEvidence, will

evaluate if the data elements requested are authorized for access by the

related role’s permissions. Accordingly, it will either authorize or deny

the request. Upon authorization of the data request, the user will be able

to retrieve and utilize the data within a Jupyter Notebook and employ

the analytic tools available in the workspace using the two configuration

modes described below.
4.3 OnTimeEvidence analytics workspace
Once the health data request is received, the platform provides the health

consumer Jupyter workspace where the user can conduct an analysis over

the SynPUF data stored in the CDM or the CORD-19 dataset stored on

an AmazonRedshift cluster. In the following, we detail the process in which

researchers can configure their workspace analysis through SynPUF data and

DSTM embedded in the Jupyter Notebook for conducting a real-time anal-

ysis over publication archives.

In the first configuration mode, the researcher uses a Jupyter Notebook

to retrieve and analyze patients’ data from the SynPUF dataset. Such a con-

figuration allows researchers to fill a data request, define population selection

criteria elements (i.e., patient’s year of birth, gender, race, diagnosed condi-

tions, drug treatments), and the data domain elements to be extracted (con-

ditions, drugs, procedures) for the required dataset. Upon submission, the

request is processed by a customized JavaScript embedded in the request

form, and the data elements included in the request are interpreted and a

SQL statement is generated based on the standard schema of the CDM.

The SQL statement is then embedded into a new Jupyter Notebook and this

notebook instance is made available to the user within the JupyterLab envi-

ronment. The user can subsequently use the Jupyter Notebook to execute

Python code that runs the SQL statement against the CDM repository and

retrieves the related dataset. With the data available in the Jupyter Note-

book, users can use the analytic Python libraries to run data analyses. Results

from this process can be saved in the Jupyter Notebook for further analysis or

can be shared with collaborators. Further, the Jupyter Notebook can also be

used in conjunction with results generated by the CORD-19 configuration

described below to find correlations and gain insights.



Fig. 11 Distribution chart of topics generated by the DSTM tool from the CORD-19
dataset; this chart is part of the visualizations presented in the analytics workspace.
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The second configuration mode includes integrating the DSTM in the

Jupyter Notebook to conduct an experiment over the CORD-19 data.

Such a configuration allows health-care data consumers to filter their queries

according to the Levels of Evidence Pyramid structure to obtain high-

quality information from publication archives. The OnTimeEvidence data

request form for COVID-19 allows users to select a level (e.g., background

information to systematic reviews and meta analyses) and choose a topic

from the DSTM that generates a Dirichlet distribution of words within each

latent topic that was observed. Once the topic and level of choice are

selected by data consumers in the request form, they are used as query

parameters on the Jupyter Notebook. Fig. 11 shows a distribution of words

for a given topic along with the frequency of that word in the CORD-19

dataset. Health-care data consumers can thus leverage this information to

find the latest trends among topics that are pertinent to their research tasks

related to the pandemic response.
5 Conclusion—What we have learnt?

Cloud-based platforms are critical for sharing and analyzing the rapidly

increasing COVID-19 datasets in a scalable, standard, and secure manner,

while also utilizing AI-based tools to automate the data pipeline processing

for health-care data consumers (e.g., immunologists, clinical researchers).

Our proposed OnTimeEvidence is an exemplar and leverages the OHDSI

on the AWS environment to provide users with a scalable platform
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integrated with a standards-compliant data repository integrated with

AI-based data analytics tools. To comply with the privacy requirements

for health-care data, we adopted a role-based access control and authoriza-

tion implementation to define and limit the access to the proper level of data

for each user. To expedite the data request processing, OnTimeEvidence

includes a data request form that guides users to select the data domain

and data identifier elements to retrieve a particular dataset from the OHDSI

repository required for a research task. To reduce the randomness found in

existing approaches used to extract relevant information, we integrated

the DSTM tool that uses the Gibbs sampling algorithm internally to generate

a reliable set of results related to COVID-19 publication analytics. Conse-

quently, OnTimeEvidence helps users to discover relationships, e.g.,

between drugs and genes within a large text corpus of medical research jour-

nals. Further, our OnTimeEvidence helps users to customize Jupyter work-

spaces included in the OHDSI deployment to perform COVID-19-related

data retrieval and drill-down analytics to rapidly respond to the pandemic

response issues.
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