nature metabolism

Supplementary information

https://doi.org/10.1038/s42255-025-01247-4

Short-term effects of high-protein, lower-carbohydrate ultra-processed foods on human energy balance

In the format provided by the authors and unedited

Content

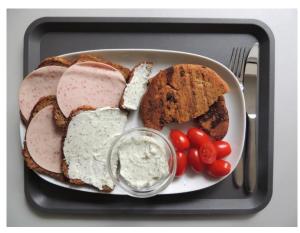
Supplementary Figure 1: Meals provided to the subjects on days 4 and 5	4
Supplementary Figure 2: Exemplary meals provided to the subjects during run-in period	5
Supplementary Table 1: CONSORT checklist of information to include when reporting randomised	
crossover trials	6

Breakfast day 4 HPLC

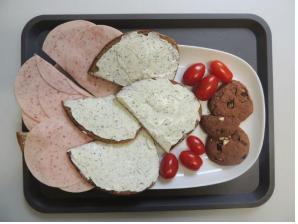
high protein cereals (Dr. Oetker), high protein raspberry-pomegranate yoghurt (Ehrmann) with raspberries, protein toast (BenFit), butter, cheese, jam

Breakfast day 4 NPNC

cereals (Dr. Oetker), raspberry yoghurt (Ehrmann), with raspberries, toast (Harry Brot), butter, cheese, jam


Lunch day 4 HPLC

high protein Salami pizza (Prozis), high protein chocolate pudding (Ehrmann)


Lunch day 4 NPNC

vegetable pizza (Dr. Oetker), plant-based chocolate pudding (Dr. Oetker)

Dinner day 4 HPLC

protein bread (Harry Brot), cream cheese (Mondelez), ham sausage (Rügenwalder Mühle), tomatoes, protein chocolate chip cookie (Foodspring)

Dinner day 4 NPNC

bread (Harry Brot), cream cheese (Mondelez), ham sausage (Rügenwalder Mühle), tomatoes, chocolate chip cookie (Rewe Beste Wahl)

Snack day 4 HPLC *protein* bar raspberry crisp (dm Sportness)

Snack day 4 NPNC energy bar raspberry yoghurt (dm Sportness)

Breakfast day 5 HPLC protein chocolate porridge (Seitenbacher) with milk (3.5 % fat) and apple, protein toast buns (Mestemacher), cream cheese with herbs (Mondelez), high protein cheese (Mini Babybel), protein hazelnut spread (Foodspring)

Breakfast day 5 NPNC chocolate porridge (Kölln) with milk (1.5 % fat), water and apple, seeded toast buns (Harry Brot), cream cheese (Mondelez), cheese (Mini Babybel), hazelnut spread (Ferrero)

Lunch day 5 HPLCprotein spaghetti (Prozis) with with tomato sauce
(Barilla) and vegetarian dumplings (Garden
Gourmet, Nestlé), high protein rice pudding (Müller
Milch) and red fruit jelly (Zum Dorfkrug)

Lunch day 5 NPNC whole grain spaghetti (Barilla) with tomato sauce (Barilla), cheese (Milram) and vegan falafel (Garden Gourmet, Nestlé), rice pudding (Müller Milch) and red fruit jelly (Zum Dorfkrug)

Dinner day 5 HPLC high protein bread (Mestemacher), butter, cheese (Grünländer), cream cheese (Mondelez), bell pepper, high protein crispy balls (Ehrmann)

Dinner day 5 NPNCbread (Harry Brot), cheese (Grünländer), cream cheese (Mondelez), herbs, cucumber, M&M's crispy (Mars)

snack day 5 HPLC
protein bar hazelnut nougat crisp (dm Sportness)

snack day 5 NPNC
nut bar (Corny)

Supplementary Figure 1: Meals provided to the subjects on days 4 and 5

During intervention days within the whole-room indirect calorimeter (WRIC), an ultra-processed diet (>80 % ultra-processed food) was presented to the subjects. A high protein-lower carbohydrate diet (HPLC, 30 % protein, 29 % carbohydrates, CHO) and a normal protein-normal CHO diet (NPNC, 13 % protein, 46 % CHO) were received in randomized order. Subjects were blinded to the protein content of the diet. Breakfast (08:30), lunch (13:30), dinner (18:30) and an optional evening snack (20:00-21:15) were provided. The photographs of the daily menus described above show exemplary meals. The actual amount of food presented to the subjects depended on individual energy requirements as described in the methods section in the chapter "diet composition" of the main text.

Breakfast HPLC whole grain cereals with sunflower seeds, cashews and flaxseed, skyr (Arla) and apple

Breakfast NPNC whole grain cereals with sunflower seeds, yoghurt and Greek yoghurt, apple

Lunch HPLC *high protein* vegetable lentil curry (Frosta) with edamame (peeled) and red fruit jelly (Zum Dorfkrug)

Lunch NPNC chicken curry with rice and vegetables (Frosta), broccoli, apple

Dinner HPLCprotein bread (dm), cream cheese (Mondelez),
hummus (Noa), grapes, cucmber, carrott, curd and
Greek yoghurt with herbs

Dinner NPNCbread (Harry Brot), cream cheese (Mondelez),
Mediterranean vegetable spread, cucmber, carrott,
curd and Greek yoghurt with herbs

Supplementary Figure 2: Exemplary meals provided to the subjects during run-in period

During the run-in period with controlled nutrition at home, a diet with <45 % ultra-processed food was presented to the subjects. A high protein-lower carbohydrate diet (HPLC, 30 % protein, 29 %

carbohydrates, CHO) and a normal protein-normal CHO diet (NPNC, 13 % protein, 46 % CHO) were received in randomized order. Subjects were blinded to the protein content of the diet. Breakfast, lunch and dinner were provided to eat at home, no other foods or caloric drinks were allowed. The photographs of the daily menus described above show exemplary meals. The actual amount of food presented to the subjects depended on individual energy requirements as described in the methods section in the chapter "diet composition" of the main text.

Supplementary Table 1: CONSORT checklist of information to include when reporting randomised crossover trials

Section/topic	Item No	Description	Page No*
Title†	1a	Identification as a randomised crossover trial in the title	-
Abstract [†]	1b	Specify a crossover design and report all information outlined in	2
		Table 2 of Dwan et al, <i>BMJ</i> 2019;366:l4378; doi:	
		10.1136/bmj.l4378	
Introduction:	Ť		1
Background‡	2a	Scientific background and explanation of rationale	3-4
Objectives‡	2b	Specific objectives or hypotheses	3-4
Methods:			
Trial design†	3a	Rationale for a crossover design. Description of the design	18-19
		features including allocation ratio, especially the number and	
		duration of periods, duration of washout period, and	
		consideration of carry over effect	
Change from	3b	Important changes to methods after trial commencement (such as	na
protocol‡		eligibility criteria), with reasons	
Participants‡	4a	Eligibility criteria for participants	17-18
Settings and	4b	Settings and locations where the data were collected	17
location‡			
Interventions†	5	The interventions with sufficient details to allow replication,	18-22
		including how and when they were actually administered	
Outcomes‡	6a	Completely defined prespecified primary and secondary outcome	27,
		measures, including how and when they were assessed	20-27
Changes to	6b	Any changes to trial outcomes after the trial commenced, with	na
outcomes‡		reasons	
Sample size†	7a	How sample size was determined, accounting for within	27
		participant variability	
Interim	7b	When applicable, explanation of any interim analyses and stopping	na
analyses and		guidelines	
stopping			
guidelines‡			
Randomisation:			
Sequence	8a	Method used to generate the random allocation sequence	18
generation‡			
Sequence	8b	Type of randomisation; details of any restriction (such as blocking	18
generation‡		and block size)	
Allocation	9	Mechanism used to implement the random allocation sequence§	18-19
concealment‡		(such as sequentially numbered mechanism containers),	

Other information	Other information:							
		harms, and considering other relevant evidence						
Interpretation‡	22	Interpretation consistent with results, balancing benefits and	10-11					
Generalisability‡	21	Generalisability (external validity, applicability) of the trial findings	11					
		Consider potential carry over effects						
		and if relevant, multiplicity of analyses.						
Limitations†	20	Trial limitations, addressing sources of potential bias, imprecision,	10-11					
Discussion:								
		harms [*])						
Tidiffild.		accounts for the design (for specific guidance, see CONSORT for	110					
Harms†	19	Describe all important harms or untended effects in a way that	na					
anaryses+		exploratory						
Ancillary analyses‡	18	analyses and adjusted analyses, distinguishing prespecified from	na					
outcomes‡	10	effect sizes is recommended Results of any other analyses performed, including subgroup	na					
Binary	17b	For binary outcomes, presentation of both absolute and relative	na					
Dinani	175	recommended	200					
		addition, results for each intervention in each period are						
		interval) should be based on within participant comparisons.¶ In						
estimation†		estimated effect size and its precision (such as 95% confidence						
Outcomes and	17a	For each primary and secondary outcome, results including	4-11					
			Fig. 1					
analysed†		and whether the analysis was by original assigned groups	Data					
Numbers	16	Number of participants (denominator) included in each analysis	Ext.					
			1					
			Table					
		by sequence and period	Data					
Baseline data†	15	A table showing baseline demographic and clinical characteristics	Ext.					
Trial end‡	14b	Why the trial ended or was stopped	na					
Recruitment‡	14a	Dates defining the periods of recruitment and follow-up	17					
			Fig. 1					
exclusions†		for each sequence and period	Data					
Losses and	13b	No of participants excluded at each stage, with reasons, separately	Ext.					
recommended)†		primary outcome, separately for each sequence and period	Fig. 1					
flow (a diagram is	134	received intended treatment, and were analysed strongly for the	Data					
Participant	13a	The numbers of participants who were randomly assigned,	Ext.					
Results		aujusteu ariaiyses						
Additional analyses‡	120	Methods for additional analyses, such as subgroup analyses and adjusted analyses	na					
Additional	12b	(that is, based on within participant comparison)	na					
methods†		secondary outcomes which are appropriate for crossover design						
Statistical	12a	Statistical methods used to compare groups for primary and	27					
interventions‡								
Similarity of	11b	If relevant, description of the similarity of interventions	na					
		and how						
		example, participants, care providers, those assessing outcomes)						
Blinding‡	11a	If done, who was blinded after assignment to interventions (for	19					
		interventions						
Implementation†		participants, and who assigned participants to the sequence of						
	10	Who generated the random allocation sequence,§ who enrolled	18					
		interventions were assigned						
		describing any steps taken to conceal the sequence until						

Registration‡	23	Registration number and name of trial registry	17
Protocol‡	24	Where the full trial protocol can be accessed, if available	na
Funding‡	25	Sources of funding and other support (such as supply of drugs),	12
		role of funders	

CONSORT=Consolidated Standards of Reporting Trials.

§Random sequence here refers to a list of random orders, typically generated through a computer program. This should not be confused with the sequence of interventions in a randomised crossover trial, for example receiving intervention A before B for an individual trial participant.

¶A within participant comparison takes into account the correlation between measurements for each participant because they act as their own control, therefore measurements are not independent. ¥ Ioannidis JP, Evans SJ, Gotzsche PC, et al. CONSORT Group.Better reporting of harms in randomized trials: an extension of the CONSORT statement. *Ann Intern Med* 2004;141:781-8. doi:10.7326/0003-4819-141-10-200411160-00009

^{*}Note: page numbers are optional depending on journal requirements.

[†]Modified original CONSORT item.

[‡]Unmodified CONSORT item.