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Population-level lateralization in structure and function is a fundamental measure of the
human nervous system. To what extent nonhuman primates exhibit similar patterns of
asymmetry remains a topic of considerable scientific interest. In this mini-review, a brief
summary of findings on brain asymmetries in nonhuman primates in brain regions consid-
ered to the homolog’s to Broca’s and Wernicke’s area are presented. Limitations of
existing and directions for future studies are discussed in the context of facilitating
comparative investigations in primates.

Introduction

A fundamental feature of the human brain is lateralization, which is defined as left-right differences
neuroanatomy and neurofunctions that underlie different sensory, motor and cognitive functions [1-4].
Asymmetries in the structure are often conceptualized and quantified in terms of unilateral differences
between homologous brain regions following a set of operationally defined neuroanatomical landmarks.
More recent advances in neuroimaging techniques and quantification methods that operate at the level
of the voxel or vertices have allowed for expansive, whole brain analyses of asymmetry in gray matter,
white matter, cortical thickness, surface area and in anatomical and functional connectivity [5-9].
In humans, these approaches have revealed more comprehensive results with respect to whole brain
variation in lateralization in morphology and connectivity.

In the study of behavioral and brain lateralization, scientists typically distinguish between individual and
population-level asymmetries. Specifically, at the individual level, left-right difference measures obtained
from bilateral traits are computed for each subject. The sign and absolute value indicate the direction and
magnitude of a given subjects laterality and these are often described as asymmetry quotient (AQ) scores.

Population-level asymmetry indicates whether the average AQ scores for a sample of subjects differs
from zero or, relatedly, whether a significant proportion of subjects within a sample show the same
directional bias based on the sign of the AQ value. Thus, like other types of research on asymmetry,
different distributions of lateralization can be obtained within a population or sample including: (1) a
normal distribution of AQs, (2) a bimodal distribution AQ scores and (3) a rightward or leftward
skewed distribution of AQ scores. Normal and bimodal distributions of AQ scores will have mean
values on or about zero and reflect no population-level bias but for different reasons. In contrast,
skewed distributions reflect population-level biases (depending on sample size and consistently of the
asymmetry within the sample).

In the context of brain and behavioral asymmetries in nonhuman primates, it has been known for
quite some time that individual subjects show asymmetries in certain behaviors, such as hand prefer-
ences or on measures of neuroanatomical structures [10-13]. What has been less documented and,
indeed a matter of much greater debate, is whether nonhuman primates exhibit population-level
asymmetries and, if they do, whether they are comparable in direction to those observed in humans.
Indeed, the question of homology in population-level behavioral asymmetries has received
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considerable attention as it pertains to handedness [14-20]. However, there has been less research and thereby
less discussion on the existence of population-level asymmetries in neuroanatomy in nonhuman primates and
their similarities (and differences) to those observed in humans [21].

In this review, I summarize recently published data on asymmetries in the nonhuman primate brain that
have utilized more modern imaging technologies, with a specific emphasis on studies in chimpanzees. Notably,
many early studies on brain asymmetries focused on linear measurements of the length of cortical sulci mea-
sured directly from postmortem brains [22-26], endocasts [27-29] or in a few cases magnetic resonance images
[30-32]. In addition, several studies quantified asymmetries in the shape of the skull based on endocasts or
related methods [33-35]. These collective findings have been summarized recently by Hopkins et al. [21]. In
this mini-review, I will summarize more recent findings on brain asymmetries in nonhuman primates that have
utilized region-of-interest methods. Furthermore, I will limit the review to studies that have quantified brain
regions considered homologous to Broca’s and Wernicke’s areas in the human brain (see Figure 1). Specially,
some of the first studies to describe lateralization in structure and function came from case studies of patients
with unilateral damage to the left hemisphere inferior frontal gyrus (IFG) or posterior superior temporal gyrus
(STG). In these cases, the patients exhibited deficits in language production and/or language comprehension
whereas patients with damage to these same brain regions in the right hemisphere did not show any speech
deficits. This led to the view that language functions are largely controlled by the left hemisphere, a finding
largely confirmed over the next century in additional clinical cases and from experimental studies using a
variety of neuropsychological test and measure employing functional imaging. Because many believe that lan-
guage is uniquely humans, the historical and contemporary interest in brain asymmetries has largely focused
on quantifying measures of brain regions or sulci that are homologous to Broca’s and Wernicke’s area.

Planum temporale

Brodmann’s area 22 (BA22) or Wernicke’s area is found in the posterior STG [36,37]. The most reliable land-
mark to quantify this region is referred to as the planum temporale (PT), which is the bank of tissue that lies
posterior the Heschl’s gyrus (see Figure 1). Historically, scientists have quantified either the surface area or the
gray matter volume of the PT in humans and consistently reported a significant leftward asymmetry (PT) (see
Figure 2a and Table 1). With respect to nonhuman primates, in one of the first systematic comparative studies
of PT asymmetry in chimpanzees, Gannon et al. [38] measured the surface area from a sample of 18

temporale
(PT)

Figure 1. Morphological regions that comprise the planum temporale (left panel) and inferior frontal gyrus (right panel)
of the human brain.
OP = pars opercularis, Tr = pars triangularis.
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Figure 2. Mean AQ scores (zs.e.) for (a) PT surface area and (b) PT gray matter volume in different primate species.

postmortem brains and reported a leftward asymmetry in 17 of the apes. In three subsequent studies, the PT
surface area was measured either directly from MRI scans or from 3D reconstructions of the sulci in samples
of chimpanzees and all three studies reported a significant population-level leftward asymmetry [39-42]. More
recently, Marie et al. [43] quantified the PT in a sample of 96 adult baboons and reported a population-level
leftward asymmetry. Following on from this report, Becker et al. [44] measured the PT in a sample of 35
newborn baboons (<3 months of age) and similarly found a leftward asymmetry. Lastly, in rhesus monkeys, no
population-level bias has been found, a somewhat interesting result in light of the results reported in baboons,
another Old World primate species.

In addition to the surface area, several authors have also measured the gray matter volume of the PT in non-
human primates. Not surprisingly, the results for PT gray matter asymmetries are largely consistent with the
surface area measures. This is because, assuming that cortical thickness in gray matter remains relatively
consistent throughout the region, then the larger surface area will produce a larger gray matter volume. Thus,
the leftward asymmetries observed for surface area in chimpanzees [41] and baboons [45] are similarly observed
for gray matter volume (see Figure 2b and Table 1). In contrast, neither rhesus monkeys, bonnet monkeys or
vervet monkeys show a population-level bias in gray matter volume for the PT [46] (see Figure 2b).

Cytoarchitectonics

There are remarkably few studies documenting asymmetries at the cellular level in BA22 in human and non-
human primates (Table 1). In one of the only reported studies in humans, Galaburda et al. [47] reported a
larger volume of BA22 in the left hemisphere of four postmortem brains. In chimpanzees, Spocter et al. [48]
measured the volume, neuron number and neuron density of BA22 in 12 postmortem adult brains and reported
a significant leftward asymmetry for each measure (see Table 1). In a follow up study, Spocter et al. [49] further
quantified microstructural asymmetries in BA22 by measuring neuropil space and found no population-level bias.
Finally, Gannon et al. [50] measured the volume of BA22 in 6 rhesus monkeys and found the 5 of the 6 indivi-
duals showed a leftward asymmetry.

Inferior frontal gyrus (Broca’s area homolog)
Comparative studies of the IFG in nonhuman primates are challenging because of differences in the sulcal land-
marks the define the region (see Figure 3). Specifically, in humans, the IFG is broadly classified into the Pars
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Table 1. Planum temporale asymmetries in nonhuman primates.

#L #A #R Mean AQ se t
Surface area
Chimpanzee 17 0 1 -0.574 0.132 —4.35"
Chimpanzee 159 21 43 -0.129 0.013 -9.65"
Chimpanzee 197 32 62 -0.104 0.013 —7.96**
Chimpanzee 7 1 2 NA
Baboon 60 11 25 —-0.070 0.013 —5.62**
Baboon 25 8 2 —-0.058 0.011 -5.15**
Rhesus monkey 21 5 26 -0.013 0.035 —-0.36
Gray matter volume
Human 34 2 12 NA
Chimpanzee 134 12 43 0.107 0.013 8.00™
Chimpanzee 198 25 68 -0.117 0.013 —8.98**
Baboon 24 3 -0.121 0.028 —4.20**
Rhesus monkey 10 3 0.040 0.042 0.95
Bonnett monkey 11 0 —-0.052 0.056
Vervet monkey 16 9 17 -0.002 0.023
Cytoarchitectonics
Humans 3 0 1 NA
Chimpanzee (nn) 10 1 1 —0.401 0.141 -2.91*
Chimpanzee (nd) 8 0 4 -0.144 0.124 -1.17
Chimpanzee (vol) 9 0 3 —0.265 0.144 -1.89
Chimpanzee (np) 5 1 6 0.000 0.049 0.97
Rhesus (vol) 5 0 1 NA

NA, not applicable or no data reported; se, standard error; n, neuron number; nd, neuron density;
vol, volume.

opercularis (Op) and the Pars triangularis (Tr). The Pars opercularis is bordered superiorly by the inferior
frontal sulcus (ifs), anteriorly by the anterior ascending ramus of the lateral fissure (aalf) and posteriorly by the
inferior precentral sulcus (iprs). The Tr is bordered inferiorly by the horizonal ramus of the lateral fissure (half)
and posteriorly by the ascending ramus, and together these rami form a ‘triangle’ shaped gyrus [51-53]. In
chimpanzees, the sulci landmarks that define the Op are homologous; however, chimpanzees lack a horizontal
ramus of the lateral fissure which precludes being able to define the Tr using sulci landmarks. In more distantly
related Old and New World monkeys, the cortical folds are even less similar further complicating the measure-
ment. Cytoarchitectonic studies in macaques and baboons have shown that BA44 and BA45, the constituent cel-
lular components that derive the Op and Tr, respectively, are buried in the central portion of the arcuate sulcus
[54,55]. Thus, some have suggested that measurement of the entire or portions of arcuate sulcus can be used as
approximations to the measurement of Broca’s area, at least in Old World monkeys (discussed below).

In three separate studies that have utilized region-of-interest methods, either no population-level or a slight
rightward bias was reported in human subjects [56-58]. In a comparative study of the IFG gray matter volume
in 30 human and 30 chimpanzees by Keller et al. [58], neither species showed a population-level bias (see
Table 2). In one subsequent study measuring the total gray matter volume of the IFG in a much larger sample
of chimpanzees (n=189), Hopkins et al. [59] reported no population-level bias, consistent with the report by
Keller et al. [58]. In contrast, studies by Cantalupo and Hopkins [60] reported a leftward asymmetry in the
overall volume of the IFG in chimpanzees, bonobos and gorillas, albeit in much smaller samples of subjects.

More recently, Xiang et al. [61] compared surface area and cortical thickness asymmetries between humans
and chimpanzees. In this study, chimpanzee brains were aligned to a human brain template in the software
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Figure 3. Sulci used to define the inferior frontal gyrus in humans (upper panel) and chimpanzees (lower panel). Ipcs = inferior
precentral sulcus, ifs = inferior frontal sulcus, ar = ascending ramus, hr = horizontal ramus, ds = dimple sulcus, fos =
fronto-orbital sulcus. From Keller et al. [58].

program Freesurfer. Subsequently, the Desikan-Killany atlas maps, developed for use in humans, were subse-
quently applied to a sample of 77 chimpanzee brain scans and 91 scans of humans. With respect to the Op,
Tr, STG and transverse temporal (TT) gyrus, the magnitude and direction of asymmetry were influenced by
the different morphological measures (see Figure 4). For surface area, population-level leftward asymmetries
were found for both chimpanzees in the superior temporal and TT gyri while no group level bias was found
for either the POP or Tr. These results are largely consistent with the previous finding that have used trad-
itional region-of-interest measures. For cortical thickness, no population-level asymmetries were found for
either humans or chimpanzees for the Tr and POP regions. In humans, significant rightward asymmetries were
found for the superior temporal but not the TT gyrus. In the chimpanzee, significant rightward asymmetries
were found for the transverse but not STG.

Cortical folding

Surface area of frontal and temporal lobe sulci

As noted above, early studies attempting to quantify brain asymmetries focused on measuring the length of
select sulci in different primate species from either endocasts or directly from postmortem brains. In contrast
with sulci length, recent studies incorporating MRI scans have quantified sulci surface area and the average
depths by extracting cortical folds from the 3D scans using software programs such as Brainvisa (BV). To date,
these approaches have been used to measure asymmetries in sulci within the temporal lobe including the
sylvian fissure (SF) and superior temporal sulus (STS). Additional measures of asymmetry have been reported
for frontal lobe sulci with the ventrolateral and inferior frontal gyri (see Figure 5).

With respect to the frontal lobe, Bogart et al. [62] measured the surface area and depth of the rectus (REC)
and arcuate (ARC) in a sample of rhesus (n=21) and bonnet (n=28) macaque monkeys. Neither species
showed a population bias for either folds (see Table 3). Becker et al. [63] measured the surface area and average
depth of the ARC in 50 baboons and found no overall population-level bias (but see Discussion). The sulci that
define the IFG include the fronto-orbital (FO), precentral inferior (PCI) and inferior frontal sulci (IFS). Using
the software program BV, the surface areas and mean depth of the FO, PCI and IFS were quantified in the left
and right hemispheres in 294 chimpanzees. For both surface area and depth, significant leftward asymmetries
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Table 2. Asymmetries in Broca area homolog regions: volumetrics and
cytoarchitectonics.

#L #A #R Mean AQ se t
Total volume
Human 12 9 ihl NA
Human NA -0.082 0.035 —2.34*
Chimpanzee 30 4 23 -0.104 0.038 —2.71*
Chimpanzee 87 12 90 0.021 0.030 0.68
Bonobo 4 1 0 -0.097 0.054 —-1.77
Gorilla 2 1 0 -0.068 0.023 —-2.91
Gray matter volume
Human 28 1 31 0.041 0.061 0.67
Human 12 0 18 —0.021 0.112 —0.001
Human 17 4 29 .084 0.074 1.13
Chimpanzee 12 0 18 0.052 0.066 0.79
Chimpanzee 87 12 90 0.021 0.030 0.68
Cytoarchitectonic
Human
BA44 10 0 0 NA
BA45 6 4 NA
Chimpanzee
BA44 (nn) 5 6 0.029 0.169 0.17
BA44 (nd) 5 0 5 0.006 0.070 0.09
BA44 (vol) 5 1 6 0.075 0.144 0.60
BA45 (nn) 5 0 7 0.154 0.127 1.21
BA45(nd) 5 1 6 0.026 0.064 0.42
BA45 (vol) 4 0 8 0.245 0.127 1.94

NA, not applicable or no data reported; se, standard error.
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Figure 4. Mean AQ scores (zs.e.) for surface area and cortical thickness in the inferior frontal and posterior temporal gyri
regions within the Desikan—Killany atlas maps applied to human and chimpanzee brains.
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CHIMPANZEE

Figure 5. Lateral views of a macaque (rhesus monkey), baboon and chimpanzee brain with the frontal and temporal lobe sulci
labeled for each species. REC = rectus, ARC = arcuate, IFS = inferior frontal sulcus, PCI = precentral inferior, CS = central sulcus,
SF = sylvian fissure, and STS = superior temporal sulcus.

Table 3. Asymmetries in surface area of sulci within the inferior frontal gyrus and ventral lateral

cortex.

#L #A #R Mean AQ se t
Sulci surface area
Chimpanzee
Fronto-orbital (FO) 170 52 96 —0.041 0.011 -3.58**
Precentral inferior (PCI) 136 40 142 -0.019 0.010 -1.94
Inferior frontal (IFS) 177 27 114 -0.142 0.031 —4.55"
Sylvian fissure (SF) 152 69 70 —-0.032 0.006 -5.33**
Superior temporal sulcus (STS) 110 51 138 0.027 0.009 3.00*
Baboon
Arcuate (ARC) 22 8 20 0.004 0.019 0.20
Rhesus monkey
Arcuate (ARC) 6 3 12 0.080 0.045 1.76
Rectus (REC) 10 2 -0.012 0.123 —-0.09
Sylvian fissure (SF) 12 3 0.060 0.043 -1.40
Superior temporal sulcus (STS) 8 0 13 0.016 0.023 0.68
Bonnet Monkeys
Arcuate (ARC) 12 1 15 0.061 0.086 0.71
Rectus (REC) 12 2 14 0.122 0.106 1.15
Sylvian fissure (SF) 10 1 16 0.052 0.075 0.69
Superior temporal sulcus (STS) 7 1 20 0.092 0.033 2.28*
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were found for the IFS and FO sulci but not PCI (see Table 3). In addition, the dorsal portion of the FO sulcus
was reported to be significantly more often bifurcated in the left compared with the right hemisphere, a result
consistent with a previous study describing the sulci patterns of the IFG in postmortem chimpanzee brains [64].

Regarding the temporal lobe sulci, chimpanzees showed a leftward asymmetry for the SF while neither the
rhesus nor bonnet monkeys showed a population-level bias (see Table 3). For the STS, chimpanzees showed an
overall rightward population-level bias as did the bonnet but not the rhesus monkeys. One interesting observa-
tion of the rightward STS asymmetry from the chimpanzee sample was the evidence that the rightward was
particularly prominent in the area of the STS referred as the STAP (superior temporal asymmetric pit) [65]. In
humans, significant and robust rightward asymmetries have been reported and it was hypothesized to be
uniquely human (LeRoy et al. [66]). Contrary to this claim, chimpanzees showed a significant rightward asym-
metry in the STAP region, though the magnitude of the bias was much smaller than data reported for human
subjects (see Figure 6).

Repeatability of asymmetries in chimpanzees

For the PT, IFG and sulci measures in the chimpanzees, the data were derived from two independent samples
of captive apes. Specifically, one set of MRI data were obtained from chimpanzees housed at the National
Center for Chimpanzee Care (NCCC) whereas the second cohort was collected in apes housed at the Yerkes
National Primate Research Center (YNPRC). These two captive populations of apes were derived from distinct
founder animals and there was no interbreeding that took place between individuals between the two popula-
tions. Thus, this arrangement provides an opportunity to compare the patterns of asymmetry between these
two cohorts as a means of assessing their repeatability. As can be seen in Figure 7, patterns of asymmetry for
the PT, IFG and the frontal and temporal lobe sulci were evident in both samples of chimpanzees suggesting
the results are repeatable.

STAP region
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Figure 6. Mean AQ scores (zs.e.) for the STAP region in chimpanzees. The AQ values represent difference in the depth of the

STS in 20 equally spaced anterior to posterior regions.
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Figure 7. Mean AQ scores (zs.e.) for different measures of brain asymmetry in two independent samples of chimpanzees.
NCCC = National Center for Chimpanzee Care (NCCC), YNPRC = Yerkes National Primate Research Center. Left panel
represents PT surface area, gray matter volume and IFG gray matter volume. Right panel represents frontal and temporal lobe
sulci surface area measures.

Conclusion and parting thoughts

At the most basic level, and in contrast with many historical views, population-level asymmetries are evident in
chimpanzees and, to a lesser extent, other nonhuman primate species. The most robust and consistent
population-level asymmetry in chimpanzees and seemingly in baboons is the leftward bias evident in the PT.
This finding has been reported in both species using multiple methods of analyses and at different levels of
analysis including surface area and gray matter volume. Chimpanzees also show a leftward asymmetry in the
volume and neuron density of the BA22 but there are no available data from baboons. It appears the rhesus
monkeys may show a population-level leftward asymmetry at the cellular level for BA22 but this sample was
relatively small and therefore the results should be interpreted cautiously, particularly in light of the lack of
population-level bias in morphological measures from larger samples of subjects. Within the IFG, the evidence
of population-level asymmetries seems less clear and appears to be high dependent on the type of measurement
(i.e. sulci surface areas versus gray matter volume) and method of assessment. Performing comparative studies
of brain asymmetry have several challenges and addressing them in future research would greatly benefit the
field and theory. Three considerations for future research are discussed below.

The confounding impact of handedness on studies of comparative brain

asymmetry

As noted above, humans are predominantly and strongly right-handed whereas the evidence for population-
level handedness in nonhuman primates is far less prevalent and, when evident, not nearly as strongly
expressed [4,67,68]. For example, population-level right handedness has been reported in chimpanzees for
multiple measures of hand use but the proportion of right-handed individuals approximates 65-70% com-
pared with the 85-90% often reported in human subjects [18,19,69-71]. Because neuroanatomical asymmet-
ries can be associated with handedness [72-77], the comparison of brain asymmetries between primate
species is more complicated. Notably, in most studies of human subjects, the majority if not all of the subjects
are right-handed whereas the handedness of subjects in many studies with nonhuman primates are either
unknown or not reported. In instances where handedness was known in studies with nonhuman primates,
significant brain-behavior associations have been reported in some but not all cases [78-84]. For instance,
with respect to the ARC sulcus, Becker et al. [63] found that asymmetries in the depth of this fold were sig-
nificantly more leftward in baboons that communicated gesturally more often with their right compared with
the left hand. Similarly, Taglialatela et al. [85] found that chimpanzees that preferred to gesture with their
right hand showed greater leftward asymmetries in the IFG compared with individuals that preferred their
left hand or had no hand preference bias. In contrast, in both chimpanzees and baboons, hand preferences
for bimanual actions were associated with asymmetries in the motor hand area of the precentral gyrus. These
findings illustrate two important points. First, without considering or controlling for the handedness of sub-
jects when comparing brain asymmetries between species, it is possible that the results might be biased due
to an over representation of right- (or left-handed) individuals within one or more species. Second, at least in
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nonhuman primates, the type of measure of handedness appears to be associated with asymmetries in differ-
ent cortical regions depending on their motor and communicative functions. This type of distinction in dif-
ferent dimensions of handedness is not typically considered when testing for association with brain
asymmetries in humans.

Brain size, effect size and sample size

Among primates, the human brain is ~28% of its total volume at birth, which is much smaller compared with
other primate species [86]. Additionally, compared with other primates, humans have a particularly long
period of infant and juvenile periods of development. The relatively immature brain coupled with the longer
period of infancy makes the human brain more susceptible to the influence of early social and environmental
input on cortical development, including asymmetry [87-89]. Specifically, human and nonhuman primate new-
borns are not born into a symmetrical world. From birth (and arguably prior to birth), infants experience
asymmetrical sensory and motor experiences, such as head orientation and nipple preferences by the infant
and cradling biases by the primary caregiver which arguably can impact the development of both directional
and absolute behavioral and brain asymmetries [90-100]. This is important for two reasons. First, depending
on their consistency across individuals, the long-term impact of early asymmetrical input on the brain may
result in more consistent and robust asymmetries in humans compared with other primate species. Thus, all
other factors being equal, estimated effect sizes for the detection of population-level asymmetries will be greater
in humans compared with other primate species. This, in turn, would be mean fewer subjects would be needed
to detect population-level biases in humans compared with other primates. Samples sizes are already relatively
small in many studies on asymmetries in nonhuman primates; therefore, it is possible that population-level
asymmetries may be evident in nonhuman primate species for some measures but these studies are underpow-
ered given the estimated smaller effect size.

Whole brain approaches: templates (biased and unbiased)

Lastly, though not reviewed here, it is clear that voxel and surface-based whole brain approaches to the study of
brain asymmetry in nonhuman primates are becoming increasingly evident in the literature [61,101-104].
There are many advantages to these approaches in the context of comparative studies of asymmetry in human
and nonhuman primates. Notably, it allows for comparison in broadly defined brain regions between species
without reliance on common sulci or related landmarks. That stated, there are some potential pitfalls that merit
discussion. Notably, in whole brain approaches, the individual MRI scans through many registration steps are
warped into a common stereotaxic space which is normally an ‘average’ or template brain for the species. The
challenge is that inherent asymmetries in the template brain can exists which can potentially introduce biases
in image registration and the measurement of individual asymmetries. Save the recent study by Xiang et al.
[61], previous studies using voxel- or surfaced-based whole brain measures of asymmetries in nonhuman
primates have not adopted preprocessing or analytic methods that assure that the template brains are indeed
symmetrical.

Summary

In sum, in many ways, the study of brain asymmetries in nonhuman primates is still in its infancy. Modern
imaging technologies have allowed for scientists to increase the scope and complexity in the study of brain
asymmetries at multiple levels of analysis. Compared with studies focused on postmortem tissue, modern
imaging also allows for increased samples sizes which has historically and continues to be a significant limita-
tion, particularly in light of the fact that the effect sizes may be smaller in the smaller brained nonhuman
primates. At the same time, there remains a need for additional studies examining brain asymmetries at the cel-
lular level of analysis, including in human brains. Lastly, like other aspects of cortical function in relation to
complex behavior and cognition, lateralization in function likely operates through a series of connected nodes
rather than discrete, isolated brain regions [105-110]. Thus, it is possible (and likely) that specific functions
might be governed by a series of lateralized nodes that may be connected within and between hemispheres.
Thus, studies may benefit by considering a comparative analysis of functional or anatomical connectivity rather
than the whole brain or region-of-interest analyses.
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Summary
e Chimpanzees are an excellent model species for comparison to humans in the evolution of
brain asymmetries.

e Individual and population-level leftward asymmetries are evident in the PT of chimpanzees at
multiple levels of analysis. Similar leftward asymmetries appear evident in baboons but it less
consistent in other Old World monkey species.

e Despite initial reports of leftward volumetric asymmetries in the homolog of Broca'’s area, evi-
dence of population-level asymmetries is less clear cut in chimpanzees and humans.
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