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Abstract: Coral bleaching caused by global warming has resulted in massive damage to coral reefs
worldwide. Studies addressing the consequences of elevated temperature have focused on organisms
of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which
reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis
of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata
(“fire coral”) that inhabited reef colonies exposed to the 2015–2016 El Niño-Southern Oscillation
in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key
cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis,
and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose
levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an
astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed
sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached
cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was
significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results
suggest that bleached M. complanata is capable of increasing its toxins production in order to balance
the lack of nutrients supplied by its symbionts.
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1. Introduction

Coral reefs are megadiverse ecosystems that offer a great variety of services to the human
population surrounding them [1]. Calcareous structures formed by corals provide livelihood to a large
range of marine species [2]. The hydrozoan Millepora complanata is an important reef-forming organism
that is widely distributed in the Caribbean Sea. This organism belongs to the group commonly known
as “fire corals”, which when getting into contact with humans are capable of producing severe burns,
blisters, and pain [3]. Cnidarians are widely recognized as an important source of structurally diverse
metabolites, which might represent novel leads for the development of new drugs and biotechnological
tools. One of the most remarkable features of cnidarians is their ability to synthesize cnidocystic
and non-cnidocystic toxins (neurotoxins, enzymes, and pore-forming toxins) that induce toxic and
immunological reactions [4,5]. Most of these toxins are contained within the nematocysts, and are
implicated in both cnidarian defense and prey capture [6]. Previous studies carried out by our
research group demonstrated that M. complanata produces hemolysins, phospholipases A2 (PLA2),
and proteases [7,8].

Coral reef forming cnidarians live in mutualistic symbiosis with photosynthetic algae of the
genus Symbiodinium, commonly named zooxanthellae. In this symbiotic relationship, algae provide
approximately 95% of nutrients or metabolic requirements (by photosynthetically fixed carbon) to their
cnidarian host [9–12]. Environmental stressors, such ocean acidification, elevated salinity, UV radiation,
and high temperature can lead to the breakdown of the coral-algae symbiosis. This phenomenon,
commonly known as “coral bleaching” [13–16], results from the loss of photosynthetic symbionts or
algae pigments from cnidarian host cells [17]. It has been well documented that worldwide coral
bleaching events are among the most deleterious effects of global warming, putting the survival of
coral reef at serious risk [18–21]. In the last 100 years, the average temperature on earth has increased
by about 1 ◦C, and according to records of the US National Oceanic and Atmospheric Administration
(NOOA), 2015–2016 were the warmest years recorded in the Earth’s history. Particularly, during the
El Niño-Southern Oscillation (ENSO), severe coral bleaching events have occurred due to seawater
temperature rise [22].

Since the first studies about the consequences of thermal stress were carried out, it has
been widely demonstrated that after a bleaching event, different cnidarian cellular processes are
affected [2,9,13–20,23]. Thermal stress induced upregulated expression levels of antioxidant enzymes
(e.g., ascorbate peroxidase, catalase, superoxide dismutase) and heat shock proteins (e.g., HSP70),
which are directly correlated with molecular mechanisms responsible for repairing cellular and tissue
damage [24]. Stress induced by high UV radiation and elevated temperatures in Montastraea faveolata
caused host DNA damage correlated to p53 gene expression, as well as decreased concentration of D1
protein and photosynthetic pigments in the algal symbionts [25]. In addition, M. faveolata exposed
to high solar radiation showed diminished concentration of mycosporine-like amino acids, whose
origin, whether from cnidarians or from their symbionts, was not determined [25]. It has also been
proven that thermal stress and UV-light cause lower enzymatic activity of ribulose-1,5-bisphosphate
carboxylase oxygenase (Rubisco) [26] and injury to the thylakoidal membranes by causing oxidative
stress in Symbiodinium cells [27].

Several genomic and transcriptomic studies conducted in Anthozoa species have shown that
thermal stress modifies the expression of genes and transcripts related to growth arrest, chaperone
activity, nucleic acid stabilization, removal of damaged macromolecules, metabolism, antioxidant
mechanisms, and immune system in both hosts and symbionts [28–37]. On the other hand, although
there has only been a few proteomic studies on the consequences of elevated temperature on corals,
these have provided evidence that important changes occur in the expression of proteins of reef-forming
Anthozoans during bleaching [38–41]. In Acropora palmata and Acropora microphthalma the proteins,
which showed differential expression after bleaching, participate in important cellular processes and
components, which include: stress response, UV response, amino acid synthesis, transcription factors,
immunity, apoptosis, biomineralization, cytoskeletal, cell cycle, oxidative phosphorylation, anti-oxidant
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proteins, endo-exo phagocytosis, and calcification [39,40]. Another study indicated that when Pocillopora
acuta was subjected to experimental thermal stress, several proteins involved in cytoskeletal structure,
immunity, and metabolism were differentially expressed [41]. It has been observed that heat stress
causes damage to the coral host tissue, compromising the physiologic integrity of epithelium in
Acropora hyacinthus [42]. Changes caused by thermal stress have been observed in the proteome of
organisms from other phyla, such as the benthic foraminifera Amphistegina gibbosa [43]. Not only the
transcriptome and the proteome, but also the metabolome of both partners of the symbiosis is affected
by thermal stress. Significant differences have been observed after bleaching in the lipid (e.g., cell
structural lipids) and metabolite profiles (e.g., carbohydrates and signaling compounds) in Pocillopora
damicornis [44] and Acropora aspera, such metabolites are involved in biochemical reactions related to
molecular regulation during exposure to environmental stress in cnidarians [45,46]. A metabolomics
analysis of the symbiotic anemone Aiptasia sp. confirmed the results obtained from the study of reef
forming cnidarians, indicating that thermal stress significantly alters central metabolism, oxidative
state, and cell structure [47].

Studies aimed at evaluating the influence of elevated temperature on the cellular processes of
reef forming cnidarians have focused on Anthozoa species, and up to now, very little is known about
the cellular response of Hydrozoa species to thermal stress. In a previous study carried out by our
research group, we analyzed the impact of thermal stress on the soluble proteomic profile and cytolytic
activity of Millepora alcicornis. We found that the levels of 17 key proteins, tentatively identified as
related to exocytosis, calcium homeostasis, cytoskeletal organization were modified in bleached M.
alcicornis. Moreover, the protein levels of potential toxins, including a metalloprotease, a phospholipase
A2 (PLA2), and an actitoxin were also altered [48]. It is obviously very important to continue studying
the consequences of high water temperature on hydrocorals. In this context, the present study was
undertaken to investigate the effect of the 2015–2016 El Niño-Southern Oscillation on the soluble
proteomic profile and cytolytic activity of Millepora complanata from the Mexican Caribbean through a
proteomic approach, in order to contribute to the broader understanding of the molecular processes
involved in the response of reef-forming organisms of the class Hydrozoa to global warming.

2. Results

In order to determine changes in the soluble proteomic profile and cytolytic activity of M. complanata
that experienced bleaching during the 2015–2016 El Niño-Southern Oscillation, the method chosen for
the extraction of hydrocoral’s proteins involved osmotic shock in bidistilled water, which causes the
discharge of the nematocysts content. The soluble proteomes from unbleached and bleached specimens
obtained in this way were examined by using high-resolution two-dimensional electrophoresis (2DE).
Protein spots with different abundance were subjected to MALDI-TOF/TOF mass spectrometry analysis.
In addition, to explore if the cytolytic activity produced by the soluble proteome of this hydrocoral
was affected, the hemolytic and the PLA2 activities of the proteomes obtained from unbleached and
bleached M. complanata specimens were assessed.

2.1. Sample Collection and Soluble Proteome Extraction

Representative bleached (BMc) and unbleached (UMc) samples of M. complanata colonies are
shown in Figure 1A. All samples were cut from the edges of plate-like colonies. Protein contents
of the soluble proteomes from UMc and BMc were 31.04 ± 1.30 µg of protein/mg lyophilized and
22.02 ± 0.70 µg of protein/mg lyophilized, respectively.

2.2. Determination of the Degree of Bleaching

Results derived from symbiont quantification are shown in Figure 1B. In the case of unbleached
specimens, the average number of symbionts per square centimenter was 2.2 ± 0.12 × 106, while
the average number for bleached hydrocorals was 3.6 ± 1.3 × 105. Bleached M. complanata
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showed a statistically significant decrease (p < 0.05) in zooxanthellae population compared to
unbleached organisms.Mar. Drugs 2019, 17, x 4 of 22 
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expressed per cm2 for UMc and BMc. Data are mean ± SEM. (*) Indicate significant difference (p < 
0.05) in symbiont density between UMc and BMc. Photographs from UMc and BMc specimens were 
taken by Víctor Hugo Hernández-Elizárraga and Norma Olguín-Lopez. 
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Figure 1. (A) Photographs of representative fragments of unbleached (UMc) and bleached (BMc) M.
complanata collected in 2016 in the Mexican Caribbean. (B) Symbiont density quantified (n = 3) and
expressed per cm2 for UMc and BMc. Data are mean ± SEM. (*) Indicate significant difference (p < 0.05)
in symbiont density between UMc and BMc. Photographs from UMc and BMc specimens were taken
by Víctor Hugo Hernández-Elizárraga and Norma Olguín-Lopez.

2.3. Electrophoresis SDS-PAGE

Soluble proteome profiles from unbleached and bleached M. complanata specimens under
denaturing and reducing conditions are shown in Figure 2. Both soluble proteomes contained proteins
with a broad range of molecular weights (5.9–202.9 kDa). Prominent protein bands ranged in size
between 20 and 80 kDa.
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Figure 2. Representative electrophoresis gel showing the protein profiles of the soluble proteomes from
unbleached [UMc (1)] and bleached [BMc (2)] M. complanata specimens. Samples (80 µg of protein)
were separated by one dimensional SDS-PAGE using 12% (w/v) polyacrylamide under non-reducing
conditions. (MW) Molecular weight marker. Protein bands were stained using Coomassie Blue R-250.
MW and samples 1 and 2 were resolved in the same gel, lanes with lower protein concentrations
were removed.

2.4. Two-Dimensional High-Resolution Gel Electrophoresis (2DE-PAGE)

DE-PAGE analysis evidenced that proteomes from unbleached (103 protein spots) and bleached
(95 proteins spots) hydrocorals showed different protein profiles. Most of the proteins had isoelectric
points (pI) and molecular weight values ranging from 4–8 and 10–40 kDa, respectively (Figure 3).
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71 protein spots matched in both soluble proteomes, while 35 were differentially expressed (fold
change > 2) in bleached specimens, fifteen of these proteins were up-regulated, while twenty were
down-regulated (Figure 4).
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Figure 4. Representative 2DE “master” gels of M. complanata-soluble proteomes. This master gel
displays combined proteomes from both bleached (n = 3) and unbleached conditions (n = 3). The marks
and numbers on the 2DE gels show the differentially expressed proteins (fold change ≥ 2). Significant
changes in the levels of 35 proteins were observed. Protein spots in M. complanata-soluble proteome
which exhibited higher levels in bleached samples are indicated as green marks. Protein spots whose
levels were lower in bleached hydrocorals are indicated as red marks.
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2.5. Identification of Proteins Whose Levels Changed in Bleached M. complanata

Our results demonstrated that levels of thirty-five proteins were modified in bleached M.
complanata. Fifteen differentially abundant protein spots were analyzed by MALDI-TOF/TOF,
the ProteinPilot software, and BLASTp (Table 1). The other protein spots were not examined due
to their low concentration. Identified proteins were classified, according to their function, into 8
groups: toxins, primary metabolism, DNA repair, cytoskeleton components, signaling proteins, stress
response, redox homeostasis, and exocytosis proteins. Bleached hydrocorals exhibited higher levels
of alfa enolase, UV DNA endonuclease, HSP70, peroxiredoxina-6, and exocyst complex component
4 like protein, while the abundance of triosephosphate isomerase, DNA endonuclease repair XPF,
actin, calmodulin, and hypothetical protein NEMVEDRAFT_v1g45829) was diminished. Interestingly,
bleached M. complanata showed increased levels of 4 proteins, which possess amino acid sequences
that resemble the primary structure of toxins such as a secreted acidic PLA2 PA4, echotoxin-2,
DELTA-actitoxin-Oor1b, and astacin-like metalloprotease toxin 5. Additionally, abundance of a protein
that bears sequence similarity with an acidic calcium-independent phospholipase A2-like protein was
decreased in hydrocorals that underwent bleaching.

Table 1. Identification of differentially abundant proteins associated with bleaching in M. complanata
holobiont by MALDI-TOF/TOF, ProteinPilot search engine, and BLASTp analysis.

Spot Protein Accession Number MW/pI a P b Log2-fold
Change

Toxins

2001 Acidic PLA2 PA4 A0A1D8GZE6_9CNID 16.0/4.7 ↑ 4.4
2201 Echotoxin-2 ACTP2_MONPT 39.7/4.6 ↑ 3.1
3103 DELTA-actitoxin-Oor1b ACTPG_OULOR 22.805.1 ↑ 5.6
7101 PREDICTED: Astacin-like metalloprotease toxin 5 XP_002162822.1 33.1/7.0 ↑ 2.2
5001 Acidic calcium-independent phospholipase A2-like protein Q307P2_CHOFU 19.1/5.8 ↓ 0.3

Primary metabolism

5406 Alpha enolase T2MHB9_HYDVU 53.2/6.3 ↑ 2.8
7104 PREDICTED: triosephosphate isomerase XP_0021676111 27.6/6.7 ↓ 0.4

DNA repair

3104 UV DNA endonuclease UVSE_BACCR 28.5/5.1 ↑ 3.0
6002 DNA endonuclease repair XPF A0A0C2MR15_THEKT 12.5/6.7 ↓ 0.04

Cytoskeleton Component

5408 Actin ACT_HYDVU 47.0/6.1 ↓ 0.3

Signaling protein

1101 Calmodulin T2MET0_HYDVU 22.7/4.7 ↓ 0.4

Stress response

5504 HSP70 HSP70_HYDVU 70.0/5.9 ↑ 2.6

Homeostasis redox

6103 Peroxiredoxin-6 T2MGB9_HYDVU 22.8/6.2 ↑ 4.7

Exocytosis protein

7103 PREDICTED: exocyst complex component 4-like protein XP_004208568.1 33.2/7.5 ↑ 2.2

Unknown

6206 Hypothetical protein NEMVEDRAFT_v1g45829 A7TDG2_NEMVE 34.7/6.6 ↓ 0.3
a Molecular weight/Isoelectric point; b Protein levels. ↑ indicates higher protein levels comparing to those of
unbleached specimens. ↓ indicates lower protein levels comparing to those of unbleached hydrocorals

2.6. Effect of Elevated Sea Temperature on the Cytolytic Activity of Unbleached- and Bleached M.
complanata-Soluble Proteomes

Both soluble proteomes from unbleached and bleached M. complanata induced a
concentration-dependent hemolysis (Figure 5A). However, the concentration necessary to produce
50% hemolysis (HU50) of the soluble proteome from bleached M. complanata was significantly lower
than that of the unbleached M. complanata-soluble proteome, indicating that bleached hydrocorals
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possessed higher hemolytic activity. In contrast, the PLA2 elicited by the soluble proteome of bleached
M. complanata was significantly reduced (Figure 5B and Table 2).
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Table 2. Cytolytic activity of the soluble proteomes of UMc and BMc.

Extracts Soluble Protein Content a Hemolytic Activity b PLA2 Activity c

UMc 31.04 ± 1.30 2.07 ± 0.35 124.70 ± 1.98
BMc 22.02 ± 0.70 0.96 ± 0.08 * 29.13 ± 1.26 *

a Soluble protein content expressed in µg protein/mg lyophilized; b Hemolytic unit (HU50) expressed in µg
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3. Discussion

During the 2015–2016 El Niño-Southern Oscillation, the highest shallow sea water temperatures
were recorded and a severe impact on climate and weather due to this event was documented [49–51].
The 2015–2016 ENSO brought weather conditions that triggered coral bleaching and mortality
worldwide [51]. In particular, the Caribbean coral reef ecosystems experienced severe bleaching [21,52].
It is well known that reef-forming cnidarians have an ability to counteract the damaging effects of
thermal stress varies between organisms from different families or between species. For example, it
has been demonstrated that species of the families Acroporidae, Pectiniidae, Alcyonacea, Merulinidae,
and Mussidae are particularly vulnerable to the deleterious effects of temperature stress [53]. While
organisms such as the soft coral Sarcophyton ehrenbergi, the massive coral Porites cylindrical, and the blue
coral Heliopora coerulea have shown greater resistance to high temperature [54–56]. Comprehensive
reef surveys have revealed that Millepora species (class Hydrozoa) are very susceptible to the bleaching
phenomenon [57–59]. Therefore, considering that thermal stress is often induced during episodic
heating events and the great ecological importance of hydrocorals, the aim of the present study was
to analyze changes in the soluble proteomic profile and cytolytic activity of Millepora complanata
(“fire coral”) that underwent bleaching during the 2015–2016 El Niño-Southern Oscillation in the
Mexican Caribbean Sea. Numerous investigations that have addressed the impact of elevated sea water
temperature on reef forming cnidarians, from the first reports to the most recent ones, have evaluated
the density of symbionts to assess the severity of bleaching [60–62]. In the case of the present study, we
used the aforementioned criterion to determine the degree of bleaching of our collected samples. We
found that bleached M. complanata specimens showed a decrease of 80% in the density of symbionts per
square centimeter (Figure 1). The decline in symbiont density found in bleached M. complanata turned
out to be similar to what has been reported in scleractinian species (symbiont density diminished by
up to 50%–80%) [63–68]. It is worth mentioning that we conducted a parallel study on specimens
of M. alcicornis collected in the same location and on the same dates as the M. complanata specimens.
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Interestingly, our study showed that bleached M. alcicornis specimens showed a decrease of 40% in the
density of symbionts per square centimeter [48]. This suggests preliminarily that M. alcicornis is more
thermotolerant than M. complanata. It would be very important to elucidate the mechanism underlying
this thermotolerance.

It is well demonstrated that either in situ or experimental heat stress significantly affects the
synthesis of proteins [40]. Accordingly, we found that bleached specimens of M. complanata, showed a
20% decrease in the total content of soluble proteins (Table 2). It is very likely that a lesser protein yield
in the soluble proteome obtained from bleached specimens is related to the loss of protein components
coming from zooxanthellae. The electrophoretic profiles of the soluble proteomes from both unbleached
and bleached M. complanata holobiont were similar to those of the soluble proteomes from normal and
bleached specimens of M. alcicornis [48]. Our results also agree with what has been previously observed
in the protein profiles of other cnidarians, such as H. magnipapillata (class Hydrozoa), A. elegantissima
(class Anthozoa), C. fleckeri (class Cubozoa), and P. noctiluca (class Scyphozoa) [69–72].

3.1. Levels of Proteins Implicated in Key Cellular Processes Were Modified in Bleached M. complanata

Seventy one proteins were found in both unbleached and bleached M. complanata holobiont-soluble
proteomes, while the levels of 35 proteins were modified by bleaching. Mass spectrometric analysis of
differential protein spots indicated that proteins whose levels were altered in bleached hydrocorals were
involved in several cellular processes. Sixty one percent of these proteins showed amino acid sequence
similarity to proteins that participate in important cell processes, such as: primary metabolism, DNA
repair, cytoskeleton formation, signaling, stress response, redox homeostasis, and exocytosis (Figure 5).
Bleached M. complanata specimens showed higher protein levels of alfa enolase, UV DNA endonuclease,
HSP70, peroxiredoxin-6, and exocyst complex component 4 like protein. Whereas the protein levels
of triosephosphate isomerase, DNA endonuclease repair XPF, actin, calmodulin, and hypothetical
protein NEMVEDRAFT_v1g45829 were reduced. Worthy of mention is the fact that levels of four
proteins, which displayed amino acid sequence similarity to cytolysins were augmented, including
a phospholipase A2 (PLA2), an astacin-like metalloprotease toxin 5, and two pore forming toxins,
echotoxin-2 and DELTA-actitoxin-Oor1b. In contrast, protein levels of an acidic calcium-independent
phospholipase A2-like protein were reduced in bleached M. complanata.

Alpha enolase and triosephosphate isomerase were two enzymes, catalysing primary metabolic
reactions, whose levels were altered in bleached hydrocorals. Alpha enolase is an enzyme that
was previously identified in the transcriptome of Hydra vulgaris [73], which is phylogenetically
close to M. complanata. This enzyme catalyzes the reversible conversion of 2-phosphoglycerate to
phosphoenolpyruvate during both glycolysis and gluconeogenesis [74]. Higher level of alpha enolase
in bleached M. complanata suggests increased activity in the glycolytic pathway. This result is in
accordance with the response observed in Acropora aspera subjected to experimental bleaching, which
showed a significant up-regulation of genes related to carbon metabolism (e.g., glycolysis, tricarboxylic
acid cycle, and fatty acids synthesis [75]. Augmented alpha enolase level in bleached M. complanata
might be a response to the diminished supply of energy due to the decrease in symbiont density, since
glycolysis constitutes a major source of energy (in the form of ATP) and supplies the precursors for the
synthesis of biomolecules such as lipids.

On the other hand, the level of triosephosphate isomerase was reduced in bleached M. complanata.
This enzyme participates in glycolysis and gluconeogenesis, catalyzing the reversible synthesis of
d-glyceraldehyde 3-phosphate from glycerone phosphate [76]. Our findings differ from the results
obtained by Kenkel et al. (2013) who found an increase in the expression of genes encoding enzymes
involved in gluconeogenesis in Porites astroides exposed to chronic heat stress [32]. Those authors
proposed that the coral host balances its nutritional deficiency by converting their energetic reserves
into carbohydrates. It has been demonstrated that under oxidative stress conditions, the expression
of a subset of glycolytic proteins is repressed, while the expression of a few enzymes involved in
the pentose phosphate pathway (PPP), which is directly connected to the glycolytic pathway, is
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induced [77]. Enzymes of the PPP are critical for preserving cytoplasmic NADPH concentration, which
affords the redox power for antioxidant systems [78,79]. The observations above indicate that cells are
capable of rerouting the carbohydrate flux from glycolysis to the PPP to counteract oxidative stress.
Experiments carried out in Saccharomyces cerevisiae and Caenorhabditis elegans showed that reduction in
triosephosphate isomerase expression or activity results in a redirection of the carbohydrate flux, which
confers resistance against oxidative stress [80]. Considering the diminished levels of triosephosphate
isomerase in bleached M. complanata, it is possible to hypothesize that thermal stress induces a decrease
in triosephosphate isomerase expression in M. complanata as a mechanism to redirect the metabolic
flux from glycolysis to the PPP in order to face oxidative stress. However, this hypothesis needs to
be proven.

The levels of two DNA damage repair proteins were modified in bleached M. complanata. A protein
which displays sequence homology with UVSE_BACCR, a component in a DNA repair pathway in
Bacillus cereus [81], was up-regulated. Increased levels of this protein, which removes UV light-damaged
nucleotides from DNA, could represent a response from M. complanata to repair the damage caused
by high UV radiation and elevated seawater temperatures exposition. In contrast, lower levels of a
protein that exhibited sequence homology with a DNA repair endonuclease XPF from the myxosporean
Thelohanellus kitauei [82] were found in bleached M. complanata. Several studies have confirmed DNA
damage in temperature-stressed corals, such as Montastraea faveolata, Stylophora pistillata, and Acropora
tenuis [25,55,83]. Therefore, modified levels of UV DNA endonuclease and DNA endonuclease repair
XPF supports that DNA damage occurs in M. complanata specimens that underwent bleaching.

Among the proteins whose levels were reduced in bleached hydrocorals was actin. Previous
studies carried out on reef forming cnidarians have identified actin as a particularly sensitive protein
to temperature stress [23,32–34,39,48]. In fact, actin genes have been proposed as a gene expression
marker of heat stress that could be diagnostic of coral stress in the field [35]. The results obtained
in the present study agree with what was observed in specimens of Porites astreoides [35] and
Stylophora pistillata [36] subjected to heat stress, which demonstrated significant down-regulation
of actin genes. In contrast, in the study we carried out on bleached M. alcicornis specimens, we
found higher levels of actin [48], in a similar way to what was found in the scleractinian coral
Acropora palmata [39]. The actin cytoskeleton is central in various cellular processes including cell
motility, mitosis, intracellular transport, endocytosis, secretion, etc. [84,85]. Lower levels of actin in
bleached M. complanata specimens may imply modifications in the intracellular transport, plasma
membrane interactions, cell shape integrity and in the regulation of gene transcription of proteins that
participate in cytoskeletal interactions.

Bleached M. complanata specimens also showed lower levels of calmodulin, which is a Ca2+

sensor protein, whose signaling is important in several cellular processes, such as cell cycle, apoptosis,
intracellular transport, and calcium homeostasis [86]. This result is in agreement with what was found
in the reef-building corals Monstastraea faveolata [23], Acropora palmate [28], and the symbiotic sea
anemone, Anemonia viridis [87] exposed to experimental heat stress. Again, the results that we obtained
in this study differ from what we found in bleached M. alcicornis, which exhibited higher abundance
of calmodulin [48]. In the case of M. complanata, our results suggest that thermal stress provokes a
disruption in cell calcium homeostasis. Undoubtedly, discrepancies found in the stress-responses
related to the expression levels of actin and calmodulin between different reef forming cnidarians
deserve further investigation.

Exposure of M. complanata to a thermally-induced bleaching event resulted in increased levels of
heat shock protein 70 (HSP70). HSP70s are ubiquitous chaperones that facilitate correct protein
folding and bind to partially denatured proteins to inhibit their aggregation. They are also
able to renature denatured proteins conferring them repaired active states by an ATP-dependent
way [88]. Since HSPs act as molecular chaperones preventing cellular damage under conditions of
environmental stress, regulation of HSPs gene expression has been examined in scleractinian corals
and Symbiodinium clades [24,37,88–93]. In general, thermal stress induces up-regulation of HSP70
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gene expression in both Symbiodinium sp. and corals (Acropora millepora, A. grandis, A. hyacinthus,
Tubastrea cocchinea, Astrangia danae, Montastraea annularis, M. faveolata, Pocillopora damicornis, and
Goniastrea aspera) [24,37,88–93]. As expected, our results revealed a greater abundance of cytosolic
HSP70 in M complanata exposed to heat stress. Considering that an improved thermotolerance in
many marine organisms, including reef building corals, has been related to higher expression of
stress-inducible members of the HSP70 family [90,94], it is very likely that up-regulation of HSP70
expression represents a heat-induced stress response of M. complanata to preserve protein structure
and functions, and stimulate cellular repair processes to face global warming.

Similar to HSP70, peroxiredoxin-6 levels were also elevated in bleached M. complanata. This
protein belongs to the family of peroxiredoxins, which neutralize oxidation products generated by
reactive oxygen species (ROS) and therefore, protect cells from oxidative stress. Upregulation of this
protein has been observed in Acropora microphthalma exposed to solar irradiance and heat stress [40].
Studies on the effect of heat stress on reef forming cnidarians have highlighted the important role that
peroxiredoxins and other antioxidant enzymes, such as ascorbate peroxidase, superoxide dismutase,
and catalase play to balance the oxidative damage generated by ROS during coral bleaching [95–98].
The observed increase in the levels of peroxiredoxin-6 indicates that M. complanata is dealing with ocean
warming by activating its antioxidant mechanisms to prevent or revert damage provoked by ROS.

We also found that bleached M. complanata exhibited higher levels of an exocyst complex
component 4 like protein in M. complanata. This protein has been proposed as a biomarker of coral
heat stress [32,99], therefore our finding was to be expected. The exocytosis multiprotein complex has
been related to the process of symbionts expulsion [100], since it offers spatial targeting of exocytotic
vesicles to the membrane [101].

3.2. Proteins That Showed Amino Acid Sequence Similarity to Toxins Showed Different Levels in Bleached M.
complanata

Mass coral bleaching and mortality events that have occurred worldwide over the past three
decades have caused great concern about the future of coral reef ecosystems [2,102]. Research on
thermal tolerance of reef-forming corals indicates that some reef-forming cnidarians are able to
deal with thermal stress, through specific adaptive processes, which include acclimatization, genetic
adaptation, and symbiont shuffling, which may ameliorate the adverse consequences and mortality
provoked by elevated sea water temperature [103–106]. Moreover, the ability to recover from a
bleaching episode has been related to the energy reserves and heterotrophic feeding capacity of the
cnidarian host [107–109]. Symbiodinium can provide more than 50% of their photosynthetic products to
the cnidarian host [10,12,18,110–112]. However, after bleaching, recovering corals may heavily rely
on alternate sources of fixed carbon, which is acquired via catabolism of energy reserves and/or by
increased heterotrophy [113,114]. In fact, some evidence suggest that zooplankton provision may
mitigate the negative impact of thermal stress [115].

Millepora species obtain nutrients from their autotrophic endosymbionts, however, they are also
capable of capturing planktonic preys through heterotrophic feeding. Considering that autotropic
input is significantly diminished during bleaching episodes [116], it is possible to hypothesize that
under bleaching scenarios, M. complanata may increase the production of their chemical armament
with the aim to balance the lack of energy from Symbiodinium algae.

As already mentioned above, the method we employed for obtaining the soluble proteomes from
unbleached and bleached specimens of M. complanata involved osmotic shock in bidistilled water,
which causes the discharge of the nematocysts content [48]. Interestingly, in the present study we
found that bleached hydrocorals had increased levels of two proteins that showed amino acid sequence
similarity to the pore forming toxins (PFTs), echotoxin-2 and DELTA-actitoxin-Oor1b, which were
previously identified in “giant triton” Monoplex parthenopeus (phylum Mollusca) and the “Sea of Japan
anemone” Oulactis orientalis, respectively [117,118].
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DELTA-actitoxin-Oor1b belongs to the family of Actinoporins, which are the most abundant
and best studied cnidarian PFTs [119,120]. These PFTs have been mainly identified in sea anemone
venoms [120,121], although some actinoporin-like toxins have been found in other members of the class
Anthozoa and in one species of the class Hydrozoa, Hydra magnipapillata [5,120–122]. Actinoporins are
~20 kDa proteins that spontaneously insert into sphingomyelin containing membranes [123]. In the
case of actinoporin-like toxins from Hydra, they do not target sphingomyelin and display low sequence
similarity (~30% identity) to actinoporins [124]. The actinoporin-like protein from M. complanata, which
is predicted to have two α-helices, shares some functional features with three model actinoporins:
DELTA-actitoxin-Aeq1a (Equinatoxin II; EqT II) and DELTA-actitoxin-Aeq1b (EqT V) from the “beadlet
anemone” Actinia equina [125,126], and DELTA-actitoxin-Ucs1a (UcI) from the “Christmas anemone”
Urticina crassicornis [127] (see Figure S1 of Supplementary material). The M. complanata actinoporin-like
protein bears some conserved actinoporin binding site motifs and an aspartate that is present in the
well-recognized actinoporin RDG-motif [128]. Noteworthy, the actinoporin-like protein we identified
in M. complanata has an aromatic cluster motif that is similar to that of EqT II (W147, 151 and 152),
which mediates the initial membrane attachment [129,130]. Most anemone actinoporins lack cysteine
residues, however, M. complanata actinoporin-like protein owns one cysteine residue, which could
include actinoporin-like toxins from Stylophora pistillata [122] and Hydra magnipappilata [131].

Augmented levels of the two pore forming like toxins from M. complanata correlated with increased
hemolytic activity. Therefore, considering that PFTs are involved in processes such as feeding, digestion,
defense, and spatial competition [120,121,128], it is very likely that upon loss of autotrophic input,
M. complanata improves its heterotrophic capability as a strategy to counteract the loss of symbionts.

On the other hand, two proteins that exhibited homology to PLA2 displayed differential abundance
in bleached hydrocorals. An acidic PLA2 PA4, previously reported in Nemopilema nomurai [132],
showed elevated levels, whereas levels of an acidic calcium-independent PLA2-like, identified in
the transcriptome of Choristoneura fumiferana [133], were diminished. At present, few cnidarian
secreted phospholipases A2 have been isolated and structurally characterized [134–138] and it has
been proposed that their functions comprise the capture and digestion of prey [139]. When assessing
the PLA2 activity, we observed that the soluble proteome from bleached hydrocorals elicited a reduced
enzymatic activity. This result is consistent with what we obtained in a previous study, in which we
found that experimental thermal stress decreased the phospholipase A2 activity of an aqueous extract
prepared from M. complanata [140]. Considering that the net PLA2 activity is the result of the sum
of the effects induced by individual enzymes, our results suggest that the PLA2 activity induced by
the soluble proteome of bleached M. complanata is mainly produced by enzymes, such as the acidic
calcium-independent phospholipase A2 we detected, and other unidentified PLA2s, whose expression
is very likely affected by thermal stress.

Another protein whose levels were raised in bleached hydrocorals showed homology (more
than 30% amino acid sequence similarity) with astacin-like metalloprotease 5. This toxin is a zinc
metalloprotease obtained from the spider Loxosceles gaucho, which provokes endothelial cells deadhesion
and degradation of fibrinogen, fibronectin and gelatin [141]. The presence of metalloproteases has
been described in several terrestrial animals venoms, such as those of snakes, spiders, centipedes,
ticks [5,141–143], and also in soft-body cnidarians such as Podocoryne carnea, Olindias sambaquiensis,
Nematostella vectensis, Stomolophus meleagris, Nemopilema nomurai, Rhopilema esculenta, Cyanea nozakii,
Aurelia aurita, and Chironex fleckeri [5,144–148]. Metalloproteases from venomous animals appear
to play an important role in envenomation, allowing the diffusion of toxic venom components by
degradation of extracellular matrix. The over expression of this protein may be another indication that
M. complanata is increasing the synthesis of toxins to improve its heterotrophic capacity in order to
alleviate nutrient limitation derived from the impaired symbiotic relationship between hydrocorals
and zooxanthellae.

Interestingly, the results obtained in this study agree with what was recently found by Hoepner
et al., [149], who reported that the venom from the sea anemone Entacmaea quadricolor, exposed to
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long-term light-induced bleaching, preserve its hemolytic activity and lethality. These findings support
the hypothesis that some cnidarians that have suffered bleaching are able to prey heterotrophically,
giving them a better chance to resist the effects of thermal stress.

4. Materials and Methods

4.1. Sample Collection

M. complanata specimens were collected in the Parque Nacional Arrecife de Puerto Morelos,
Quintana Roo, Mexico in November 2016 (Permission no. PFP/DGOPA-139/15). In order to avoid
collecting identical clones, specimens (either bleached or unbleached) were collected from three colonies
at depths of 4–10 m and at least 10 m apart. Sampled bleached and unbleached hydrocoral fragments
(BMc and UMc, respectively) were frozen in liquid nitrogen and transported to the Laboratorio de
Investigación Química y Farmacológica de Productos Naturales in the Universidad Autónoma de
Querétaro, Mexico. This research project was approved by the Bioethics Committee of the Faculty of
Chemistry of the Autonomous University of Querétaro (approved on 18 January 2017; approval code
CBQ/17002).

4.2. Determination of the Degree of Bleaching

Fragments from unbleached and bleached M. complanata specimens were cut into squares of 1 cm2

(average weight = 0.9 g; average thickness = 0.5 cm). Subsequently, tissues were fixed in formalin
buffer 10% for 3 days. Once the fixing time elapsed, samples were decalcified with HCl 5% during
5 days and the decalcifying solution was refreshed daily. Subsequently, tissues were homogenized
in a Glas-Col homogenizer (IN, USA, Glas-Col) for 2 min at 70 rpm and centrifuged at 2400 rpm.
The resulting pellet was resuspended in ethanol 70% and the number of symbionts was measured
employing a Neubauer chamber. Experiments were performed in biological triplicates. Statistical
differences between mean values were evaluated with a Student´s t-test using GraphPad Prism 6.0
(CA, USA, GraphPad Software).

4.3. Soluble Proteome Extraction from Bleached and Unbleached M. complanata

Nematocyst discharge and soluble proteome extraction from unbleached and bleached M. complanata
specimens was carried out employing osmotic shock. Hydrocoral fragments (~200 g) were immersed
in distilled water (pH 7) at 4 ◦C and gently stirred for 24 h [8,150]. Afterward, the aqueous extracts
obtained, containing the soluble proteomes, were centrifuged at 3000 rpm for 15 minutes at 4 ◦C,
this procedure was repeated until solid insoluble detritus was no longer present. Subsequently,
the supernatant was dehydrated using a lyophilizing system, and the resultant powder was stored
at −70 ◦C. The concentrated lyophilized powders were dissolved in deionized water and protein
concentration was measured using a bovine serum albumin standard curve, employing the Bradford´s
method [151].

4.4. Electrophoresis SDS-PAGE

The soluble proteomes obtained from unbleached and bleached hydrocorals’ samples were
precipitated with acetone and analyzed by one-dimensional SDS-polyacrylamide electrophoresis
(SDS-PAGE), under denaturing and non-reducing conditions. A molecular weight standard (SDS-PAGE
Molecular Weight Standards. Hercules, CA, USA, Bio-Rad) or 80 µg of protein were loaded in each
well, samples were run in 12% polyacrylamide gels at 150 V during 1.5 h using electrophoresis buffer
containing Tris, glycine, and SDS. Protein bands were visualized with Coomassie stain (Bio-Safe™
Coomassie Stain. Hercules, CA, USA, Bio-Rad).
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4.5. First-Dimension Step, Isoelectric Focusing (IEF) and Two-Dimensional High-Resolution Gel
Electrophoresis (2DE-PAGE)

For the first-dimension step, 750 µg of protein from the soluble proteomes of unbleached and
bleached hydrocorals were cleaned using a clean-up Kit (Hercules, CA, USA, Bio-Rad) and solubilized
in rehydration buffer containing 8 M Urea, 2% SDS, 0.375 Tris-HCl (pH 8.8), 20% glycerol and, 2%
(w/v) DTT. Samples were loaded in an isoelectrofocusing system Bio-Rad PROTEAN® i12™ (Hercules,
CA, USA, Bio-Rad) and rehydrated overnight (100 V) on 11 cm immobilized pH gradient (IPG) strips
ReadyStrip™ IPG pH 3–10 (CA, USA, Bio-Rad), for a total of 20,000 Vh. Experiments were performed
in biological triplicates for both conditions. After the isoelectric focusing steps, the IPG strips were
reduced using equilibration buffer I (urea 6M, 2% SDS, Tris–HCl 0.05 M, pH 8.8, 50% glycerol, and
2% (w/v) dithiothreitol (DTT)), and alkylated in equilibration buffer II (urea 6 M, 2% SDS, Tris–HCl
0.05 M, pH 8.8, 50% glycerol and 2.5% (w/v) Iodoacetamide). The second dimension separation was
carried out using TGX Pre-Cast 18% SDS-polyacrylamide gels (CA, USA, Bio-Rad) at 150 V for 2 h at
4 ◦C. Gels containing both soluble proteomes were stained with BioSafe™ Coomassie blue G-250 dye
(Hercules, CA, USA, Bio-Rad).

4.6. Image Analysis

Images of stained two-dimensional gels were captured in a Bio-Rad ChemiDoc™MP (Hercules,
CA, USA, Bio-Rad) imaging system at 600 dpi resolution assisted by the ImageLab™ (Hercules, CA,
USA, Bio-Rad) software. Spot detection, matching, and fold changes were determined with the
PD-Quest™ software (Hercules, CA, USA, Bio-Rad), version 8.0.1. Protein spots showing more than
2-fold significant difference in intensity between proteomes of BMc and UMc specimens were regarded
as differentially expressed. These spots were selected and excised using an ExQuest™ spot cutter
(Hercules, CA, USA, Bio-Rad) for further identification by MALDI-TOF/TOF MS. All experiments were
performed in biological triplicates.

4.7. Protein in-Gel Digestion, MALDI-TOF/TOF Mass Spectrometry, and Data Analysis

Differentially expressed protein spots were excised from the two-dimensional electrophoresis gels
and distained with ACN:NH4HCO3 50 mM (50:50 v/v). The digestion of proteins was carried out
during 15 h at 37 ◦C with mass spectrometry trypsin grade (Promega V528A). The resulting peptides
were extracted with ACN:H2O:CH2O2 (50:45:5 v/v) and samples were desalted by chromatography
using a C18 column ZipTipC18. Six technical replicates of each sample were loaded and co-crystallized
in plates employing α-cyano-4-hydroxycinnamic as matrix and analyzed by means of a MALDI
TOF/TOF 4800 analyzer (Concord, ON, CA, Applied Biosystems/ABsciex, 200 Hz, 355 nm Nd:YAG
laser) coupled to the 4000 series Explorer software (version 3.5.3, Applied Biosystems Inc., Foster City,
CA, USA). The operation mode was in positive ion and calibrated using a peptide mass standard kit
for calibration (Applied Biosystems/ABsciex Concord, ON, CA). The laser was set to 2500–2800 for
MS and 3500–3800 for MS/MS spectra acquisition. MS spectra were registered in positive ion reflector
mode with 25 laser shots. Precursor ions were selected for fragmentation, which was carried out
with a collision energy of 2 kV, employing air as collision gas at a pressure of 2 × 10–6 Torr with a
total of 400 shots. Mass-charge spectra (m/z) were acquired within a molecular mass range of 800
to 4000 Da. The parental ion of Glu1-Fibrino-PeptideB, diluted in the matrix (1.3 pmol/µL/spot),
was employed for internal calibration at m/z = 1570.690 Da. The 16 most intense ion signals per
spot position having an S/N > 20 were selected for MS/MS acquisition. Following MALDI-TOF/TOF
analysis, search and identification of partial sequences was performed using the ProteinPilot™ software
(version 5.0, Applied Biosystems/ABsciex, Concord, ON, CA) and the Paragon searching algorithm
(Applied Biosystems Inc., Foster City, CA, USA). The Basic Local Alignment Search Tool (BLASTp)
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used for identification of homolog sequences. The
database was set to cnidaria (taxid: 6070) and non-redundant protein sequences (statistically significant

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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scoring sequences with an E-value < 1 × 10−6 were retrieved). Similar sequences were aligned with
the multiple sequence alignment program ClustalW2 (https://www.ebi.ac.uk/Tools/msa/clustalw2/).

4.8. Effect of Thermal Stress on the Cytolytic and PLA2 Activities of M. complanata Soluble Proteome

4.8.1. Comparative Hemolytic Activity between the Soluble Proteomes from Unbleached and Bleached
Specimens of M. complanata

In order to examine the difference between the hemolytic activity of the soluble proteomes
from unbleached and bleached hydrocorals, a hemolytic test was performed according to a method
previously described [150]. The hemolytic assay is currently used to evidence the presence of cytolysins.
Different protein concentrations (µg/mL) of three biological replicates were mixed with Alsever’s
solution (120 mM d-glucose, 30 mM sodium citrate, 7 mM NaCl, and 2 mM citric acid, pH 7.4) and
50 µL of 1% erythrocytes suspension, this mixture was incubated at 37 ◦C for 30 min. Samples were
centrifuged at 1500 rpm for 4 min at 4 ◦C. The absorbance at 415 nm of the supernatant fluid, containing
the hemoglobin released from lysed erythrocytes, was measured in a Benchmark Plus microplate
spectrophotometer (Hercules, CA, USA, Bio-Rad). Each experiment was normalized with respect
to complete hemolysis, which was measured by diluting the erythrocyte sample in deionized water
instead of Alsever’s buffer. One hemolytic unit (HU50) was defined as the amount of protein sample
required to cause 50% hemolysis. The hemolytic activity was plotted in GraphPad Prism 6.0 (Hercules,
CA, USA, GraphPad Software). Statistical difference between mean values from normal and bleached
samples was evaluated by a Student´s t-test.

4.8.2. Comparative PLA2 Activity between the Soluble Proteomes from Unbleached and Bleached
Specimens of M. complanata

The PLA2 activity of the soluble proteomes from three specimens of each unbleached and bleached
M. complanata was measured employing a secretory PLA2 colorimetric assay kit (Ann Arbor, MI, USA,
Cayman Chemical) according to the manufacturer’s protocol. The PLA2 activity test is employed
to measuring the activity of this toxic enzyme from venoms. Briefly, the assay uses diheptanoyl
phosphatidylcholine as a substrate, and the PLA2 activity is detected by the generation of free thiols
from hydrolysis of the sn-2 thioester bonds of the substrate. Changes in coloring were measured
with a Benchmark Plus microplate spectrophotometer at 414 nm (Hercules, CA, USA, Bio-Rad). The
PLA2 activity was expressed as micromoles of hydrolyzed substrate per minute per milligram of
protein. Curve of PLA2 activity was plotted with GraphPad Prism 6.0 (San Diego, CA, USA, GraphPad
Software). Statistical difference between mean values from normal and bleached samples was evaluated
by a Student´s t-test.

5. Conclusions

This study presented evidence demonstrating that the El Niño–Southern Oscillation 2015–2016
induced a significant decrease in symbiont density in some colonies of M. complanata that inhabit the
Mexican Caribbean, indicating that these hydrocorals underwent a severe bleaching. The levels of
proteins involved in key cellular processes, such as glycolysis, DNA repair, stress response, calcium
homeostasis, exocytosis, and cytoskeleton organization were significantly modified in bleached
hydrocorals. Four of the proteins, whose levels were augmented, exhibited amino acid sequence
similarity to pore-forming toxins, a phospholipase A2, and a metalloprotease. Accordingly, the
hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher. These results
allowed us to infer that bleached M. complanata is capable of increasing its toxins production in order
to balance the negative impact of elevated temperature on its autotrophic nutrient input. This may
represent a resilience mechanism by which hydrocorals face thermal stress.

https://www.ebi.ac.uk/Tools/msa/clustalw2/
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three model actinoporins.
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125. Pungerčar, J.; Anderluh, G.; Maček, P.; Franc, G.; Štrukelj, B. Sequence analysis of the cDNA encoding the
precursor of equinatoxin V, a newly discovered hemolysin from the sea anemone Actinia equine. Biochim.
Biophys. Acta (BBA) 1997, 1341, 105–107. [CrossRef]
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