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Pemafibrate, a novel selective 
peroxisome proliferator-activated 
receptor alpha modulator, 
improves the pathogenesis in 
a rodent model of nonalcoholic 
steatohepatitis
Yasushi Honda1, Takaomi Kessoku1, Yuji Ogawa1, Wataru Tomeno1, Kento Imajo1, Koji Fujita1, 
Masato Yoneda1, Toshiaki Takizawa2, Satoru Saito1, Yoji Nagashima3 & Atsushi Nakajima1

The efficacy of peroxisome proliferator-activated receptor α-agonists (e.g., fibrates) against 
nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. 
Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator that can 
maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 
study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the 
present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate 
efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate 
and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition 
of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To 
investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved 
in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated 
lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 
protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of 
NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising 
therapeutic agent for NAFLD/NASH.

The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. NAFLD is an important cause 
of chronic liver injury1. NAFLD ranges from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis 
(NASH), cirrhosis, and hepatocellular carcinoma2. First-line treatment for NAFLD is lifestyle modification to 
achieve weight reduction, particularly through diet and exercise3. However, weight reduction is very difficult to 
achieve and maintain and therapeutic agents approved for NAFLD treatment are lacking.

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of 
ligand-activated transcription factors4. PPARs contain three isotypes encoded by PPARα  (NR1C1), PPARβ /δ  
(NR1C2), and PPARγ  (NR1C3) genes. Each gene exhibits isoform-specific distribution patterns and functions in 
tissues5. PPARs have important roles in regulation of metabolic homeostasis, inflammation, as well as the growth 
and differentiation of cells6,7.

PPARα  expression is enriched in hepatocytes. PPARα  has key roles in regulation of fatty-acid transport as well 
as peroxisomal and mitochondrial β -oxidation in the liver8,9. PPARα  knockout mice increase the susceptibility 
to liver steatosis, inflammation, and hepatocellular carcinoma10–13. Therefore, it has been suggested that PPARα  
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has a protective role against NAFLD pathogenesis. PPARα -agonists have been shown to improve the pathologic 
condition of NAFLD in various preclinical models11,13–19. However, fibrates such as PPARα -agonists are weak 
and their efficacy is limited (at least in part) by dose-dependent side effects such as elevation of levels of transam-
inases, homocysteine and creatinine20,21. Fibrates increase the risk of myopathy, and have been associated with 
rhabdomyolysis. In addition, the efficacy of fibrates on NASH in humans is not known22–26.

The next generation of PPARα -agonists is called “selective PPARα  modulators” (SPPARMα ). They maximize 
the beneficial effects and minimize the adverse effects of fibrates27. Pemafibrate is the first of the SPPARMα  to be 
developed, and has been shown to be safe and efficacious against dyslipidaemia in a phase-2 study28. Pemafibrate 
has not been associated with rhabdomyolysis in Caucasian or Japanese subjects.

Here, we investigated the effect of pemafibrate on rodent models of NASH (methionine choline-deficient 
(MCD)-fed db/db mice and amylin liver NASH model (AMLN)) in comparison with fenofibrate. AMLN is a 
diet-induced model of NASH and elicits obesity, insulin resistance, and the three stages of NAFLD (steatosis, 
steatohepatitis with fibrosis, and cirrhosis) without reliance on genetic mutations, use of toxins, or nutrient 
deficiency29.

Results
Effect of pemafibrate on physiologic and biochemical characteristics. We began our studies in 
MCD-fed db/db mice. Supplementary Table 1 shows the data of MCD-fed db/db mice with or without 4 weeks 
treatment of pemafibrate. db/db (MCD) mice had increased levels of total cholesterol and aspartate aminotrans-
ferase (AST) as well as decreased liver weight and levels of triglycerides. Pemafibrate decreased levels of triglycer-
ides and AST in PEMA-L (db/db) and PEMA-H (db/db) mice. Alanine aminotransferase (ALT) levels tended to 
decrease upon pemafibrate administration, but not in a significant manner (p =  0.09). Pemafibrate increased liver 
weight in PEMA-H (db/db) mice. This increase might have been the results of PPARα  activation. db/db (MCD) 
mice increased steatosis, hepatocyte ballooning and the NAFLD Activity Score (NAS). However, they exhibited 
weak lobular inflammation and showed very little fibrosis.

We continued our investigations using an AMLN because we could not recognize a phenotype of NASH in 
MCD-fed db/db/mice. Tables 1 and 2 show the characteristics of mice and liver pathology score, respectively. 
After 20 weeks of feeding of an AMLN diet, CTRL mice exhibited obesity, dyslipidaemia, insulin resistance and 
liver injury (Table 1). In addition, NASH was clearly evident in CTRL mice, as indicated by steatosis, lobular 
inflammation, hepatocyte ballooning, and fibrosis. NAS was 7.2 ±  0.2 and fibrosis stage was 2.3 ±  0.2 in CTRL 
mice (Table 2, Figs 1, 2 and 3).

Food intake was not different among CTRL, PEMA-L, PEMA-H, and FENO mice. Adenosine triphosphate 
(ATP) content in the liver (p <  0.05) as well as oxygen uptake (VO2) (p <  0.01) and production of carbon diox-
ide (VCO2) (p <  0.001) were reduced significantly in CTRL mice. These results showed a reduction of energy 
expenditure in CTRL mice. There were no differences in liver weight among CTRL, PEMA-L, PEMA-H, or FENO 
mice. Pemafibrate treatment reduced body weight, as well as the weight of epididymal and subcutaneous adipose 
tissue. Fenofibrate treatment reduced body weight and the weight of epididymal adipose tissue. PEMA-H and 
FENO mice showed lower levels of total cholesterol, triglycerides, and free fatty acids. Hyperglycaemia (p <  0.05), 

Parameter BD CTRL PEMA-L PEMA-H FENO

n 5 10 10 10 7

Food intake (g/day) — 3.28 ±  0.21 3.54 ±  0.25 3.43 ±  0.14 3.02 ±  0.22

Body weight (g) 29.4 ±  0.5† 41.3 ±  0.3 39.6 ±  0.4* 36.2 ±  0.3* 38.7 ±  0.4*

Liver weight (g) 1.29 ±  0.05† 3.80 ±  0.12 4.00 ±  0.07 3.88 ±  0.09 3.86 ±  0.09

Epididymal adipose tissue (g) 0.32 ±  0.04† 1.15 ±  0.04 0.92 ±  0.03* 0.66 ±  0.03* 0.84 ±  0.03*

Subcutaneous adipose tissue (g) 0.19 ±  0.03† 0.65 ±  0.03 0.53 ±  0.04* 0.37 ±  0.02* 0.58 ±  0.02

Total cholesterol (mg/dL) 96.8 ±  4.4† 283.5 ±  10.2 263.8 ±  6.6 199.5 ±  1.8* 205.0 ±  5.1*

Triglycerides (mg/dL) 61.0 ±  7.5† 25.1 ±  1.5 12.6 ±  1.1* 9.1 ±  1.0* 8.6 ±  0.6*

Free fatty acids (uEQ/L) 393.6 ±  42.1† 673.2 ±  58.9 494.7 ±  50.2* 332.1 ±  32.4* 274.9 ±  19.5*

Fasting plasma glucose (mg/dL) 95.2 ±  11.4† 236.0 ±  9.8 242.6 ±  11.1 194.3 ±  10.9* 223.7 ±  15.9

Insulin (ng/mL) 0.024 ±  0.007† 0.096 ±  0.015 0.077 ±  0.002 0.048 ±  0.003* 0.075 ±  0.008

HOMA-IR 0.13 ±  0.04† 1.44 ±  0.21 1.13 ±  0.05 0.61 ±  0.07* 0.97 ±  0.16

AST (IU/L) 49.0 ±  6.2† 197.6 ±  12.1 210.8 ±  16.0 162.6 ±  14.3 227.1 ±  22.7

ALT (IU/L) 23.2 ±  1.9† 285.7 ±  21.0 250.9 ±  16.2 174.3 ±  9.7* 198.7 ±  30.7*

Liver ATP content (μ mol/g)§ 6.59 ±  1.02† 4.61 ±  0.34 6.09 ±  0.28* 6.47 ±  0.24* 5.88 ±  0.40*

VO2 (mL/min/kg)§ 53.3 ±  1.7† 46.6 ±  0.3 48.1 ±  2.7 52.6 ±  2.2* 48.4 ±  1.6

VCO2 (mL/min/kg)§ 45.0 ±  1.2† 36.7 ±  0.8 37.3 ±  1.5 43.5 ±  3.0* 38.6 ±  0.8

RQ§ 0.85 ±  0.04 0.79 ±  0.01 0.78 ±  0.01 0.83 ±  0.02 0.80 ±  0.03

Table 1.  Characteristics of model mice. HOMA-IR, the homeostasis model assessment of insulin resistance; 
AST, aspartate aminotransferase; ALT, alanine aminotransferase; ATP, Adenosine triphosphate; VO2, oxygen 
uptake; VCO2, production of carbon dioxide; RQ, respiratory quotient. Data are the mean ±  SE (§n =  5). 
Significance was determined using Student’s t-test (†p <  0.05 versus CTRL mice) or Dunnett’s test (*p <  0.05 
versus CTRL mice).
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hyperinsulinemia (p <  0.05), and insulin resistance (p <  0.01) were improved significantly in PEMA-H mice, but 
these parameters were unchanged in FENO mice. Treatment with pemafibrate or fenofibrate reduced ALT levels 
and increased ATP content in the liver. Pemafibrate treatment augmented VO2 (p <  0.05) and VCO2 (p <  0.05) 
significantly in PEMA-H mice. However, fenofibrate treatment tended to increase VO2 (p =  0.66) and VCO2 
(p <  0.67), but not significantly. These results suggested that pemafibrate treatment increased energy expenditure 
markedly.

Pemafibrate improved the pathogenesis in a rodent model of NASH. Treatment with pemafibrate 
(p <  0.0001) or fenofibrate (p <  0.05) reduced NAS significantly, but it was lower in PEMA-H mice than in FENO 
mice. Steatosis grade was significantly lower in PEMA-H (p <  0.001) and FENO (p <  0.01) mice. The area of stain-
ing by oil red O was smaller in PEMA-L, PEMA-H, and FENO mice (Fig. 1C). Triglyceride content in the liver 
decreased significantly in PEMA-H mice (p <  0.05, Fig. 1D). Grade of lobular inflammation tended to decrease 
in PEMA-L (p =  0.06), PEMA-H (p =  0.11), and FENO (p =  0.28) mice, but these differences were not significant. 
Fenofibrate treatment did not reduce the grade of hepatocyte ballooning, but pemafibrate treatment reduced it 
significantly in PEMA-H mice (p <  0.001). The number of infiltrating macrophages and tumour necrosis factor 
α  (TNFα ) messenger RNA (mRNA) expression decreased in PEMA-L, PEMA-H, and FENO mice (Fig. 2B,C).

The fibrosis stage decreased significantly in PEMA-H (p <  0.05) and FENO (p <  0.05) mice. The area of 
Sirius-red staining was smaller and mRNA expression of collagen 1α 1 reduced in PEMA-L, PEMA-H, and FENO 
mice (Fig. 3B,C). These results suggested that pemafibrate and fenofibrate had therapeutic effects on the patho-
genesis of NASH.

Pemafibrate stimulated lipid turnover and upregulated expression of uncoupling protein 
3 (UCP 3) in the liver. We analysed the mRNA and protein expressions of genes involved in fatty-acid 
transport, lipogenesis, fatty-acid oxidation, and export of very-low-density lipoprotein. We also analysed 
UCP3 expression in the liver. mRNA expressions of fatty acid transport protein 4 (FATP4) (p <  0.001), PPARα  
(p <  0.001), acyl-CoA oxidase (ACOX) (p <  0.001), carnitine palmitoyltransferase 1 A (CPT1A) (p <  0.001), and 
microsomal triglyceride transfer protein (MTTP) (p <  0.001) were significantly lower in CTRL mice (Fig. 4A). 
mRNA expression of sterol regulatory element-binding protein 1c (SREBP1c), acetyl-CoA carboxylase (ACC), 
fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1) did not differ between BD and CTRL mice. 
Levels of SREBP1 protein (p <  0.05), ACOX1 protein (p <  0.001) and UCP3 protein (p <  0.001) decreased signif-
icantly in CTRL mice (Fig. 4B).

Hepatic fatty-acid transport, fatty-acid oxidation, and export of very-low-density lipoprotein were amelio-
rated and hepatic lipogenesis were facilitated by treatment with pemafibrate or fenofibrate, as indicated by the 
increase in mRNA expressions of FATP4, SREBP1c, ACC, FAS, SCD1, ACOX, CPT1A, and MTTP (Fig. 4A). 
Expression of SREBP1 protein increased in PEMA-H mice (Fig. 4B). Expression of ACOX1 protein increased in 
PEMA-H mice, but not in FENO mice (Fig. 4B). These results suggested that pemafibrate improved lipid turnover 
and promoted fatty-acid oxidation notably. Pemafibrate treatment provoked a significant increase in expression 
the mRNA (p <  0.001) and protein (p <  0.001) of UCP3 in PEMA-H mice (Fig. 4A,B). Fenofibrate treatment 
tended to increase such expression, but the difference was not significant (p =  0.06 and p =  0.11, respectively).

Fibroblast growth factor 21 (FGF21) is produced mainly by the liver and has insulin-sensitizing activity30. 
K-877 treatment tended to increase serum levels and mRNA expression of FGF21, but not significantly (p =  0.26 
and p =  0.91, respectively, Supplementary Fig. 1).

Discussion
Fibrates (PPARα -agonists) are used to treat dyslipidaemia. It has been suggested that PPARα  has a protective role 
against the pathogenesis of NAFLD. However, the efficacy of fibrates on NAFLD/NASH treatment in humans 
has not been demonstrated because of study limitations and adverse effects. Pemafibrate is a novel SPPARMα  
designed to have highly selective and tissue-specific activity without the unwanted side effects of fibrates used 
currently, and has been developed for dyslipidaemia treatment. Pemafibrate is a more potent PPARα -agonist 
than fenofibrate (effective concentration inducing 50% response =  1 vs. 14000–22400 nM for fenofibrate)27. In a 
phase-2 study, pemafibrate reduced plasma concentrations of liver enzymes (ALT and γ -glutamyl transferase) in 
patients with dyslipidaemia28. Therefore, pemafibrate may have therapeutic efficacy against NAFLD/NASH. Here, 
we first investigated the effect of pemafibrate on rodent models of NASH.

Parameter BD CTRL PEMA-L PEMA-H FENO

n 5 10 10 10 7

NAS 0.2 ±  0.2† 7.2 ±  0.2 6.2 ±  0.2 3.9 ±  0.5* 5.7 ±  0.4*

Steatosis 0† 3 3 1.3 ±  0.2* 2.4 ±  0.2*

Lobular inflammation 0.2 ±  0.2† 2.1 ±  0.2 1.2 ±  0.2 1.3 ±  0.4 1.4 ±  0.3

Hepatocyte ballooning 0† 2 2 1.3 ±  0.2* 1.9 ±  0.1

Fibrosis 0.4 ±  0.2† 2.3 ±  0.2 1.6 ±  0.2 1.4 ±  0.2* 1.3 ±  0.3*

Table 2.  Liver pathology score. Nonalcoholic fatty liver disease activity score (NAS) and fibrosis stage 
were scored according to the method described by Kleiner et al.63, as outlined in (Supplementary Table 2). 
Significance was determined using Student’s t-test (†p <  0.05 versus CTRL mice) or Dunnett’s test (*p <  0.05 
versus CTRL mice).
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In the present study, MCD-fed db/db mice and AMLN were used. AMLN is a diet-induced model of NASH. 
AMLN exhibits the three stages of NAFLD (steatosis, steatohepatitis with fibrosis, and cirrhosis) without reliance 
on genetic mutations, use of toxins, or nutrient deficiency29. The MCD-fed db/db mice model decreased body 
weight and insulin resistance, and is a useful rodent model for non-obese NASH31,32. However, fibrosis in db/db 
(MCD) mice was barely seen, so our main investigations were based on the AMLN.

Supplementary Fig. 2 is a schematic diagram illustrating the effects of pemafibrate on NASH in our study. Fat 
accumulation in the liver results from imbalanced metabolism of lipids33. Recently, it was reported that expres-
sion of the PPARα  gene in the human liver is correlated negatively with NASH severity. In addition, histologic 

Figure 1. Effect of pemafibrate and fenofibrate on hepatic steatosis. (A) Liver sections from BD, CTRL, 
PEMA-L, PEMA-H, and FENO mice. Haematoxylin and eosin staining, (B) oil red O staining. Magnification, 
100× . Scale bars: 200 μ m. (C) Areas of oil red O staining in the liver of BD, CTRL, PEMA-L, PEMA-H, and 
FENO mice (n =  5). (D) Triglycerides content were measured in the livers of BD, CTRL, PEMA-L, PEMA-H, 
and FENO mice (n =  5). Results are the mean ±  SE. Significance was determined using Student’s t-test (†p <  0.05 
versus CTRL mice) or Dunnett’s test (*p <  0.05 versus CTRL mice).
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improvement is associated with an increase in PPARα  expression34. We have reported that reduction in lipid 
outflow, fatty-acid oxidation and export of very-low-density lipoprotein are key factors in NASH pathogenesis35. 
In our study, expression of PPARα  mRNA decreased and lipid turnover was inhibited strongly in CTRL mice. 
In addition, CTRL mice exhibited the pathologic condition of NASH. Pemafibrate and fenofibrate improved 
the pathologic condition of NASH, reduced ALT levels, and inhibited expression of pro-inflammatory and 
pro-fibrotic genes (F4/80, TNFα , collagen 1α 1). Treatment with pemafibrate or fenofibrate increased the expres-
sion of PPARα  and its target genes, ACOX and CPT1A, significantly. This treatment was thought to increase ATP 
content in the liver by promoting fatty-acid oxidation, and to improve NASH pathogenesis by stimulating lipid 
turnover. Therefore, pemafibrate could be a therapeutic agent in NAFLD/NASH, as well as fenofibrate.

Obesity and insulin resistance are important risk factors for NAFLD/NASH. Reports have demonstrated that 
fenofibrate prevents gain in body weight in genetic or diet-induced models of obesity in rodents36,37. In the pres-
ent study, CTRL mice exhibited obesity and insulin resistance. In addition, energy expenditure was reduced, 
as indicated by a decrease of O2 consumption and CO2 production in CTRL mice. Pemafibrate and fenofibrate 
prevented weight gain. Furthermore, pemafibrate increased energy expenditure markedly.

UCPs are members of the mitochondrial anion carrier family. The function of UCPs is to separate oxidative 
phosphorylation from ATP synthesis by increasing the permeability of the inner membrane of a mitochondrion. 
UCP3 is expressed primarily in skeletal muscle. Lanni et al. reported that fenofibrate increases mRNA levels of 
UCP3 in the liver38. The function of the UCP3 gene is incompletely understood. However, it has been suggested 
that UCP3 has a protective role against obesity and insulin resistance because it contributes to energy metabo-
lism39–48. It has also been reported that UCP3 polymorphisms are associated with NAFLD49. Camara et al. inves-
tigated the roles of UCP3 in the mitochondria of mouse livers50. The presence of UCP3 specifically enhanced an 
increase of mitochondrial respiratory activity in the presence of palmitate. Camara et al. suggested that UCP3 
expression increased oxidative capacity and enhanced enzymatic machinery for lipid catabolism in mitochondria. 

Figure 2. Effect of pemafibrate and fenofibrate on hepatic inflammation. (A) Liver sections from BD, 
CTRL, PEMA-L, PEMA-H, and FENO mice. F4/80 staining. Magnification, 200x. Scale bars: 100 μ m. (B) The 
number of macrophages was counted in the livers of BD, CTRL, PEMA-L, PEMA-H, and FENO mice (n =  5). 
(C) Expression of tumour necrosis factor α  (TNFα ) mRNA in BD, CTRL, PEMA-L, PEMA-H, and FENO 
mice (n =  5–10). Results are the mean ±  SE. Significance was determined using Student’s t-test (†p <  0.05 versus 
CTRL mice) or Dunnett’s test (*p <  0.05 versus CTRL mice).
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We observed that VO2 and VCO2 were decreased in CTRL mice compared with BD mice. Pemafibrate provoked 
a significant increase in expressions of the mRNA and protein of UCP3 in PEMA-H mice. In addition, the res-
piratory parameters of PEMA-H mice increased to those seen for CTRL mice. This effect might be attributed (at 
least in part) to improvements in oxidative capacity in mitochondria. These effects participated synergistically to 
improve energy metabolism and improvement of the pathogenesis of NASH.

Pemafibrate improved glucose metabolism significantly. FGF21 can sensitize insulin and is produced mainly 
by the liver30. In a phase-2 study, pemafibrate increased serum levels of FGF21 significantly28. In the present study, 
pemafibrate tended to increase serum levels and mRNA expression of FGF21. An association of insulin resistance 
between muscle and adipose tissue cannot be excluded, but weight reduction, increase in energy expenditure, and 
alternation of FGF21 expression by pemafibrate may contribute to improve glucose metabolism.

Dyslipidaemia is a frequent feature of NAFLD. It has been reported that dyslipidaemia is present in 20–80% 
of NAFLD patients51. NAFLD is also associated with cardiovascular disease52,53. Fibrates improve dyslipidaemia, 
reduce levels of triglycerides in plasma, increase levels of high-density lipoprotein-cholesterol in plasma, and 
lower the risk of major cardiovascular events54. However, as mentioned above, fibrates are known to increase 
levels of transaminases, creatinine and homocysteine. In a phase-2 study in patients with dyslipidaemia, pemafi-
brate improved lipid parameters without increasing levels of creatinine or homocysteine. Moreover, pemafibrate 
strongly reduced levels of liver enzymes, whereas fenofibrate did not28. Based on the results of that human phase-2 
study and our animal study, pemafibrate appears to be a promising therapeutic agent for NAFLD, as well as dys-
lipidaemia and cardiovascular disease associated with NAFLD.

Our study had two main limitations. First, we used a single dose of fenofibrate (50 mg/kg/day) to compare 
the therapeutic effect of pemafibrate on NASH, and this dose was based on a report by Fatani and colleagues55. 
Second, there was a discrepancy between improvement of liver steatosis and upregulation of expression of lipo-
genic transcription factors by treatment with pemafibrate or fenofibrate. Upregulated hepatic lipogenesis is 

Figure 3. Effect of pemafibrate and fenofibrate on hepatic fibrosis. (A) Liver sections from BD, CTRL, 
PEMA-L, PEMA-H, and FENO mice. Sirius red staining. Magnification, 100x. Scale bars: 200 μ m. (B) Areas of 
Sirius red staining in the livers of BD, CTRL, PEMA-L, PEMA-H, and FENO mice were measured (n =  5). (C) 
Expression of collagen 1α 1 mRNA in BD, CTRL, PEMA-L, PEMA-H, and FENO mice (n =  5–10). Results are 
the mean ±  SE. Significance was determined using Student’s t-test (†p <  0.05 versus CTRL mice) or Dunnett’s 
test (*p <  0.05 versus CTRL mice).
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thought to contribute to liver steatosis56,57. However, the genes involved in lipogenesis did not upregulate/down-
regulate in expression in CTRL mice or in a report by Shindo et al. using fatty liver Shionogi mice58. SREBP1c nor 
its downstream genes (with the exception of SCD1)59 have been identified as direct PPARα  target genes in mice60, 
but SREBP1c, ACC, FAS, and SCD1 were positively regulated by pemafibrate and fenofibrate in the present study 
as well in other reports15,59,61,62. Hence, alterations in expression of these lipogenic genes may result in feedback 
by increase in lipid outflow.

We demonstrated that pemafibrate improved the pathogenesis of NASH by stimulation of lipid turnover and 
upregulation of UCP3 expression in the liver. Pemafibrate is expected to have more beneficial effects on NAFLD/
NASH treatment because of its efficacy and safety. Hereafter, large prospective studies investigating the effect of 
pemafibrate on human NAFLD/NASH are needed.

Figure 4. Pemafibrate modulated lipid turnover and upregulated expression of UCP3 in the liver.  
(A) mRNA expressions involved in lipid metabolism (fatty acid transport protein 4 (FATP4), sterol regulatory 
element-binding protein 1c (SREBP1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-
CoA desaturase 1 (SCD1), peroxisome proliferator activated receptor α  (PPARα ), acyl-CoA oxidase (ACOX), 
carnitine palmitoyltransferase 1 A (CPT1A), and microsomal triglyceride transfer protein (MTTP)) and 
expression of uncoupling protein 3 (UCP3) in BD, CTRL, PEMA-L, PEMA-H, and FENO mice (n =  5–10).  
(B) SREBP1, ACOX1, and UCP3 protein levels in BD, CTRL, PEMA-L, PEMA-H, and FENO mice (n =  5). 
Results are the mean ±  SE. Significance was determined using Student’s t-test (†p <  0.05 versus CTRL mice) or 
Dunnett’s test (*p <  0.05 versus CTRL mice).
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Materials and Methods
Drugs and diets. Pemafibrate and fenofibrate were obtained from Kowa Co. Ltd. (Tokyo, Japan). A basal 
diet (BD) was prepared containing 22% protein, 6% fat, and 47% carbohydrate. MCD (F2MCD; Oriental Yeast 
Co., Ltd., Tokyo, Japan) were purchased. A diet rich in fat (40% kcal; Primex partially hydrogenated vegetable oil 
shortening), fructose (22% by weight), and cholesterol (2% by weight) (catalogue number D09100301; Research 
Diets, New Brunswick, NJ, USA) was purchased. This diet (the AMLN diet) has been shown to induce all patho-
logic stages of NAFLD for > 20 weeks in C57BL/6J mice29.

Animal experiments. The study protocol was in accordance with the Guidelines for the care and use of lab-
oratory animals set by Yokohama City University Medical School (Yokohama, Japan) and was approved by the 
Committee on the Ethics of Animal Experiments of the same institution.

Surgical procedures were carried out after the induction of anaesthesia using sodium pentobarbital. All 
efforts were made to minimize animal suffering. Mice were fasted for 12 h and fasting blood glucose meas-
ured (Glutest Neo Sensor; Sanwa Kagaku Kenkyusho, Aichi, Japan). The experimental protocol is outlined in 
Supplementary Fig. 3. Nine-week-old db/db mice (BKS.Cg− + Leprdb/+ Leprdb/Jcl, female) were obtained from 
CLEA Japan (Tokyo, Japan). After a 2-week acclimatization period, mice were divided into four groups: BD 
(db/db) mice (fed BD and treated with 0.5% aqueous methylcellulose solution (MC); MCD (db/db) mice (fed 
MCD and treated with 0.5% MC); PEMA-L (db/db) mice (fed MCD and treated with 0.03 mg/kg pemafibrate); 
PEMA-H (db/db) mice (fed MCD and treated with 0.1 mg/kg pemafibrate). The drug-free solvent or the dosing 
solution was administered to animals (5 mL/kg body weight, p.o.) once daily (in the morning) for 4 consecutive 
weeks (Supplementary Fig. 3A). Six-week-old male C57BL/6J mice were obtained from CLEA Japan. After a 
2-week acclimatization period, mice groups were fed according to different regimens. BD mice were fed a BD 
for 20 weeks. CTRL mice were fed D09100301 for 20 weeks. PEMA-L and PEMA-H mice were fed D09100301 
for 12 weeks followed by D09100301 with 0.4 mg and 1.3 mg pemafibrate/kg of the diet for 8 weeks, which cor-
responded to 0.03 mg/kg/day and 0.1 mg/kg/day, respectively. FENO mice were fed D09100301 for 12 weeks 
followed by D09100301 with 666.7 mg fenofibrate/kg of the diet for 8 weeks, which corresponded to 50 mg/kg/
day (Supplementary Fig. 3B). Pemafibrate and fenofibrate were incorporated into the AMLN diet. Animals were 
housed under conventional conditions with controlled temperature, humidity, and light (12-h light–dark cycle) 
and provided with food and water.

Biochemical analyses. Serum levels of total cholesterol, triglycerides, free fatty acids, AST, and ALT were 
measured by a local laboratory (SRL, Tokyo, Japan). Serum levels of insulin were measured using a mouse insulin 
ELISA kit (Morinaga Institute of Biological Sciences, Kanagawa, Japan). As an alternative method for assessment 
of insulin resistance, the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated using 
the following formula:

= µ ×‐ UHOMA IR insulin ( /mL) fasting plasma glucose (mg/dL)/405

ATP contents in liver tissue were measured by a luciferase assay using an ATP assay kit for animal tissues 
(TOYO B-Net, Tokyo, Japan). Levels of triglycerides in total lipid extracts of the liver were determined by color-
imetric assays (Wako Pure Chemical Industries, Osaka, Japan). Serum levels of FGF21 were measured using a 
mouse and rat FGF21 ELISA kit (Biovendor, Karasek, Czech Republic).

Indirect calorimetry. Energy expenditure, VO2 and VCO2 were measured using a small-animal metabolic 
measurement system (MK-5000RQ, Muromachi Kikai, Tokyo, Japan). The respiratory quotient was obtained as 
the ratio of VCO2 to VO2.

Histologic and immunohistochemical analyses. Paraffin-embedded sections were stained with haema-
toxylin and eosin, or Sirius red. The NAS and fibrosis stage were scored by Y.N. in a blinded manner according to 
the method of Kleiner et al. (Supplementary Table 1)63. For lipid staining, frozen sections were stained with oil red 
O and counterstained with haematoxylin. Immunohistochemistry for macrophages was based on F4/80 staining. 
Immunohistochemistry was carried out on cryostat liver sections (thickness, 7 μ m). Sections were incubated with 
primary antibodies and stained with Alexa Fluor®-conjugated secondary antibodies (Cell Signaling Technology, 
Danvers, MA, USA). To quantify the area of staining by oil red O and Sirius red, images of five random fields from 
each section were processed with Photoshop Elements v13 (Adobe Systems, San Jose, CA, USA). Each value was 
expressed as the percentage of the total area of the section. Numbers of F4/80 positive cells were counted and 
averaged for five random fields of each section.

RNA isolation and real-time polymerase chain reaction (PCR) analyses. Total RNA was extracted 
from samples of liver tissue using an RNeasy mini kit (Qiagen, Tokyo, Japan). mRNA of murine TNFα , collagen 
1α 1, FATP4, SREBP1c, ACC, FAS, SCD1, PPARα , ACOX, CPT1A, MTTP, UCP3, FGF21, and β -actin in liver 
tissue were determined using a fluorescence-based reverse transcription-PCR and an ABI PRISM 7700 sequence 
detection system (Life Technologies, Carlsbad, CA, USA).

Analyses of western blotting. Proteins were incubated with primary antibodies and 
horseradish-conjugated secondary antibody (Cell Signaling Technology). Primary antibodies were SREBP1, 
ACOX1 and UCP 3 (Abcam, Cambridge, UK).
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Statistical analyses. Data are the mean ±  standard error (SE). Differences between two groups were 
assessed using Student’s t-test or Dunnett’s test. p <  0.05 was considered significant. Statistical analyses were car-
ried out using JMP v11.2.0 (SAS Institute, Cary, NC, USA).
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