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A B S T R A C T   

Purpose: To train and validate a predictive model of mortality for hospitalized COVID-19 patients based on lung 
densitometry. 
Methods: Two-hundred-fifty-one patients with respiratory symptoms underwent CT few days after hospitaliza
tion. “Aerated” (AV), “consolidated” (CV) and “intermediate” (IV) lung sub-volumes were quantified by an 
operator-independent method based on individual HU maximum gradient recognition. AV, CV, IV, CV/AV, IV/ 
AV, and HU of the first peak position were extracted. Relevant clinical parameters were prospectively collected. 
The population was composed by training (n = 166) and validation (n = 85) consecutive cohorts, and backward 
multi-variate logistic regression was applied on the training group to build a CT_model. Similarly, models 
including only clinical parameters (CLIN_model) and both CT/clinical parameters (COMB_model) were devel
oped. Model’s performances were assessed by goodness-of-fit (H&L-test), calibration and discrimination. Model’s 
performances were tested in the validation group. 
Results: Forty-three patients died (25/18 in training/validation). CT_model included AVmax (i.e. maximum AV 
between lungs), CV and CV/AE, while CLIN_model included random glycemia, C-reactive protein and biological 
drugs (protective). Goodness-of-fit and discrimination were similar (H&L:0.70 vs 0.80; AUC:0.80 vs 0.80). 
COMB_model including AVmax, CV, CV/AE, random glycemia, biological drugs and active cancer, outperformed 
both models (H&L:0.91; AUC:0.89, 95%CI:0.82–0.93). All models showed good calibration (R2:0.77–0.97). 
Despite several patient’s characteristics were different between training and validation cohorts, performances in 
the validation cohort confirmed good calibration (R2:0–70-0.81) and discrimination for CT_model/COMB_model 
(AUC:0.72/0.76), while CLIN_model performed worse (AUC:0.64). 
Conclusions: Few automatically extracted densitometry parameters with clear functional meaning predicted 
mortality of COVID-19 patients. Combined with clinical features, the resulting predictive model showed higher 
discrimination/calibration.   

1. Introduction 

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 2, was 
identified in China and very rapidly spread around the world [1,2], 
resulting in the current coronavirus disease 2019 (COVID-19) pandemic 
with tens of millions of confirmed cases worldwide. 

In a relevant number of patients, the virus can cause severe inter
stitial pneumonia with subsequent acute respiratory distress syndrome 
(ARDS), responsible for dramatic respiratory failure including fatal 
outcome. 

Chest Computed Tomography (CT) plays a fundamental role in 
diagnosing and characterizing lung involvement in COVID-19 patients, 
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recognizing different imaging patterns based on the duration of the 
tissue inflammation [3–14]. The disease has a wide variety of CT find
ings, which depend on both clinical severity and time elapsed since the 
symptoms onset [6,7]. Radiological hallmarks of COVID-19 pneumonia 
are: bilateral ground glass opacities, crazy paving pattern and/or con
solidations predominantly in subpleural locations in the lower lobes 
[11,12,15–17]. 

CT changes in the lungs were reported to be associated with more 
severe symptoms, longer time to recovery as well as an increased risk of 
death [12,16,18–23]. However, only a limited number of predictive 
models of disease severity and/or mortality were based on quantitative 
features [16,18,20,22,23], the majority lacking of sufficient validation 
and then usability, claiming for an urgent need of robust and validated 
models [21]. 

Our Institution was largely involved in the first wave of the pandemic 
in northern Italy. Several hundred patients were hospitalized and a large 
number of them underwent chest CT scan shortly after hospitalization. 
Several clinical predictors were primarily found to predict short-term 
mortality and time to recovery [24,25]. 

In this rapidly changing scenario, focusing on objective CT-based 
outcome predictors, we first aimed to develop and implement an auto
mated, operator-independent quantitative method to characterize lungs 
of COVID-19 patients based on individually optimized Hunsfield Unit 
(HU) thresholds [26]. The proposed method was based on an inter
pretable and intuitive phenomenological characterization of lungs with 
the explicit aim to be easily implemented independently of software 
availability and/or post-processing tools. 

It permits to individually assess HU thresholds able to automatically 
divide the lungs into three regions, namely the aerated, intermediate 
and consolidation volumes and to extract parameters characterizing 
lungs appearance based on this classification. This is an important step 
aiming to make the interpretation of the images simultaneously 
operator-independent and interpretable, differently from most AI based 
approaches [29,30]. 

The aim of current study was to train and validate a CT-based model 
able to predict mortality using this previously developed operator- 
independent extraction method. We compared the discriminative per
formances of this model with that of an exclusively clinical-based model 
and finally combining CT and clinical features to derive a third model 
and test its accuracy in early mortality prediction. 

2. Materials and methods 

2.1. Patients and clinical data collection 

This study is a secondary analysis within our COVID-19 Institutional 
study (the COVID-BioB, Clinical trials govNCT04318366). All patients 
aged > 18 years, hospitalized for COVID-19 during the period February- 
April 2020, who underwent at least one CT scan during hospitalization 
were considered for the present study. COVID-19 diagnosis was made 
based on positive SARS-CoV-2 real-time reverse-transcriptase polymer
ase chain reaction (RT-PCR) and/or radiological findings suggestive of 
COVID-19 pneumonia. Details on patient management during hospi
talization, clinical predictors of adverse outcome in our population, time 
to recovery or death, and data collection procedures were reported 
elsewhere [24,25]. 

All patients signed an informed consent. The study was approved by 
the Institutional Review Board (protocol number 34/INT/2020) and 
conforms to the Declaration of Helsinki. 

2.2. CT scanning 

The first CT scan after hospitalization was considered for the current 
investigation. Patients were scanned on three different scanners: Incisive 
(64sl)-Philips, Brilliance (64sl)-Philips and Lightspeed VCT (64sl)-GE 
Medical System. All patients were scanned with the following parame
ters: X-ray tube voltage of 120 kV and automatic current modulation 
([149–549] mA), slice thickness 1–1.25 mm, matrix 512 × 512. The raw 

Fig. 1. Graphical representation of the threshold values found by searching inflexion points of the HU-density histograms. The Aerated Volume (AV) in white ranges 
between − 1000 HU and HU Threshold 1; the Intermediate Volume (IV) in light grey ranges between HU Threshold 1 and HU Threshold 2; the Consolidated Volumes 
(CV) in dark grey ranges from HU Threshold 2 until higher HU values. 
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data were reconstructed using standard kernels with filtered back pro
jection as well as adaptive statistical iterative reconstruction. CT images 
were retrieved from the hospital Picture Archiving and Communication 
System (PACS). The inter-scanner variability on the assessment of HU 
values was previously investigated by phantom measurements and 
found to be negligible [26]. 

2.3. Lung segmentation and HU-based sub-segmentation 

CT images were exported from the Institutional PACS and then 
uploaded in the Eclipse system (v13.7, Varian Inc.) for segmentation 
purposes. Five well trained operators with>5 years’ experience in con
touring for radiotherapy planning segmented both lungs using auto
mated tools (such as maximum gradient search and thresholding 
selection) combined with manual delineation/correction. Only one 
observer contoured the lungs for each patient (i.e.: contouring was not 
repeated among the five operators). Two expert radiologists (>5 year 
experience) independently reviewed a sample set (n = 30 patients) for 
consensus against the contours delineated by the five observers, finding 
the delineation acceptable in all cases. 

After the lungs segmentation was accomplished, contours and im
ages were transferred to the MIM 6 v 6.9.6 software platform. In order to 
reduce the impact of the different CT discretization and voxel/pixel 
dimension used, CT images were resampled with an isotropic 1.5 × 1.5 
× 1.5 mm3 voxel size. The original lung contours were recorded on the 
resampled images. Histograms of HU of the lungs were then extracted 
and used to define three different sub-volumes named as “Aerated” (AV), 
“Consolidated” (CV) and “Intermediate” (IV). Briefly, two typical peak 
values, one in the low-density region (typically − 1000 HU, − 700 HU) 
and one next to the water HU value (− 34 HU, 0 HU) were present, as 
shown in the example of Fig. 1. A Matlab script was developed to find 
individually the inflexion points and the corresponding HU thresholds 
(th1 1 and th2) of the HU density histogram according to a maximum 
gradient computation. They corresponded to the descending portion of 
the curve after the first peak and to the ascending portion of the curve 
before the second peak, as described by Mazzilli et al. [26] and previ
ously suggested for lung densitometry characterization of idiopathic 
pulmonary fibrosis [27]. Then, the resulting operator-independent 
thresholds individually identified the three regions AV, IV and CV, 
reflecting their expected functional meaning. Despite inter-observer 
variability in contouring lungs was not quantified, “little” inter- 
observer variations in lung contouring cannot not expected to signifi
cantly influence the assessment of the sub-volumes, given the largely 
different densitometry patterns compared to normal lung. 

2.4. Quantitative CT parameters 

As previously described [26], HU histograms data were interpolated 
with an integral smooth function f(HU) and AV, CV, IV, the ratios CV/ 
AV, IV/AV, the HU value corresponding to the peak positions (Max
PeakAerated, MaxPeakConsolidated), the width and height of IV (Wid
th_Intermediate, Height_Intermediate) in terms of HU range and the 
mean HU value of IV were extracted. They were considered both as 
single lung and as paired organ, considering both lungs; as single organ, 
maximum and minimum values between the two lungs were considered. 
The formulae of the mentioned parameters were defined as (referred to 
single lung): 

AV =

∫ HUth1

− 1000
f (HU)dHU  

IV =

∫ HUth2

HUth1

f (HU)dHU  

CV =

∫ +∞

HUth2

f (HU)dHU  

MaxPeakAerated = HUo|f (HUo) > f (HU)∀HU ∈ [ − 1000,HUth1]

MaxPeakConsolidated = HUo|f (HUo) > f (HU)∀HU ∈ [HUth2, +∞]

Width Intermediate = HUth2 − HUth1  

Height Intermediate =
1

HUth2 − HUth1

∫ HUth2

HUth1

f (HU)dHU  

where HUth1 and HUth2 are the HU values corresponding to the thresh
olds th1 and th2. 

2.5. Analyses: training predictive models 

According to the TRIPOD 2 level of models generalizability [31], the 
population was composed by a training (n = 166) and a validation (n =
85) cohorts; models were trained on the training cohort data and tested 
onto the validation cohort. 

The two cohorts were consecutive (not randomized), due to the 
variable availability of the operators for lung delineation. Due to the 
rapid change of patient characteristics at hospital admittance, the var
iable availability of intensive care admittance and the changes in the 
applied therapies, the two populations could be expected to be different. 
This was considered to be an additional value for our validation pur
poses and we decided to deliberately keep these two populations as they 
were, without any additional merging. 

The differences between patients characteristics (both clinical and 
densitometry) of the two cohorts were tested by two-tailed t-tests and 
chi-square tests, where appropriate. 

The end-point was early death, defined as death occurring during 
hospitalization as a consequence of respiratory and/or other COVID-19- 
related manifestation. 

All the previously extracted quantitative CT parameters were 
considered and tested on the training group as potential predictors 
through Univariate Logistic Regression (ULR). First, ULR was carried out 
and only variables with p < 0.05 were selected for further analysis; then, 
a Multivariate Logistic Regression (MLR) backward analysis was con
ducted on the previous selected variables by retaining in the final model 
variables with p < 0.20; this choice was arbitrarily followed aiming to 
retain in the resulting models potentially relevant features with “large” 
odds ratios. 

The resulting model including only CT parameters was named 
CT_model. The individual resulting probabilities computed by MLR were 
considered and named CT_index. Similarly, the same procedure was 
followed to assess the best clinical predictors, deriving a model 
including only clinical variables (CLIN_model) and the corresponding 
CLIN_index. The following clinical parameters including demographics 
data, comorbidities and laboratory data were considered: sex, age, race, 
arterial hypertension, coronary artery disease, diabetes mellitus, chronic 
obstructive pulmonary disease, chronic kidney disease, active malig
nances, peripheral oxygen saturation (SpO 2), the ratio of arterial oxygen 
partial pressure, (PaO2) in mmHg to fractional inspired oxygen (FiO2) 
expressed as a fraction (SatO2/FiO2), the ratio of SpO2 to FiO2 (SpOP2 
/FiO2), body temperature, hemoglobin, absolute lymphocytes, random 
glycemia, aspartate transaminase, alanine transaminase, lactate trans
aminase, C-reactive protein, and creatinine levels at hospitals admission 
and the use of biological drugs. 

Finally, the same procedure was followed by considering both CT 
and clinical parameters to assess a combined model (COMB_model) and 
in the same way the corresponding COMB_index. The goodness of fit of 
the three models was quantified by the Hosmer and Lemeshow (H&L) 
test and calibration plots. The discriminative power of the models was 
quantified by their AUCs, sensitivity and specificity, based on the 
maximization of the Youden index and AUCs were compared by the De 
Long method [28]. Positive and negative predictive values (PPV, NPV) 
were also calculated, relative to the same best cut-off values identified 
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by the Youden index. Analyses were performed using Medcalc v 19.5.3 
and R-software. 

2.6. Validating models 

The performances of the models developed on the training cohort 
were tested in the validation group. In particular, CLIN_index, CT_index 
and COMB_index were derived for all patients of the validation group 
using MLR coefficients of models developed in the training; then indexes 
were tested using ROC analysis. Significance (p-value) in stratifying the 
events was first verified and calibration plots for each model were 
generated for the validation cohort. 

3. Results 

Demographics, clinical, laboratory and respiratory function features 
of patients are summarized in Table 1: they are split between training 
and validation cohorts with their p-value of the t-test (or chi-square for 
dichotomic variables) for distribution difference. Similarly, a summary 
of the densitometry parameters was shown in Table 2, reporting the 
differences between the two cohorts. A number of clinical characteristics 
were different between the two groups; in general, the validation group 
included patients with better lung functionality and HU-based param
eters (higher AV and lower IV and CV) compared to the training group. 
On the other hand, age, weight, BMI and incidence of obstructive pul
monary disease were slightly higher in the validation group. The therapy 
received by most patients during hospitalization was the association of 
hydroxychloroquine with lopinavir/ritonavir, which was the standard of 
care for COVID-19 at our Institution at the time of patient enrolment in 
the COVID-BioB study. The severity of the clinical picture guided the 
administration of further specific treatments in selected patients. 

Specifically, biological drugs were used in 57/251 patients with a sig
nificant unbalance between training and validation cohorts. The median 
time (interquartile range, IQR) from hospital access to CT was 1 day 
(0–4). 

In total, 43/251 (17%) patients died during hospitalization, 25 and 
18 in the training and validation group respectively. 

Results of ULR (training cohort) are reported in Table S1 of Sup
plementary Materials; Table 3 summarizes the results of MLR; Table 4, 
the performances of the three models in the training cohort in terms of 
AUC, significance p-value, sensitivity, PPV and NPV. In short, the 
combination of three CT parameters predicts the risk of early death with 
discrimination equal to 80%, similarly to the model obtained using only 
clinical variables. Combining CT and clinical parameters significantly 
improved the performance of the resulting COMB_model, with an in
crease of AUC from 0.80 to 0.89, as also shown in Table 3 and Fig. 2. 

The calibration plots of the three models are shown in Fig. 3: slope 
and R2 ranged between 0.89 and 0.93 and 0.77–0.97 respectively. 

The results regarding the validation of the three models are reported 
in Table 5: they confirmed the training cohort results, although CLIN_
Index was found to be of borderline significance (AUC = 0.64, p =
0.065). On the other hand, both CT_model and COMB_model showed 
much better performances (AUC = 0.72, p = 0.001 and AUC = 0.76, p <
0.001 respectively) confirming the ability of CT parameters to predict 
the risk of death. The calibration plots showed slightly worse perfor
mances compared to the training cohort, although R2 remained satis
factorily high, ranging between 0.70 and 0.81. Very importantly, NPV 
was very similar (and high) in both the training and the validation 
cohorts. 

Table 1 
patients’ clinical characteristics of the training and validation groups.   

Training Group Validation Group p –value 

Demographic Characteristics 
age, years (mean; median; range) 61; 61; 20–86 65; 66; 18–95  0.0004 
sex (Male; Female) 123; 43 57; 28  0.8434 
weight (mean; median; range) 79; 80; 45–124 75; 75; 39–120  0.0099 
height (mean; median; range) 170; 170; 150–190 169; 170; 142–187  0.0170 
BMI (mean; median; range) 27; 27, 18–43 26; 26; 18–47  0.0097 
race (Caucasian; Hispanic; Asiatic; Afro-american) 138; 12; 2; 1 81; 2; 1; 1  0.9990  

Comorbidities 
Arterial hypertension (y; n, missing) 67; 82; 17 40; 42; 3  0.0350 
Coronary disease (y; n, missing) 12; 137; 17 15; 67; 3  0.2666 
Diabetes mellitus (y; n, missing) 43; 126; 17 15; 67; 3  0.0980 
Obstructive pulmonary disease (y; n, missing) 4; 166; 17 10; 73; 3  0.0021 
Chronic renal disease (y; n, missing) 12; 137; 17 11; 71; 3  0.4080 
Active Cancer (y; n, missing) 10; 140; 16 9; 74; 2  0.3489 
ICU (y; n, missing) 37; 99; 30 12; 71; 2  0.4260 
Biological drugs (y; n; missing) 55; 97; 14 78; 7; 0; 0  0.0415 
satO2 (mean; median; range) 91; 93; 50–100 93; 95; 63–100  0.0025 
FiO2 (mean; median; range) 1; 1; 1–1 0.27; 0.21; 0.21–1  0.1654 
satO2/FiO2 (mean; median; range) 408; 438; 70–476 409; 447; 93–476  0.0126 
EGAPaO2 (mean; median; range) 66; 63; 28–251 68; 66; 37–127  0.2512 
EGAFiO2 (mean; median; range) 0.32; 0.21; 0.21–1.00 0.3; 0.21; 0.21–1  0.0065 
PaO2/FiO2 (mean; median; range) 262; 281; 47–667 283; 300; 58–586  0.1301 
Body temperature (mean; median; range) 38; 38; 36–41 38; 38; 36–41  0.0222  

Laboratory results 
Hemoglobin (mean; median; range) 14; 14; 7–51 13; 14; 8–18  0.1067 
Absolute lymphoncytes (mean; median; range) 1.27; 0.90; 0.30–42.00 1.14; 1.10; 0.10–5.70  0.8592 
Glycemia (mean; median; range) 131; 109; 58–500 117; 104; 71–305  0.5807 
Aspartate transaminase (mean; median; range) 58; 46; 13–378 54; 39; 13–225  0.5626 
Alanine transaminase (mean; median; range) 52; 37; 8–578 48; 28; 11–275  0.7346 
Lactate deidrogenase (mean; median; range) 427;409; 115–1101 392; 320; 128–2017  0.3303 
C-reactive protein (mean; median; range) 113; 91; 3–410 82; 66; 0–313  0.0925 
Creatinine (mean; median; range) 1.08; 1.03; 0.44–5.71 1.18; 0.98; 0.56–7.57  0.8038  

Endpoints 
Deaths (y; n) 25; 141 18; 85  0.9900  
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4. Discussion 

The literature regarding the diagnostic performances of CT in 
COVID-19 patients is large and includes several reviews and meta-ana
lyses; however, despite recent efforts [12,16,18,23,32], the availability 
of quantitative models predicting clinical outcome based on CT bio
markers remains limited. The current study trained and validated 
models to predict early death in a cohort of COVID-19 patients from a 
single center during the first wave of the pandemic. The investigation 
tested whether quantitative, operator-independent (and interpretable) 
CT features could capture the majority of the clinical and prognostic 
picture. A phenomenological approach for sub-segmenting the lungs in 
three main regions was implemented, adapting a maximum-gradient 
method previously suggested as optimal in characterizing lungs of pa
tients with idiopathic pulmonary fibrosis [27]. 

The combination of only three features was able to predict mortality 
with classification performances near to 80%, showing very high 
sensitivity and relatively low specificity, translating in a very high 
negative predictive power. The same model considering only the two 
most robust parameters (CV and maximum AV value between the two 
lungs) showed similar performance with an AUC of 0.79. 

Of course, clinical features including patient characteristics as well 
as the different individual response to different therapeutic actions (i.e. 
external ventilation and/or antiviral drugs) are expected to explain at 
least part of the residual lack of discrimination of the CT_model. Indeed, 
the addition of few clinical parameters such as random glycemia at 
hospital admission and the use of biological drugs in the resulting 
COMB_model was able to improve discrimination up to AUC equal to 
0.89, outperforming the CLIN_model. Importantly, the performances of 
the models were replicated successfully in a validation group. As partly 
expected, due to the lower numbers and to the choice of keeping a 
relatively large p-value threshold during backward selection of variables 
(with the aim of accounting for most of the potential predictors), the 
performances of the models were worse in the validation group, and this 
was especially true for CLIN_model. 

Very importantly, the worse results for CLIN_model can also be 
explained by the different clinical characteristics of the two cohorts only 
partly overlapping in terms of hospital admission day. 

On the other hand, results show the strength of the extracted 
densitometry features in correctly predicting the risk of mortality also in 
a cohort of patients significantly different from the point of view of 
several clinical characteristics. 

Results regarding the predictive value of quantitative CT parameters 
are consistent with few previous studies: Colombi et al [20] first showed 

IV < 73% assessed at admission CT as able to predict the patients’ 
mortality in a cohort of 236 patients; the corresponding predictive 
model combining this feature with several clinical parameters slightly, 
but significantly, outperformed discrimination compared to a model 
including only clinical information (AUC: 0.86 vs 0.83). A limitation of 
this study was the unreported performance of any model including only 
CT parameters and the lack of any validation cohort. On the other hand, 
this was the first large and clear demonstration of the potentials of using 
quantitative HU-based features to predict mortality. 

Regarding validation, to our knowledge, up to now no studies re
ported independent validation nor following the actual TRIPOD-2 like 
approach (i.e. splitting a single center cohort into training and valida
tion groups [31]) neither with external validation studies (TRIPOD-3 
and 4). More in general, the need for improving reliability of diagnostic 
and predictive models of COVID-19 cohorts based on imaging bio
markers was underlined by a recent review [21]. 

Others authors reported quantitative CT biomarkers for predicting 
severity of symptoms, recovery and mortality [12,16,18,20,22,23]. As 
an example, Leonardi et al [22] combined CV derived by semi-automatic 
segmentation of lungs (with large manual intervention) showing very 
high AUC (0.96) in assessing critically ill patients. Similarly, CV ob
tained semi-automatically with the intervention of a radiologists and 
combined with other clinical parameters was found to correctly classify 
106 COVID-19 patients based on adverse outcome (defined as death or 
need of mechanical ventilation) with an AUC = 0.92 using support 
vector machine [23]. Major limitations of this study was the risk of 
overfitting and the operator-dependent segmentation, although their 
result is again consistent with our findings. Others used macroscopic 
quantitative CT parameters as well as AI-based solutions with discrim
inative power typically ranging between 0.70 and 0.90 [16,18,33,34]. 

In general, most studies showed good to excellent performance in 
predicting outcome. However, as previously underlined they were often 
affected by a high risk of bias, due to poor reporting and poor meth
odologic aspects [21]. Moreover, in most of them, machine learning and 
AI algorithms found predictors in a complex way, which makes chal
lenging their interpretation. These considerations suggest that their 
predictive performance when trying to apply on new patients can be 
expected to be significantly lower than that reported. This is also why we 
choose death as (objective) outcome and an approach focused on trying 
to capture few, interpretable features explaining the larger part of the 
events. 

Our study has several limitations: a major one is the need of delin
eating the lungs, which is a cumbersome procedure, subject to inter- 
observer variability. In general, the inter-observer agreement in 

Table 2 
Patients’ densitometry parameters of the training and validation groups.   

TRAINING VALIDATION   

min max mean median min max mean median p-value 

Aerated_Volume_Max  46.67  2908.43  1025.13  942.83  149.05  2764.59  1141.12  1004.00  0.399 
Intermediate_Volume_Max  402.33  1955.32  1041.30  1005.37  250.11  1890.81  964.92  888.98  <0.001 
Consolidated_Volumed_Max  24.76  589.99  165.23  135.51  39.24  1102.60  176.69  127.16  <0.001 
ConsolidatedVolume/AeratedVolume_Max  0.03  15.15  0.42  0.18  0.03  5.86  0.32  0.11  0.074 
IntermediateVolume/AeratedVolume_Max  0.48  34.65  2.02  1.39  0.36  6.48  1.08  0.90  <0.001 
Width_Intermediate_Max  543.00  846.00  754.80  780.00  508.00  874.00  761.51  781.00  <0.001 
Height_Intermediate_Max  178.73  742.76  408.31  396.58  145.88  793.61  377.34  359.19  <0.001 
Aerated_Volume_Min  35.19  2074.58  752.28  657.89  36.66  2684.95  911.36  801.59  <0.001 
Intermediate_Volume_Min  256.35  1747.75  860.98  851.55  166.29  1819.25  789.50  733.96  <0.001 
Consolidated_Volumed_Min  17.85  442.05  118.59  96.94  25.18  686.78  119.68  82.85  <0.001 
ConsolidatedVolume/AeratedVolume_Min  0.02  5.49  0.21  0.11  0.02  11.65  0.42  0.10  0.220 
IntermediateVolume/AeratedVolume_Min  0.34  17.37  1.31  0.95  0.38  17.50  1.32  0.89  0.005 
Width_Intermediate_Min  396.00  846.00  743.34  780.00  394.00  839.00  730.35  760.00  <0.001 
Height_Intermediate_Min  125.75  612.12  340.09  341.56  125.06  727.99  316.08  306.85  <0.001 
Aerated_Volume_Tot  81.86  4983.01  1777.41  1546.59  214.03  5445.38  2052.48  1788.28  <0.001 
Intermediate_Volume_Tot  791.38  3697.63  1902.28  1885.08  416.40  3654.62  1754.41  1671.30  <0.001 
Consolidated_Volumed_Tot  48.35  964.85  283.82  235.35  69.44  1597.17  296.37  206.31  <0.001 
ConsolidatedVolume/AeratedVolume_Tot  0.03  9.50  0.28  0.14  0.03  6.64  0.34  0.10  0.108 
IntermediateVolume/AeratedVolume_Tot  0.43  24.54  1.58  1.16  0.37  8.37  1.14  0.89  <0.001  
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Table 3 
Multivariable Regression Logistic analysis; only the variables with p < 0.05 in the URL analysis were selected for MRL.  

Clinical model 

Variable Coefficient P OR 95%CL AUC 95%Cl Variable Coefficient P OR 95%CL Hosmer AUC 95%CL 

Glycemia 0.0076028 0.018 1.0076 1,0013 to 
1,0140 

0.803 0,727 to 
0,866 

Clinical_index 6.13842 0.0001 463.3207 22,6987 to 
9457,1944 

P =
0,8387 

0.804 0,727 to 
0,866 

Biological drugs − 1.76113 0.0243 0.1719 0,0371 to 
0,7953 

Constant − 2.8879 <0,0001 

C-reactive protein 0.0054004 0.047 1.0054 1,0001 to 
1,0108 

Constant − 3.0147 <0,0001    

CT model 
Variable Coefficient P OR 95%CL AUC 95%Cl Variable Coefficient P OR 95%CL Hosmer AUC 95%CL 
Aerated_Volume_Max − 0.0037859 0.0049 0.9962 0,9936 to 

0,9989 
0.802 0,730 to 

0,862 
CT_index 6.3065 <0,0001 548.1232 26,6008 to 

11294,3689 
P =
0,2899 

0.802 0,730 to 
0,862 

Consolidated_Volume_Tot 0.0062398 0.005 1.0063 1,0019 to 
1,0107 

Constant − 2.93635 <0,0001 

Consolidated/ 
AeratedVolume_Tot 

− 3.17537 0.1268 0.0418 0,0007 to 
2,4623 

Constant 0.42004 0.7001   
Combined model 
Variable Coefficient P OR 95%CL AUC 95%Cl Variable Coefficient P OR 95%CL Hosmer AUC 95%CL 
Aerated_Volume_Max − 0.0038748 0.0186 0.9961 0,9929 to 

0,9994 
0.886 0,820 to 

0,934 
Combined_index 6.69175 <0,0001 805.7315 57,6530 to 

11260,5234 
P =
0,6060 

0.886 0,819 to 
0,934 

Consolidated_Volume_Tot 0.0067809 0.007 1.0068 1,0019 to 
1,0118 

Constant − 3.24624 <0,0001 

Consolidated/ 
AeratedVolume_Tot 

− 3.06428 0.1483 0.0467 0,0007 to 
2,9745 

Glycemia 0.0057383 0.0707 1.0058 0,9995 to 
1,0120 

Biological drugs − 1.79185 0.0315 0.1667 0,0325 to 
0,8535 

Active Cancer 1.56007 0.109 4.7592 0,7064 to 
32,0645 

Constant − 0.4444 0.7475    
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manually delineating “normal” lungs for patients with thoracic cancer is 
assumed to be very small, due to the good visibility of lungs; recently, an 
acceptably low inter-observer variability for lung delineation was also 
reported for COVID-19 patients with pneumonia, with an average Dice 
index equal to 0.79 [35]. This suggests that the accuracy of our manual- 
based segmentation approach should be expected to be sufficiently 
robust. 

Instead, in order to overcome the problem of the long time necessary 
for manual delineation, an atlas based on the available manually 
segmented lungs is actually under development and validation; pre
liminary results promise to drastically reduce the time for segmentation 
in the future. Another limitation concerns the still limited number of 

patients, not yet able to depict the whole picture. 
In conclusion, we demonstrated that few CT-based quantitative 

features extracted with an operator-independent approach based on 
lung densitometry of COVID-19 patients can be combined to build a 
model with moderately high discrimination in classifying patients based 
on their risk of death. The model can be significantly improved when 
combining them with few clinical parameters such as random glycemia 
at hospital admission, use of biological drugs and presence of active 
cancer. 

Although mortality rate is hopefully expected to decrease also in 
patients with compromised lungs (i.e.: having a predicted high risk of 
mortality) during the next waves, the prediction of the risk of death from 

Fig. 2. ROC curves of the predictive indexes of the three models and their comparison in the training and validation group.  

Table 4 
ROC analysis results on the Training group (values of sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) refer to the best cut- 
off value assessed by the maximization of the Youden index).  

Variable AUC 95% CL Significance level P Youden index J Associated criterion Sensitivity Specificity PPV NPV 

Clinical index  0.804 0.727 to 0.866  <0.0001  0.519  >0.179 72.73  79.13  40.00  93.80 
CT index  0.802 0.730 to 0.862  <0.0001  0.570  >0.106 100  57.03  31.2  100.00 
Combined index  0.886 0.819 to 0.934  <0.0001  0.629  >0.153 85.71  77.19  40.90  96.70  
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Fig. 3. Calibration plots of the predictive indexes in the training and validation group.  

Fig. 2. (continued). 
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the first wave should remain as a clinically relevant, objective score for 
predicting illness severity in the future. External validations on other 
cohorts are warranted. 

Of note, the Matlab scripts to extract the three lung components from 
the HU histogram and an excel form to calculate the risk of mortality are 
available upon request to the authors. 
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