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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Due to different nucleotide preferences at target sites, no single Cas9 is capable of editing

all sequences. Thus, this highlights the need to establish a Cas9 repertoire covering all

sequences for efficient genome editing. Cas9s with simple protospacer adjacent motif

(PAM) requirements are particularly attractive to allow for a wide range of genome editing,

but identification of such Cas9s from thousands of Cas9s in the public database is a chal-

lenge. We previously identified PAMs for 16 SaCas9 orthologs. Here, we compared the

PAM-interacting (PI) domains in these orthologs and found that the serine residue corre-

sponding to SaCas9 N986 was associated with the simple NNGG PAM requirement. Based

on this discovery, we identified five additional SaCas9 orthologs that recognize the NNGG

PAM. We further identified three amino acids that determined the NNGG PAM requirement

of SaCas9. Finally, we engineered Sha2Cas9 and SpeCas9 to generate high-fidelity ver-

sions of Cas9s. Importantly, these natural and engineered Cas9s displayed high activities

and distinct nucleotide preferences. Our study offers a new perspective to identify SaCas9

orthologs with NNGG PAM requirements, expanding the Cas9 repertoire.

Introduction

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-RNA-guided Cas

endonuclease system is based on the bacterial adaptive immune system and has been utilized
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as a fast and efficient method for precise genome editing [1–6]. This system is made up of two

main components: a Cas9 nuclease and a chimeric single-guide RNA (sgRNA) derived from

CRISPR RNA (crRNA) and the trans-activating crRNA (tracrRNA) [2]. Cas9 and sgRNA

combine to form a complex that recognizes the target DNA that is complementary to the 50

end of the sgRNA [2]. In addition to sgRNA-target DNA complementarity, DNA recognition

requires a specific DNA sequence known as protospacer adjacent motif (PAM), flanking the

target sequence [2]. The PAM allows the Cas nuclease to discriminate between the target DNA

and the DNA sequence encoding the sgRNA but also restricts its ability to target any sequence

in the genome.

Editing efficiency is a major hurdle of the CRISPR system. Every Cas nuclease has its own

nucleotide preference [7]. For example, SpCas9 prefers guanine-rich sequences [8], while

AsCas12a prefers adenine-rich sequences [9]. SpCas9 is generally considered the most efficient

Cas nuclease, whose efficiency varies from 0% to approximately 100% depending on the target

sequences [8]. Although previous studies have focused on limitations of the PAM [10–12], the

sole presence of a PAM within a locus does not guarantee that it can be efficiently edited. For

high efficiency of genome editing to be achieved, it is essential to establish a Cas9 repertoire

that can accommodate all sequences.

Cas9 nucleases with flexible PAM requirements are crucial for large-scale genome editing.

We previously developed Cas9 nucleases with highly flexible NNGG PAMs recognition

[13,14]. To rapidly identify additional natural Cas9 nucleases recognizing NNGG PAMs, we

compared the PAM-interacting (PI) domains of SaCas9 orthologs and found that the serine

residue corresponding to SaCas9 N986 was associated with the NNGG PAM. We identified

five additional SaCas9 orthologs recognizing the NNGG PAM. We further engineered two of

them to improve the specificity. Our study expands the Cas9 repertoire and provides a founda-

tion to search for Cas9s with NNGG PAMs in the future.

Results

A serine residue was associated with the NNGG PAM requirement among

SaCas9 orthologs

We previously identified PAMs for 16 SaCas9 orthologs, where SauriCas9 and SlugCas9 recog-

nized NNGG PAMs [13–15]. Nishimasu and colleagues have demonstrated that amino acids

of N985, N986, R991, E993, and R1015 in the PI domain of SaCas9 are crucial for PAM recog-

nition [16]. N985, E993, and R1015 are very conserved among these 16 orthologs (Fig 1A). In

contrast, residues corresponding to N986 and R991 showed substantial diversity. Interestingly,

SauriCas9 and SlugCas9 contain a serine residue corresponding to SaCas9 N986. We hypothe-

sized that this serine residue is associated with the NNGG PAM.

We employed SaCas9 as a template to search for related orthologs from NCBI’s Gene data-

base, and our search identified five additional Cas9s that contained this serine residue with

amino acid identity ranging from 58.4% to 64.5% (Fig 1A and Table 1). Genetic loci of these

orthologs contain a conserved organization where Cas9 is followed by Cas1 and Cas2 (S1A

Fig). The organization of CRISPR repeats and tracrRNAs does not appear to be conserved.

SaCas9 encodes a tracrRNA upstream of Cas9 and CRISPR repeats downstream of Cas2. Sha2-

Cas9 and SpeCas9 encode CRISPR repeats and tracrRNAs downstream of Cas2. SwaCas9 and

Swa2Cas9 encode CRISPR repeats and tracrRNAs upstream of Cas9 and additional CRISPR

repeats downstream of Cas2. SmiCas9 encodes CRISPR repeats-tracrRNA-CRISPR repeats

upstream of Cas9.

Nevertheless, the 50 end sequences of CRISPR repeats and tracrRNAs exhibited high con-

servation among these orthologs (S1B and S1C Fig). We fused the 30 end of a direct repeat with
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Fig 1. Analysis of five SaCas9 ortholog activities. (A) Amino acid sequences of the SaCas9 ortholog PI domain are

aligned. The residues that are important for PAM recognition are indicated at the top; the conserved residues among

newly identified SaCas9 orthologs are shown in red; the names of newly identified Cas9s are shown in green. (B)

Design of the GFP activation reporter construct. A target sequence (protospacer) containing a 7-bp random sequence

is inserted between ATG and the GFP-coding sequence. The library DNA is stably integrated into HEK293T cells by

lentivirus. (C) Transfection of SaCas9 orthologs induced GFP expression. Percentage of GFP-positive cells was shown.

The cells without transfection of Cas9 were used as a negative control.

https://doi.org/10.1371/journal.pbio.3001897.g001
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the 50 end of the corresponding tracrRNA, including the full-length tail, via a 4-nt linker to

form a sgRNA for each Cas9 (S2A Fig). Interestingly, these sgRNAs formed a similar second-

ary structures with three stem loops (S2B Fig), suggesting that these SaCas9 orthologs could

share the same sgRNA scaffold for genome editing.

PAM screening

Next, we used a previously established GFP activation assay for PAM screening [13,15]. In this

assay, the GFP expression is disrupted by a target sequence (protospacer) flanked by a 7-bp

random sequence, which is inserted into the GFP coding sequence immediately downstream

of the ATG start codon, inducing to a frameshift mutation. This reporter library is then stably

integrated into HEK293T cells. If a Cas9 nuclease successfully edits the target sequence, small

insertions or deletions (indels) will be generated at the target sequence, and a functional GFP

cassette will be restored in a portion of cells (Fig 1B). Each Cas9 was human codon optimized,

synthesized, and cloned into a mammalian expression construct that was developed by Ran

and colleagues [17]. The canonical SaCas9 sgRNA scaffold was employed for sgRNA expres-

sion [17]. Three days after transfection of Cas9 with sgRNA expression plasmids, all five tested

Cas9s induced GFP expression (Fig 1C). GFP-positive cells were sorted out and the target

DNA was PCR amplified for deep sequencing. Sequencing results showed that indels occurred

at target sites (Fig 2A). WebLogos and PAM wheels were generated based on deep sequencing

data, which revealed that these Cas9s recognized NNGG PAMs (Fig 2B and 2C). These data

validated our hypothesis that the serine residue is associated with the NNGG PAM.

To test whether the serine residue corresponding to SaCas9 N986 determined NNGG PAM

recognition, we replaced N986 with a serine (S3A Fig). The GFP activation assay revealed that

the substitution increased guanine preference at PAM position 3, but the favored PAM

remained NNGRRT (S3B Fig). We reanalyzed the PI domain of these orthologs and identified

two additional residues, a glutamic acid (E) corresponding to SaCas9 P1013 and a lysine (K)

corresponding to SaCas9 I1017, conserved among orthologs that recognized an NNGG PAM,

except SmiCas9 where there is a 13-amino acid insertion corresponding to SaCas9 P1013 (Fig

1A). We added either P1013E, I1017K, or both mutations to SaCas9-N986 (S3A Fig). Interest-

ingly, all resulted SaCas9 variants recognized an NNGG PAM (S3B Fig). These data demon-

strated that these three amino acids are important for determining the NNGG PAM.

Genome editing for endogenous loci

Next, we tested the capacity of these Cas9s for genome editing at selected endogenous sites in

HEK293T cells. Five days after transfection of Cas9 and sgRNA expression plasmid DNA, we

extracted genomic DNA and amplified target sites by PCR. As an initial screen, we used the

T7EI assay to rapidly analyze the efficiency for each Cas9. SmiCas9, Sha2Cas9, and SpeCas9

displayed higher editing efficiency, while SwaCas9 and Swa2Cas9 displayed lower editing effi-

ciency (S4A and S4B Fig). In the subsequent experiments, we only focused on SmiCas9, Sha2-

Cas9, and SpeCas9.

Table 1. Five SaCas9 orthologs selected from the NCBI database.

NCBI ID Host strain Name Length (aa) Identity to SaCas9

Sha2Cas9 Staphylococcus haemolyticus WP_154836552 1,058 63.2%

SmiCas9 Staphylococcus microti WP_044361501 1,063 58.4%

SpeCas9 Staphylococcus petrasii WP_115359133 1,058 63.5%

SwaCas9 Staphylococcus warneri WP_107532850 1,054 64.5%

Swa2Cas9 Staphylococcus warneri WP_114599540 1,054 64.3%

https://doi.org/10.1371/journal.pbio.3001897.t001
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Fig 2. Analysis of the PAM sequence of Cas9. (A) Deep sequencing reveals that SmiCas9, Sha2Cas9, and SpeCas9

generated indels on the targets. (B) WebLogos were generated based on the deep sequencing data. (C) PAM wheels

were generated based on the deep sequencing data.

https://doi.org/10.1371/journal.pbio.3001897.g002
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We compared the activity of these three Cas9s to that of SaCas9 at 13 endogenous sites with

NNGGRT PAMs. All tested Cas9s were expressed from the same construct and achieved simi-

lar expression levels, as revealed by western blot (Fig 3A and 3B). All four Cas9 nucleases gen-

erated indels with different efficiencies depending on the target sites in HEK293T cells (Fig

3C). Interestingly, these Cas9s displayed different activities at some sites. For example, Sha2-

Cas9 displayed higher activity at site E0, while SmiCas9 and SpeCas9 displayed higher activity

at site G10. SaCas9 displayed lower efficiency than newly identified Cas9s at sites G3 and G9.

These data demonstrated that these Cas9s prefer distinct target sequences. Overall, SaCas9,

Sha2Cas9, and SpeCas9 displayed comparable activities, while SmiCas9 displayed lower activ-

ity (Fig 3D).

Specificity of SmiCas9, Sha2Cas9, and SpeCas9

Next, we compared the specificity of SmiCas9, Sha2Cas9, SpeCas9, and SaCas9 using the GFP

activation assay. A panel of sgRNAs with dinucleotide mutations along the protospacer was

generated to detect the specificity of each Cas9. Off-target cleavage is considered to have

occurred when the mismatched sgRNAs induce GFP expression. Overall, SaCas9 and SmiCas9

had negligible off-target effects, while Sha2Cas9 and SpeCas9 displayed moderate off-target

effects (S5 Fig). Specifically, SaCas9 was highly sensitive to mismatches at PAM-proximal and

PAM-distal positions but relatively less sensitive at middle positions; SmiCas9 displayed mini-

mal off-target effects with mismatches at all positions; and Sha2Cas9 and SpeCas9 were sensi-

tive to mismatches at PMA-proximal positions 18 through 20 but less sensitive at other

positions.

Recently, Tan and colleagues unraveled the crystal structure of the SaCas9/sgRNA–target

DNA complex and identified four amino acid residues (R245, N413, N419, and R654) forming

polar contacts within a 3.0-Å distance from the target DNA strand [18]. When one or more of

these residues were replaced by alanine, SaCas9 specificity was significantly improved [18]. To

investigate whether the specificity of Sha2Cas9 can be improved, we used pairwise alignment

to identify the corresponding residues (R247, N415, S421, and R656; S6 Fig) and generated sin-

gle amino acid mutants by alanine substitution. The GFP activation assay revealed that the

R247A and N415A mutations could significantly improve specificity without compromising

the on-target activity (S7A and S7B Fig). The R656A mutation also improved the specificity

although this was accompanied by markedly decreased on-target activity. We introduced the

R247A and N415A double mutations into Sha2Cas9 to generate a high-fidelity version of Cas9

named Sha2Cas9-HF. The GFP activation assay revealed that double mutations further

improved its specificity (Fig 4A).

We simultaneously identified the corresponding residues for SpeCas9 (R247, N415, S421,

and R656; S6 Fig) and generated single amino acid mutants by alanine substitution (S8A Fig).

The GFP activation assay revealed that the R247A, N415A, and S421A mutations could signifi-

cantly improve specificity without compromising the on-target activity (S8B Fig). We intro-

duced the R247A, N415A, and S421A triple mutations into SpeCas9 to generate a high-fidelity

version of Cas9 named SpeCas9-HF. The GFP activation assay revealed that triple mutations

further improved specificity (Fig 4A).

Genome-wide unbiased off-target effects of Sha2Cas9, Sha2Cas9-HF, SpeCas9, and Spe-

Cas9-HF were next evaluated by GUIDE-seq [19]. We evaluated two sites targeting the EXM1

gene and one site targeting the RUNX1 gene. Five days after transfection of the Cas9 plasmid,

the sgRNA plasmid, and the GUIDE-seq oligos, we prepared libraries for deep sequencing.

Sequencing and analysis showed that on-target cleavage occurred for all Cas9 nucleases at 3

targets, as reflected by the high GUIDE-seq read counts (Fig 4B). High-fidelity versions of
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Fig 3. Genome editing for endogenous sites. (A) Schematic of the Cas9 expression constructs. (B) Protein expression

level of Cas9s was measured by western blot. Cells without Cas9 transfection was used as a negative control. (C)

Comparison of SaCas9, SmiCas9, Sha2Cas9, and SpeCas9 efficiency for genome editing at 13 endogenous loci.

Additional “g” is added for U6 promoter transcription (n = 3). Underlying data for all summary statistics can be found

in S1 Data. (D) Quantification of editing efficiency for SaCas9, SmiCas9, Sha2Cas9, and SpeCas9. Underlying data for

all summary statistics can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001897.g003
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Cas9s displayed significantly fewer off-target effects than wild-type Cas9s, reflected by the

numbers of off-target sites and off-target read counts. For example, SpeCas9 and SpeCas9-HF

generated similar read counts (225,292 versus 202,764) at the EXM1-sg2 site. SpeCas9 induced

four off-target sites, while SpeCas9-HF induced two off-target sites. For one off-target, SpeCas9

Fig 4. Analysis of Sha2Cas9-HF and SpeCas9-HF specificity. (A) Schematic of the GFP activation assay for

specificity analysis is shown on the top. A panel of sgRNAs with dinucleotide mutations is shown below. sgRNA

activities were measured based on GFP expression. Mismatches are shown in red (n = 3). Underlying data for all

summary statistics can be found in S1 Data. (B) Off-targets for EMX1 locus are analyzed by GUIDE-seq. Read

numbers for on- and off-targets are shown on the right. Mismatches compared with the on-target site are shown and

highlighted in color.

https://doi.org/10.1371/journal.pbio.3001897.g004
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generated 60,331 read counts, while SpeCas9-HF generated 1,061 read counts. For another off-

target, SpeCas9 generated 5,634 read counts, while SpeCas9-HF generated 2 read counts.

These data demonstrated that the occurrence of off-target events is significantly lower when

using Sha2Cas9-HF and SpeCas9-HF.

Evaluation of Sha2Cas9-HF and SpeCas9-HF on-target activities

Next, we compared the activities of high-fidelity Cas9s to those of wild-type Cas9s (Sha2Cas9

versus Sha2Cas9-HF; SpeCas9 versus SpeCas9-HF) with a panel of 13 endogenous sites. West-

ern blot analysis revealed that the protein expression levels of high-fidelity Cas9s and wild-type

Cas9s were comparable (Fig 3B). All four Cas9s generated indels at targets with varying effi-

ciencies (Fig 5A). Overall, high-fidelity Cas9s and wild-type Cas9s displayed comparable effi-

ciencies (Fig 5B). However, different efficiencies were observed for a number of targets. For

example, SpeCas9-HF displayed higher efficiency than SpeCas9 at the G5 site, whereas Spe-

Cas9-HF displayed lower efficiency than SpeCas9 at the G8 site. These data demonstrated that

the preference of high-fidelity Cas9s for nucleotides differs from that of wild-type Cas9s for

genome editing.

Discussion

Different nucleotide preferences have been observed among natural Cas9 nucleases. For exam-

ple, SpCas9 favors G-rich sequences but disfavors T-rich sequences [8]; AsCas12a favors A-

rich sequences but disfavors G-rich sequences [9]. One possible strategy to achieve high effi-

ciency of genome editing is to harness multiple natural Cas nucleases for genome editing, and

a collection of these nucleases could cover all possible sequences. A number of Cas nucleases,

such as SaCas9 [17], NmeCas9 [20], CjCas9 [21], AaCas12b [22], and Cas12f1 [23,24], have

been harnessed for genome editing. We previously developed BlatCas9 [25], SauriCas9 [13],

SlugCas9 [14], and SchCas9 [15] for genome editing. In this study, we further expanded the

Cas repertoire by developing SmiCas9, Sha2Cas9, and SpeCas9. Importantly, they contain a

compact genome, facilitating delivery by a single adeno-associated virus (AAV) for in vivo

genome editing. These newly developed Cas9s will enhance our ability to achieve high effi-

ciency genome editing.

Different nucleotide preferences have also been observed between natural Cas9s and their

engineered variants. We and others previously screened thousands of sgRNA activities for

SpCas9 and its engineered variants and observed different nucleotide preferences [8,26]. For

example, SpCas9 slightly prefers A and G at sgRNA position 10, while SpCas9-HF1 strongly

prefers C at this position [8]. In this study, we generated two high-fidelity versions of Cas9s.

Although they only contain 2 or 3 amino acid modifications, distinct nucleotide preferences

were observed for a number of targets. Therefore, engineered Cas9s not only change specificity

or targeting scope [27–30] but also change nucleotide preferences.

Cas9s with flexible PAMs are crucial for precision positioning. In addition to SpCas9, sev-

eral other natural Cas nucleases with dinucleotide PAMs have been identified, including

FnCas9 [31], Nme2Cas9 [32], SauriCas9 [13], SlugCas9 [14], SchCas9 [15], and AaCas12b

[22]. In this study, we identified the serine residue corresponding to SaCas9 N986 associated

with the simple NNGG PAM requirement. This PAM occurs, on average, once in every

approximately 8 randomly chosen genomic loci. We further identified three amino acids that

determined the NNGG PAM requirement of SaCas9. With the continuous expansion of the

Cas9 database, our strategy will offer a clue to identify more SaCas9 orthologs with NNGG

PAMs.
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Fig 5. Evaluation of Sha2Cas9-HF and SpeCas9-HF on-target activities. (A) Comparison of activities of high-fidelity

Cas9s to the wild-type Cas9s (n = 3). The target sequences are shown on the left. PAM is underlined. If the first

nucleotide is C or T, additional “g” is added for U6 promoter transcription. Underlying data for all summary statistics

can be found in S1 Data. (B) Quantification of editing efficiency for SaCas9, SmiCas9, Sha2Cas9, and SpeCas9.

Underlying data for all summary statistics can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001897.g005
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Materials and methods

Cell culture and transfection

HEK293T cells were cultured in DMEM (Gibco) supplemented with 10% FBS (Gibco) and 1×
penicillin–streptomycin (Gibco) at 37˚C with 5% CO2. HEK293T cells were transfected with

Lipofectamine 2000 (Life Technologies) according to the manufacturer’s instructions. For

Cas9 PAM sequence screening, 1.2 × 107 HEK293T cells were transfected with a total of 10 μg

of Cas9 plasmid and 5 μg of sgRNA plasmid in 10-cm dishes. For genome editing comparisons

of Cas9, 105 cells were transfected with a total of 300 ng of Cas9 plasmid and 200 ng of sgRNA

plasmid in 48-well plates.

Plasmid construction

Cas9 expression plasmid construction: The plasmid pX601 (Addgene#61591) was amplified by

the primers px601-F/px601-R to obtain the pX601 backbone. The human codon–optimized

Cas9 gene (S1 Table) was synthesized by HuaGene (Shanghai, China) and cloned into the

pX601 backbone by the NEBuilder assembly tool (NEB) according to the manufacturer’s

instructions. Sequences of each Cas9 were confirmed by Sanger sequencing (GENEWIZ,

Suzhou, China).

sgRNA expression plasmid construction: sgRNA expression plasmids were constructed by

ligating sgRNA into the Bsa1-digested hU6-Sa_tracr plasmid. The primer sequences and target

sequences are listed in S2 and S3 Tables, respectively.

PAM sequence analysis

Twenty base-pair sequences (AAGCCTTGTTTGCCACCATG/GTGAGCAAGG GCGAGGA

GCT) flanking the target sequence (GAACGGCTCGGAGATCATC ATTGCGNNNNNNN)

were used to fix the target sequences. GCG and GTGAGCAAGGGCG AGGAGCT were used

to fix a 7-bp random sequence. Target sequences with in-frame mutations were used for PAM

analysis. The 7-bp random sequence was extracted and visualized by WebLogo [33] and a

PAM wheel chart to identify PAMs [29].

Genome editing for endogenous sites

HEK293T cells were seeded into 48-well plates and transfected with a total of 300 ng of Cas9

plasmid and 200 ng of sgRNA plasmid by Lipofectamine 2000 (1 μL). Cells were collected 5

days after transfection. Genomic DNA was isolated, and the target sites were PCR amplified

and extracted by QuickExtract DNA Extraction Solution (Epicentre) for deep sequencing. For

genomic HEK293T DNA, the PCR products were subjected to a T7E1 assay to check the edit-

ing efficiency. The primer sequences are listed in S2 Table.

Test of Cas9 specificity

To test the specificity of Cas9, we generated two GFP reporter cell lines with the CTGG PAM.

The cells were seeded into 48-well plates and transfected with 300 ng of Cas9 plasmids and 200

ng of sgRNA plasmids by using Lipofectamine 2000. Five days after editing, the GFP-positive

cells were analyzed on a Calibur instrument (BD). The data were analyzed using FlowJo.

GUIDE-seq

GUIDE-seq experiments were performed as described previously [19], with minor modifica-

tions. Briefly, 2 × 105 HEK293T cells were transfected with 500 ng of SchCas9/Sa-SchCas9, 500
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ng of sgRNA plasmids, and 100 pmol of annealed GUIDE-seq oligonucleotides by electropora-

tion and then seeded into 6 wells. The electroporation voltage, width, and the number of pulses

were 1,150 V, 30 ms, and 1 pulse, respectively. Genomic DNA was extracted with the DNeasy

Blood and Tissue kit (QIAGEN) 6 days after transfection according to the manufacturer’s pro-

tocol. The genome library was prepared and subjected to deep sequencing [19].

Western blotting

One day before transfection, HEK293T cells were seeded into a 6-well plate. For each well,

2 μg of Cas9-expressing plasmid were transfected using 4 μL of Lipofectamine2000. Three days

after transfection, cell samples were collected and total proteins were extracted using NP-40

buffer (Beyotime) supplemented with 1 mM phenylmethanesulfonyl fluoride (PMSF) (Beyo-

time). The protein was separated by SDS-PAGE gel and transferred onto polyvinylidene fluo-

ride (PVDF) (Thermo) membrane. After transfer, the membrane was blocked with 5% (wt./

vol.) BSA (Sigma) in TBS-T (0.1% Tween 20 in 1× TBS) buffer and then incubated in the pri-

mary antibody (anti-HA tag (1:1,000; ab236632, Abcam) and anti-GAPDH (1:2,000; 5174s,

Cell Signaling) at 4˚C overnight. Wash membrane three times in TBS-T for 5 min each time.

The second antibody (1:10,000; ab6721, Abcam) was incubated for 1 h at room temperature,

and then washed three times and imaged.

Statistical analysis

All the data are shown as mean ± SD. Statistical analyses were performed using Microsoft

Excel. Two-tailed, paired Student t tests were used to determine statistical significance when

comparing two groups, whereas analyses of variance (ANOVAs) are used for comparisons

between for three or more groups. A value of P< 0.05 was considered to be statistically signifi-

cant (�P< 0.05, ��P< 0.01, ���P< 0.001).

Supporting information

S1 Fig. Genetic locus of CRISPR/Cas9. (A) The structures of CRISPR loci for six SaCas9

orthologs. (B) Alignment of CRISPR repeat sequences for six SaCas9 orthologs. (C) Alignment

of tracrRNA for six SaCas9 orthologs.

(TIF)

S2 Fig. Analysis of sgRNAs. (A) Alignment of sgRNA scaffolds for six SaCas9 orthologs. The

GAAA linker are indicated by the black box. (B) Analysis of SaCas9 orthologs’ secondary RNA

structures. These structures were generated by an online tool named RNAfold WebServer

(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi).

(TIF)

S3 Fig. Analysis of the SaCas9 variant PAMs. (A) Amino acid sequence of the SaCas9 variant

PI domains. The residues that are important for PAM recognition are marked at the top; the

mutations are highlighted in red. (B) SaCas9 variant PAMs were analyzed by the GFP activa-

tion assay. WebLogos generated by analyzing the deep sequencing data.

(TIF)

S4 Fig. Evaluation of the genome editing efficiency of 6 SaCas9 orthologs. (A) Examples of

the gel pictures of T7EI assay for Sha2Cas9 and SpeCas9. Cleaved fragments are marked by red

triangles. Indel frequencies are shown below. Underlying data for all summary statistics can be

found in S1 Data. (B) Quantification of editing efficiency for 6 SaCas9 orthologs. Underlying
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data for all summary statistics can be found in S1 Data.

(TIF)

S5 Fig. Analysis of four Cas9 ortholog specificity. Schematic of the GFP activation assay for

specificity analysis is shown on the top. A panel of sgRNAs with dinucleotide mutations is

shown below. sgRNA activities were measured based on GFP expression. Cells without Cas9

transfection were used as a negative control (NC). Mismatches are shown in red (n = 3).

Underlying data for all summary statistics can be found in S1 Data.

(TIF)

S6 Fig. Protein sequence alignment of SaCas9, Sha2Cas9, and SpeCas9. The amino acid res-

idues important for specificity are indicated by vertical lines above. The amino acid residue

positions are shown on the right.

(TIF)

S7 Fig. Specificity of four Sha2Cas9 variants. (A) Schematic of Sha2Cas9 structure. The

amino acid residues important for specificity are shown below. (B) Test of four Sha2Cas9 vari-

ant specificity. Schematic of the GFP activation assay for specificity analysis is shown on the

top. A panel of sgRNAs with dinucleotide mutations is shown below. sgRNA activities were

measured based on GFP expression. Cells without Cas9 transfection were used as a negative

control (NC). Mismatches are shown in red (n = 2 or 3). Underlying data for all summary sta-

tistics can be found in S1 Data.

(TIF)

S8 Fig. Specificity of four SpeCas9 variants. (A) Schematic of SpeCas9 structure. The amino

acid residues important for specificity are shown below. (B) Test of four SpeCas9 variant speci-

ficity. Schematic of the GFP activation assay for specificity analysis is shown on the top. A

panel of sgRNAs with dinucleotide mutations is shown below. sgRNA activities were measured

based on GFP expression. Cells without Cas9 transfection were used as a negative control

(NC). Mismatches are shown in red (n = 3). Underlying data for all summary statistics can be

found in S1 Data.

(TIF)

S1 Data. Underlying values for all reported summary statistics. Raw data from all reported

summary statistics.

(XLSX)

S1 Table. The Cas9 ID and human codon–optimized Cas9 gene. The file contains the Cas9

ID, host strain, tracrRNA, and amino acid sequences of SaCas9 orthologs used in this study.

The human codon–optimized Cas9 genes were synthesized.

(DOCX)

S2 Table. Primers used in this study. A list of oligonucleotide pairs and primers used for

deep sequencing.

(DOCX)

S3 Table. Target sites used in this study. A list of the endogenous target sites of human and

their downstream PAM. PAM, protospacer adjacent motif.

(DOCX)

S1 Raw Images. Raw images of Figs 3 and S4.

(JPG)
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