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In genetic association analysis, several relevant phenotypes or multivariate traits with different types of components are usually
collected to study complex or multifactorial diseases. Over the past few years, jointly testing for association between multivariate
traits and multiple genetic variants has become more popular because it can increase statistical power to identify causal genes in
pedigree- or population-based studies. However, most of the existing methods mainly focus on testing genetic variants
associated with multiple continuous phenotypes. In this investigation, we develop a framework for identifying the pleiotropic
effects of genetic variants on multivariate traits by using collapsing and kernel methods with pedigree- or population-structured
data. The proposed framework is applicable to the burden test, the kernel test, and the omnibus test for autosomes and the X
chromosome. The proposed multivariate trait association methods can accommodate continuous phenotypes or binary
phenotypes and further can adjust for covariates. Simulation studies show that the performance of our methods is satisfactory
with respect to the empirical type I error rates and power rates in comparison with the existing methods.

1. Introduction

Genome-wide association studies (GWAS) intend to find
genetic variants such as single nucleotide polymorphisms
(SNPs) associated with common traits or with complex diseases
[1, 2]. Association studies, where the correlation relationship
between a genetic variant and a trait is evaluated, are helpful
for mapping genes influencing complex diseases [3]. In the
study of complex diseases, data on several correlated pheno-
types or a multivariate phenotype with several components
are often collected to get a better understanding of the disease
[1, 3, 4]. Multivariate correlated traits are influenced through
multiple variants simultaneously. Therefore, by a suitable joint
or multivariate analysis framework of multivariate traits, we
can not only gain more statistical power to identify pleiotropic
effects of genetic variants on multivariate traits [3, 5–12] but
also can further understand the genetic architecture of the dis-
ease of interest [5, 13]. Thus, recently, the joint analysis of mul-
tivariate traits has become popular because it can increase
statistical power over analyzing only one trait at a time [1, 4].

Several statistical methods have been developed to iden-
tify the association between multivariate traits and a genetic
variant [1, 5]. Current multivariate methods can be classified
into three groups [1, 2, 5]: regression methods [14–16], vari-
able reduction methods [11, 13, 17, 18], and combining anal-
ysis [9, 19–23]. However, many of the existing methods for
multivariate association analysis cannot be straightaway
extended to rare variant analyses, due to their enormous
numbers causing the problems of multiple comparison or
multiple testing and their low minor allele frequencies [2, 5,
24]. Moreover, sparsity of data could lead to problems on
estimating regression parameters and fitting regression
models [2]. Hence, it is necessary for proposing statistical
methods for identifying the association between multivariate
traits and multiple genetic variants (common and/or rare
variants) [5]. In recent years, various statistical techniques
have been proposed for this purpose in GWAS [8, 17, 25–
27]. Furthermore, several approaches have been extendedly
developed for the investigation of rare variants associated
with multivariate traits [2, 28–38].
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Although these new developments keep many benefits,
existing methods have some potential limitations [39]. Most
current methods are constructed under some specific
assumptions about the effects of genetic variants onmultivar-
iate traits [39]. These current approaches suffer a severe loss
in power once the model assumptions are violated [26, 39].

In this investigation, we develop the statistical methods
for identifying pleiotropic effects of genetic variants on
multivariate traits using collapsing and kernel methods with
pedigree- or population-structured data. The proposed mul-
tivariate trait association method is able to handle binary
phenotypes or continuous phenotypes and further can adjust
for covariates. Moreover, the proposed multivariate trait
association method not only can leverage the dependence
on the phenotypes but also can account for the sample
relatedness in the pedigree-based or population-based struc-
tured data.

The rest of the article is organized as follows. In the mate-
rials and methods section, we construct the multivariate
effect model using the joint GEE model formulation (JGEE)
[40]. We apply the JGEE to pedigree- or population-
structured data and introduce a retrospective framework for
analyzing multivariate traits in genetic association studies.
The proposed framework is applicable to the burden test,
the kernel test, and the omnibus test for autosomes and the
X chromosome. In the simulation studies, we examine the
finite sample size performance of the proposed multivariate
association methods and evaluate the comparison results
with the existing method, Multi-SKAT [39]. Concluding
remarks and future possibilities for continuity are given in
the conclusion section and the limitation section.

2. Materials and Methods

2.1. Notations. To describe the proposed multivariate trait
association method based on the pedigree- or population-
based structured data, we suppose that there are N indepen-
dent pedigrees and each pedigree has ni subjects. We assume
that the ni subjects have been sequenced in a genetic region of
interest (e.g., a gene) that contains p variants. Let yik =
ðyi1k, yi2k,⋯,yinikÞ

T be the ni × 1 phenotype vector for the k
th phenotype of the ith pedigree. Let yi = ðyi1, yi2,⋯,yiKÞ be
the ðni × KÞ × 1 response vector for the K phenotypes that
we are interested in. Let xim = ðxi1m, xi2m,⋯,xinimÞ

T be the ni
× 1 vector for the mth covariate of the ith pedigree. Let xi =
ðxi0, xi1,⋯,xiqÞ be the ni × ðq + 1Þ covariate matrix for the
ðq + 1Þ nongenetic covariates that we want to adjust for. Let
αk = ðα0k, α1k,⋯,αqkÞT be the ðq + 1Þ × 1 vector of regression
coefficients of the ðq + 1Þ nongenetic covariates with the
element αmk being the effect of the mth covariate on the kth

trait. Let gi = ðgi1, gi2,⋯,gipÞ be the ni × p genetic matrix for

p genetic variants in a target region of interest where gil =
ðgi1l, gi2l,⋯,gini lÞ

T is the ni × 1 vector for a genetic variant
l (gijl = 0, 1, or 2 for 0, 1, or 2 copies of the minor allele,

respectively). Let βk = ðβ1k, β2k,⋯,βpkÞT be the p × 1 vector
of regression coefficients of the p genetic variants with the

element βlk being the effect of the lth genetic variant on the
kth trait.

2.2. Multitrait Regression-Based Tests for Pedigree Data. We
let Xi = IK ⊗ xi be the ðni × KÞ × ððq + 1Þ × KÞ covariate
matrix and Gi = IK ⊗ gi be the ðni × KÞ × ðp × KÞ genotype
matrix for the ith pedigree where IK is an identity matrix of
dimension K × K and ⊗ stands for the Kronecker product.
According to the generalized linear model [41], we assume
that the marginal density of yijk is f ðyijkÞ = exp ½fyijkθijk − a
ðθijkÞ + bðyijkÞg/ϕ� with two moments, μijk = EðyijkÞ = ∂að
θijkÞ/∂θijk and VarðyijkÞ = ð∂μijk/∂θijkÞϕ, where ϕ is a scale

parameter. Let θi = ðθTi1, θTi2,⋯,θTiKÞ
T
be the ðni × KÞ × 1 vec-

tor with the components θik = ðθi1k, θi2k,⋯,θinikÞ
T , k = 1, 2,

⋯, K and ηi = ðηTi1, ηTi2,⋯,ηTiKÞT be the ðni × KÞ × 1 vector
with the components ηik = ðηi1k, ηi2k,⋯,ηinikÞ

T = xiαk + giβk,
k = 1, 2,⋯, K for the kth trait of the ith pedigree.

Based on the joint GEE model formulation [40], we con-
struct the multivariate linear model for describing the associ-
ation relationship between K correlated traits and genetic
variants, which is given as follows:

μi = g ηið Þ and ηi =Xiα +Giβ, ð1Þ

where g−1ð•Þ is the inverse function of gð•Þ and is a

response-specific link function [40], μi = ðμTi1, μTi2,⋯,μTiKÞT is
the ðni × KÞ × 1 vector of the expected mean of the multivari-

ate traits yi = ðyTi1, yTi2,⋯,yTiKÞT , α = ðαT1 , αT2 ,⋯,αTKÞT is the ððq
+ 1Þ × KÞ × 1 vector of regression coefficients of the ðq + 1Þ
nongenetic covariates for the K correlated traits, and β =
ðβT1 , βT2 ,⋯,βTKÞ

T
is the ðp × KÞ × 1 vector of regression coeffi-

cients of the p genetic variants for the K correlated traits.
Let Rni

ðφÞ and RKðγÞ be the ni × ni within-in cluster cor-
relation matrix and the K × K multivariate-response cluster
correlation matrix, which depend on a vector of parameters
φ and γ, respectively. The ðni × KÞ × ðni × KÞ working (or
approximate) covariance matrix of yi is given by [40].

Vi =A1/2
i RK γð Þ ⊗ Rni

φð Þ� �
A1/2
i ϕ, ð2Þ

where Ai = diag ðAi1,Ai2,⋯,AiKÞ is a ðni × KÞ × ðni × KÞ
block diagonal matrix with the components Aik = diag ð∂
μi1k/∂θi1k, ∂μi2k/∂θi2k,⋯, ∂μinik/∂θinikÞ, k = 1, 2,⋯, K being
the ni × ni diagonal matrices. According to equation (1),
under the null hypothesis of no association between geno-
types and phenotypes, we propose the multivariate associa-
tion methods including the homogeneous kernel statistic
(HoK), the heterogeneous kernel statistic (HeK), and burden
test (BT). Moreover, we propose the homogeneous omnibus
test (HoO) and heterogeneous omnibus test (HeO) by com-
bining the HoK with the BT and by combining the HeK with
the BT, respectively.

2.2.1. Kernel Statistic. We let H be a p × p correlation matrix
of genotype scores with element Hll ′ for markers l and l′. Let
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ml denote the minor allele frequency (MAF) of the lth

marker. Let Si = V̂
−1
i ðyi − bμ iÞ = ðSTi1, STi2,⋯,STiKÞT be the

ððni × KÞ × 1Þ vector of the standard residuals with compo-

nents Sik = ðSi1k, Si2k,⋯,SinikÞ
T , k = 1, 2,⋯, K , where V̂−1

i is

the inverse matrix of V̂i. Here, V̂i and bμ i are the estimates
of V i and μi. Here and henceforth, all estimates are calculated
based on the null hypothesis of the genetic effects β equal to
zero. All unknown parameters and the working within-in
andmultivariate-response cluster correlationmatrices are esti-
mated by the R package JGEE [42].

(1) Homogeneous Kernel Statistic. We suppose that wl is a
marker-specific weight of the lth variant and assume that
the genetic effects on the K different phenotypes are homoge-
neous (i.e., β1 = β2 =⋯ = βKÞ. Based on the JGEE model
with the genotype as random variables considered, we pro-
pose the homogeneous quadratic (kernel) association statis-
tic (HoK) as follows:

κHo = 〠
p

l=1
wl 〠

K

k=1
〠
N

i=1
gTilΔ∧ikA∧ikSik

" #2
= 〠

p

l=1
wl 〠

K

k=1
Zlk

" #2

= 〠
p

l=1
wlZl½ �2 = 〠

p

l=1

~Z
2
l ,

ð3Þ

where ~Zl =wlZl, Zl =∑K
k=1Zlk, Zlk =∑N

i=1gTil bΔ ikÂikSik , Âik is

the estimate of Aik, and bΔ ik is the estimate of Δik = diag ð∂
θi1k/∂ηi1k, ∂θi2k/∂ηi2k,⋯,∂θinik/∂ηinikÞ that is a ni × ni diago-
nal matrix for the kth phenotype of the ith pedigree. The null
distribution of κHo asymptotically follows a mixture chi-
square distribution ∑p

l=1λlχ
2
l,1, where χ2

l,1s are independent
random variables following a chi-square distribution with
one degree of freedom and ðλ1, λ2,⋯, λpÞ are nonzero eigen-
values of the null covariate matrix of Cov0ð~Zl, ~Zl ′Þ = 2CHo

wlwl ′Hll ′
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mlð1 −mlÞml ′ð1 −ml′Þ

p
where CHo =∑N

i=1½ð∑K
k=1

STikÂik
bΔ ikÞΩið∑K

k=1
bΔ ikÂikSikÞ� and Ωi is a ni × ni matrix of

genetic correlations for all ni individuals in the ith pedigree,
which has the same definition given by Schaid et al. [43]
and can be calculated by the R package kinship2 [44]. When
the genetic relationship between subjects j and j′ in the ith

pedigree is unknown, the elements of the genetic correlation
Ωi can be estimated through genomic data [43, 45], and its
estimate is given by [43]

bΩ i =
1
p
〠
p

l=1

gijl − 2ml

� �
gij′ l − 2ml

� �
2ml 1 −mlð Þ : ð4Þ

(2) Heterogeneous Kernel Statistic. We assume that the
genetic effects on the K different phenotypes are heteroge-

neous (i.e., β1 ≠ β2 ≠⋯≠ βKÞ. The heterogeneous quadratic
(kernel) association statistic (HeK) is defined by

κHe = 〠
p

l=1
〠
K

k=1
wlk 〠

N

i=1
gTilΔ∧ikA∧ikSik

" #2
= 〠

p

l=1
〠
K

k=1
wlkZlk½ �2

= 〠
p

l=1
〠
K

k=1

~Z
2
lk,

ð5Þ

where ~Zlk =wlkZlk and wlk is a marker-specific weight of the
lth variant of the kth trait. The null distribution of κHe
asymptotically follows a mixture chi-square distribution

∑ðp×KÞ
l=1 λlχ

2
l,1, where χ2

l,1s are independent random variables
following a chi-square distribution with one degree of free-
dom, and ðλ1, λ2,⋯, λðp×KÞÞ are nonzero eigenvalues of

the null covariate matrix of Cov0ð~Zlk, ~Zl ′k′Þ = 2CHewlk

wl ′k′Hll ′
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mlð1 −mlÞml ′ð1 −ml ′Þ

p
, where CHe =∑N

i=1½STikÂikbΔ ikΩi
bΔ ik′Âik′Sik′ �.

Theoretical p values of κHo and κHe are approximately
calculated by Kuonen’s saddlepoint method [46] and
obtained by the R package pchisqsum. A theory for the deri-
vation of the HoK test ðκHoÞ and the HeK test ðκHeÞ is shown
in Appendix S1.

2.2.2. Burden Test. We let ~gTi =∑p
l=1wlgTil be a weighted aver-

age of genotype scores for the ith pedigree. On the basis of the
HoK test ðκHoÞ and the HeK test ðκHeÞ in equations (3) and
(5) with the same marker-specific weight of the lth variant
for each trait k (i.e., wl =wlk, k = 1, 2,⋯, K), we propose the
burden test (BT) as follows:

BT =
∑N

i=1 ∑K
k=1S

T
ikA∧ikΔ∧ik

� �
~gi

h i2
∑N

i=1 ∑K
k=1S

T
ikÂik

bΔ ik

� �
Cov0 ~gið Þ ∑K

k=1
bΔ ikÂikSik

� �h i ,
ð6Þ

where the null covariance matrix of ~gi is given by

Cov0 ~gið Þ = Cov0 〠
p

l=1
wlgil

 !
= 〠

p

l=1
w2

l Cov0 gil, gilð Þ

+ 2〠
p

l=1
〠
p

l ′=l+1
wlwl ′Cov0 gil, gil ′ð Þ

=Ωi 〠
p

l=1
〠
p

l ′=1
2wlwl ′Hll ′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml 1 −mlð Þml ′ 1 −ml ′ð Þ

q
:

ð7Þ
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Then,

BT =
∑N

i=1 ∑K
k=1S

T
ikA∧ikΔ∧ik

� �
~gi

h i2
2∑p

l=1∑
p

l ′=1wlwl ′Hll ′
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml 1 −mlð Þml ′ 1 −ml ′ð Þp

CHo
:

ð8Þ

The null distribution of BT asymptotically follows a chi-
square distribution with one degree of freedom.

2.2.3. Omnibus Test. Let pHo, pHe, and pBT denote the p values
obtained by the HoK, HeK, and BT statistics. Based on the
idea of the p value combination method through the Cauchy
distribution [47–49], we propose the homogeneous omnibus
test (HoO) and heterogeneous omnibus test (HeO).

(1) Homogeneous Omnibus Test. Combining the pHo with the
pBT, we construct the homogeneous omnibus test (HoO) as
follows:

OHo = −
1
2

F−1
C pHoð Þ + F−1

C pBTð Þ� �
, ð9Þ

where F−1
C stands for the inverse cumulative distribution

function of the standard Cauchy distribution.

(2) Heterogeneous Omnibus Test. Combining the pHe with the
pBT, we construct the heterogeneous omnibus test (HeO) as
follows:

OHe = −
1
2

F−1
C pHeð Þ + F−1

C pBTð Þ� �
: ð10Þ

The null distributions of the OHo test and the OHe test
asymptotically follow a standard Cauchy distribution [47–
49]. The p values of the OHo test and the OHe test are calcu-
lated by the R package RNOmni [50].

The kernel statistic, the burden test, and the omnibus test
are also applicable to the X chromosome. Additional techni-
cal information for extensions to the X chromosome is
shown in Appendix S2.

3. Simulation Studies

We conduct the numerical simulation studies to assess the
finite sample performance of the proposed methods and eval-
uate the comparison results with two existing methods, the
minimum p value SKAT statistic (mPK), and the minimum
p value burden statistic (mPB) [39]. The two existing
methods are implemented by the R package Multi-SKAT
[39]. Based on the similar simulation set-up as those usually
considered from existing genetic association tests [39, 43, 51],
we investigate the effect of the proposed methods, HoK, HeK,
BT, HoO, and HeO, for identifying genetic variants that are
associated with multiple traits. We simultaneously generate
10,000 European-like (EUR) and 10,000 admixed African
American-like (AA) haplotypes of length 200 kb using a cal-
ibrated human demographic model through the COSI soft-

ware [51, 52]. A 3 kb region is randomly selected in our
numerical simulations. We generate a total of 10,000 data-
bases for each simulation scenario in our studies.

3.1. Type I Error Rate and Power Simulations. In the hetero-
geneous population with nuclear family data considered,
continuous and binary phenotypes for trait k for individual
j in the ith family are generated from the multivariate linear
model in equation (1) with K = 2 and ni = 3. More precisely,
continuous and binary phenotypes are generated by the fol-
lowing linear and logit models, respectively:

yi =Xiα +Giβ + εi, ð11Þ

logit P yi = 1ð Þð Þ =Xiα +Giβ, ð12Þ

where yi = ðyTi1, yTi2ÞT , Xi = I2 ⊗ xi, Gi = I2 ⊗ gi, α = ðαT1 , αT2 ÞT ,
β = ðβT1 , βT2 Þ

T
, and εi = ðεi11, εi21, εi31, εi12, εi22, εi32ÞT . Here,

the elements xi0 = ðxi10, xi20, xi30ÞT of the covariance matrix
xi = ðxi0, xi1, xi2Þ is a 3 × 1 vector of all ones. The elements
xi1 = ðxi11, xi21, xi31ÞT of xi are independently generated with
an equal probability of being 0 or 1. The elements xi2 =
ðxi12, xi22, xi32ÞT of xi are generated from a multivariate nor-
mal distribution with a mean of 0.5 and a covariance matrix
with diagonal entries of 1 and all off-diagonal entries of 0.1.
The regression coefficients of the covariate matrix xi for the
kth correlated trait are given by αk = ðα0k, α1k, α2kÞT =
ð0:01, 0:1, 0:1ÞT and αk = ðα0k, α1k, α2kÞT = ð−1:4, 0:1, 0:1ÞT ,
respectively, for continuous traits and binary traits for k = 1, 2.

For continuous traits, the error terms εi =
ðεi11, εi21, εi31, εi12, εi22, εi32ÞT in equation (11) follow a multi-
variate normal distribution having a mean of zero, a within-
in cluster correlation matrix (i.e., Corðεijk, εij′kÞ) with diago-
nal entries of 1 and all off-diagonal entries of 0.2 and a
subject-across-response correlation matrix (i.e., Corðεijk,
εij′k′Þ) with diagonal entries of 0.3 and all off-diagonal entries
of 0.1. Similarly, binary traits yi in equation (12) are gener-
ated with the same within-in cluster correlation matrix (i.e.,
Corðyijk, yij′kÞ) and the same subject-across-response corre-
lation matrix (i.e., Corðyijk, yij′k′Þ) as the continuous traits
yi in equation (11). These correlated phenotypes are gener-
ated by the R package BinNor [53].

For type I error simulations, the regression coefficients of

genetic variants, β = ðβT1 , βT2 Þ
T
, in equations (11) and (12) are

equal to zero under the null hypothesis. For power simula-
tions, under the alternative hypothesis, we simulate that
35% of low variants with theMAF < 0:03 are causal. For each
setting, either all causal SNPs have a positive effect, or 80% of
causal SNPs are positive, and 20% of causal SNPs are

negative. The regression coefficients of genetic variants, β =
ðβT1 , βT2 Þ

T
, are set by 0:095 × ∣log10ðmlÞ ∣ or 0:095 × log10ðmlÞ

corresponding to the risk or protective variant l, l = 1, 2,⋯, p
[51]. Under the assumption that the genetic effects on the
two different phenotypes are heterogeneous (i.e., β1 ≠ β2Þ,
the genetic effects β1 for the first traits yi1 are set as described
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above, while the genetic effects β2 for the second traits yi2 are
set by zero. On the other hand, under the assumption that the
genetic effects on the two different phenotypes are homoge-
neous (i.e., β1 = β2Þ, the genetic effects β1 and β2 for the first
and second traits have the same settings as described above.

We simulate 1,400 nuclear families with 800 nuclear
families from the European samples and 600 nuclear families
from African-American samples. The marker-specific weight
wl for variant l is considered as the beta density function
wl = Betaðml, λ1, λ2Þ with shape parameters λ1 > 0 and λ2 > 0
[51]. To study the effect of the marker-specific weight wl of
variant l on the phenotypes, we consider the unweighted
marker-specific weight with wl = Betaðml, 1, 1Þ = 1 and the
weighted marker-specific weight with wl = Betaðml, 1, 25Þ
[51]. The empirical type I error rates based on fifty thousand
replicates and the empirical power rates based on two thou-
sand replicates are reported for all simulation results. The
“exchangeable” and “unstructured” structures are considered
for the working within-cluster and multivariate-response cor-
relation matrices for the proposed methods, HoK, HeK, and
BT, respectively.

4. Results

4.1. Empirical Type I Error Rates. Table 1 reports the results
of a simulation comparison on empirical type I error rates
when the phenotypes are considered to be continuous.
Table 1 displays that the proposed methods, HoK, HoO,
HeK, HeO, and BT, well control the empirical type I error
rates regardless of the weight of the marker-specific weight.
Similarly, the existing methods, mPK and mPB, have good
performance on controlling the empirical type I error rates.
Our simulation results show that the seven competing
methods, HoK, HoO, HeK, HeO, BT, mPK, and mPB, rea-
sonably control the empirical type I error rates for autosome
analyses with continuous traits. The seven competing
approaches display similar performance in terms of the
empirical type I error rates for the X chromosome analyses
with continuous traits (Appendix S3: Table S1).

Table 2 reports the empirical type I error rates based on
the proposed methods, HoK, HeK, BT, HoO, and HeO, for
the binary data. The two existing methods, mPK and mPB,
aren’t included for comparison. This reason is that imple-
menting the two existing methods, mPK and mPB, via the
R package Multi-SKAT [39], the MPMM (multiple pheno-
type mixed model) function in the R package PHENIX
[54–56] is a necessary tool for this process. However, the
MPMM function is suitable for the continuous phenotypes
[56] or is suitable for the binary phenotypes with the condi-
tion that the number of cases is sufficiently large [39]. In
other words, in some sense, the two existing methods, mPK
and mPB, are limited to continuous phenotypes [39].

Table 2 shows that the proposed methods appropriately
control the type I error rates when the marker-specific weight
is considered for wl = Betaðml, 1, 1Þ or wl = Betaðml, 1, 25Þ
for variant l for binary traits. On the other hand, the empiri-
cal type I error rates of the proposed methods for X chromo-
some analyses with binary traits are depicted in Table S2 in

Appendix S3. These empirical type I error rates show
similar results as that for autosome analyses.

In summary, our simulation results show that the pro-
posed multivariate trait association methods, HoK, HoO,
HeK, HeO, and BT, have reasonable control of type I error
rates for continuous traits or binary traits whether the
marker is X chromosomal or autosomal. On the other hand,
the existing methods, mPK and mPB, yield well-controlled
type I error rates for the autosome analyses or the X chromo-
some analyses with continuous traits (Table 1 or Table S1),
regardless of the weight of the marker-specific weight.

4.2. Empirical Power. Figure 1 exhibits the comparison
results of the empirical power rates for the autosome analyses
with continuous traits, when the working within-cluster and
multivariate-response correlation matrices of the proposed
methods, HoK, HeK, and BT, are considered to be exchange-
able. As expected, the empirical power rates of the seven
competing methods with a weighted marker-specific weight
of wl = Betaðml, 1, 25Þ are higher than that with an
unweighted marker-specific weight of wl = Betaðml, 1, 1Þ = 1
. The heterogeneous kernel statistic (HeK) has slightly greater
empirical power rates than other methods, when the genetic
effects on the different phenotypes are heterogeneous (i.e.,
β1 ≠ β2), and causal SNPs have positive effects or negative
effects on phenotypes. On the other hand, the existing
method, mPB, has bigger empirical power rates, when the
genetic effects on the different phenotypes are heterogeneous
(i.e., β1 ≠ β2), and all causal SNPs have a positive association
on phenotypes. Moreover, the empirical power rates of the
homogeneous omnibus test (HoO) are larger than that of
the other six competing methods, when the genetic effects
on the different phenotypes are homogeneous (i.e., β1 = β2).
Evidently, the seven competing methods have their respec-
tive advantages in identifying the association between genetic
effects and multiple continuous traits for autosome analyses.

Similar empirical power rates are obtained from the
working within-cluster and multivariate-response correla-
tion matrices of the proposed methods, HoK, HeK, and BT,
considered to be unstructured. Hence, these empirical power
rates are not shown in order to save space. On the other hand,
the seven competing approaches display a similar perfor-
mance in testing for the X chromosome analyses with contin-
uous traits (Appendix S3: Figure S1).

Figure 2 exhibits the comparison results of empirical
power rates for the autosome analyses with binary traits
when the working within-cluster and multivariate-response
correlation matrices of the proposed methods, HoK, HeK,
and BT, are considered to be exchangeable. As a similar rea-
son for investigating the empirical type I error rates with
binary traits, the two existing methods, mPK and mPB, aren’t
included for power comparison.

Figure 2 shows that the heterogeneous kernel statistic
(HeK) and the heterogeneous omnibus test (HeO) outper-
form over other methods in terms of the empirical power
rates, when the genetic effects on the different phenotypes
are heterogeneous (i.e., β1 ≠ β2). On the other hand, the
empirical power rates of the homogeneous omnibus test
(HoO) are bigger than that of the other competing methods,
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when the genetic effects on the different phenotypes are
homogeneous (i.e., β1 = β2). As expected, in general, the het-
erogeneous kernel statistic (HeK) is more powerful than the
homogeneous kernel statistic (HoK), when the genetic effects

on the different phenotypes are heterogeneous (i.e., β1 ≠ β2).
On the other hand, the homogeneous kernel statistic (HoK)
is more powerful than the heterogeneous kernel statistic
(HeK), when the genetic effects on the different phenotypes

Table 1: Empirical type I errors of the seven competing methods with continuous traits.

Marker-specific weight wlð Þ Nominal
level

Working
correlation

Method
HoK3 HoO HeK HeO BT mPK4 mPB

Unweighted marker-specific weight1

0.05 U/U2 0.04876 0.04960 0.05036 0.05228 0.04914
0.04352 0.04692

E/E 0.04866 0.04994 0.05016 0.05216 0.04914

0.01 U/U 0.00918 0.01012 0.01016 0.01030 0.01034
0.00854 0.01036

E/E 0.00924 0.00994 0.01008 0.01022 0.01028

0.001 U/U 0.00078 0.00082 0.00086 0.00070 0.00084
0.00084 0.00088

E/E 0.00080 0.00078 0.00084 0.00070 0.00082

0.0001 U/U 0.00008 0.00002 0.00006 0.00008 0.00008
0.00006 0.00014

E/E 0.00006 0.00002 0.00006 0.00008 0.00008

Weighted marker-specific weight

0.05 U/U 0.05030 0.04998 0.05158 0.05134 0.04696
0.04604 0.04536

E/E 0.05054 0.05010 0.05176 0.05122 0.04714

0.01 U/U 0.00992 0.00942 0.01080 0.00972 0.00888
0.00978 0.01008

E/E 0.00992 0.00944 0.01088 0.00978 0.00886

0.001 U/U 0.00078 0.00086 0.00126 0.00098 0.00082
0.00124 0.00134

E/E 0.00076 0.00088 0.00122 0.00102 0.00080

0.0001 U/U 0.00006 0.00008 0.00006 0.00006 0.00010
0.00002 0.00010

E/E 0.00006 0.00008 0.00008 0.00006 0.00010
1The unweighted marker-specific weight is given by wl = Betaðml , 1, 1Þ = 1; the weighted marker-specific weight is given by wl = Betaðml , 1, 25Þ. 2U/U
represents the structures of the working within-cluster and multivariate-response correlation matrices considered by the unstructured structures; E/E
represents the structures of the working within-cluster and multivariate-response correlation matrices considered by the exchangeable structures. 3HoK,
HoO, HeK, HeO, and BT are our proposed methods. 4mPK and mPB are executed by the R package Multi-SKAT [39].

Table 2: Empirical type I errors of the five competing methods with binary traits.

Marker-specific weight wlð Þ Nominal level Working correlation
Method

HoK3 HoO HeK HeO BT

Unweighted marker-specific weight1

0.05 U/U2 0.04944 0.05154 0.05086 0.05280 0.04952

E/E 0.04930 0.05144 0.05068 0.05318 0.04946

0.01 U/U 0.00974 0.00994 0.00982 0.01026 0.01000

E/E 0.00974 0.00998 0.00984 0.01028 0.00998

0.001 U/U 0.00068 0.00084 0.00100 0.00098 0.00106

E/E 0.00066 0.00084 0.00102 0.00094 0.00104

0.0001 U/U 0.00008 0.00002 0.00012 0.00010 0.00000

E/E 0.00008 0.00002 0.00012 0.00010 0.00002

Weighted marker-specific weight

0.05 U/U 0.05170 0.04900 0.05256 0.04922 0.04576

E/E 0.05168 0.04920 0.05232 0.04930 0.04556

0.01 U/U 0.01028 0.00976 0.00996 0.00972 0.00886

E/E 0.01024 0.00982 0.00986 0.00976 0.00884

0.001 U/U 0.00110 0.00080 0.00096 0.00090 0.00088

E/E 0.00112 0.00076 0.00096 0.00088 0.00090

0.0001 U/U 0.00004 0.00008 0.00010 0.00012 0.00006

E/E 0.00006 0.00008 0.00010 0.00012 0.00008
1The unweighted marker-specific weight is given by wl = Betaðml , 1, 1Þ = 1; the weighted marker-specific weight is given by wl = Betaðml , 1, 25Þ. 2U/U
represents the structures of the working within-cluster and multivariate-response correlation matrices considered by the unstructured structures; E/E
represents the structures of the working within-cluster and multivariate-response correlation matrices considered by the exchangeable structures. 3HoK,
HoO, HeK, HeO, and BT are our proposed methods.
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are homogeneous (i.e., β1 = β2). In a word, the proposed
methods, HoK, HoO, HeK, HeO, and BT, have their respec-
tive merits in examining the association between genetic
effects and multiple binary traits for autosome analyses.

Similarly, when the working within-cluster and
multivariate-response correlation matrices of the proposed
methods, HoK, HeK, and BT, are considered to be unstruc-
tured, the empirical power rates have similar results and thus
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Figure 1: Power comparisons of the seven competing methods with continuous traits for each scenario at the nominal level of 0.001. (a)
Unweighted marker-specific weight: wl = Betaðml , 1, 1Þ = 1. (b) Weighted marker-specific weight: wl = Betaðml , 1, 25Þ.
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Figure 2: Power comparisons of the five competing methods with binary traits for each scenario at the nominal level of 0.001. (a) Unweighted
marker-specific weight: wl = Betaðml , 1, 1Þ = 1. (b) Weighted marker-specific weight: wl = Betaðml , 1, 25Þ.
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they are omitted. On the other hand, the empirical power
rates of the proposed methods for X chromosome analyses
with binary traits are presented in Figure S2 in Appendix
S3. These empirical power rates show similar results as that
discussed in Figure 2.

In summary, the seven competing methods, HoK, HoO,
HeK, HeO, BT, mPK, and mPB, have their respective merits
in diagnosing whether genetic effects are associated with
multiple continuous traits for autosome analyses or the X
chromosome analyses. Similarly, the proposed methods,
HoK, HoO, HeK, HeO, and BT, have their respective advan-
tages in examining whether there are associations between
genetic effects and multiple binary traits for autosome analy-
ses or the X chromosome analyses.

To furthermore examine the performance of the pro-
posed methods, additional simulation studies for continuous
traits and binary traits are presented in Appendix S4 and
Appendix S5 with higher correlations of phenotypes and
higher dimensions of phenotypes considered, respectively.
In general, these competing methods based on higher corre-
lations of phenotypes or higher dimensions of phenotypes
can provide a bigger empirical power rate for the analysis
of continuous traits or binary traits. However, we note that
these competing methods based on higher correlations of
phenotypes or higher dimensions of phenotypes more easily
have empirical type I error rate inflation at a smaller nominal
level, especially for binary data analysis (Appendix S5:
Tables S5-S6 and Appendix S6: Table S7), in comparison with
these methods based on lower correlations of phenotypes or
lower dimensions of phenotypes. A detailed discussion of
these additional simulation results is given in Appendixes S4
and S5.

However, we note that the proposed methods have a high
computational cost, especially for binary data. Under our
simulation setting and framework, we carry out a single sim-
ulated data set by using a computer based on one CPU core at
2.1GHz. The average computational times of the homoge-
neous and heterogeneous tests with a weighted marker-
specific weight wl = Betaðml, 1, 25Þ under the alternative
hypothesis for continuous data are 0.83 and 0.91 minutes,
respectively, while that for binary data are 4.77 and 4.80
minutes, respectively. Therefore, in the current version, such
a framework algorithm implementation is unsatisfactory for
analyzing a large-scale high-dimensional data set in practice.

5. Conclusion

In this investigation, we develop a retrospective framework
for identifying the pleiotropic effects of genetic variants on
multivariate traits by using collapsing and kernel methods
with pedigree- or population-structured data. The proposed
framework, corresponding to the burden test, the kernel test,
and the omnibus test, provides a sound basis for genetic
association analyses for autosomes and the X chromosome.
The proposed multivariate trait association methods based
on the JGEE model can flexibly accommodate continuous
phenotypes or binary phenotypes and further can adjust
for covariates.

One critical advantage of the proposed methods is that
the homogeneous kernel statistic (HoK), the heterogeneous
kernel statistic (HeK), and the burden test (BT) retain all of
the benefits of the retrospective tests proposed by Schaid
et al. [43] who treated the genotype data as random variables
by conditioning the phenotypes as constants. On the other
hand, the homogeneous omnibus test (HoO) and the hetero-
geneous kernel statistic (HeO) keep the advantages of the
Cauchy combination tests proposed by Liu and Xie [48]
who showed that the Cauchy combination tests are robust
to model misspecification and robustly protect the type I
error rates [49].

Another important benefit of the proposed method is that
the HoK test, the HeK test, and the BT test keep the benefits of
the JGEE model that validly account for complex correlations
between subjects within the cluster (within-cluster correla-
tions) and between different phenotypes from the same sub-
jects (multivariate-response correlations). Moreover, the
proposed test statistics, HoK, HeK, and BT, based on the JGEE
model can efficaciously account for covariate adjustment
whether the phenotypes are continuous or binary.

Our simulation studies show that an unweighted marker-
specific weight wl = Betaðml, 1, 1Þ = 1 and an exchangeable
structure of the working within-cluster and multivariate-
response correlations are recommended for the practical data
analysis if the data cannot sufficiently provide valid informa-
tion for estimating the structures of the working within-
cluster and multivariate-response correlations before the
start of the data analysis. Moreover, the homogeneous kernel
statistic (HoK) is more robust than the heterogeneous statis-
tic (HeK) in controlling the empirical type I errors, because
the null distribution of the HeK statistic asymptotically fol-
lows a mixture chi-square distribution with a larger degree
of freedom, in comparison with the null distribution of the
HoK statistic. However, the HeK statistic is more powerful
than the HoK statistic when the genetic effects on the differ-
ent phenotypes are heterogeneous.

On the other hand, our simulation results show that for the
autosome analyses or the X chromosome analyses with contin-
uous traits, the seven competing methods, HoK, HoO, HeK,
HeO, BT, mPK, and mPB, show good performance with well-
controlled type I errors, while the seven competing methods
have their respective merits for identifying the association
between the genetic effects and multiple continuous traits. In
addition, our simulation results show that for the autosome
analyses or the X chromosome analyses with binary traits, the
proposedmethods, HoK, HoO, HeK, HeO, and BT, can control
empirical type I errors with lower correlations of phenotypes or
with lower dimensions of phenotypes (Table 2 and Table S2),
while these proposed methods have their respective
advantages for identifying the genetic variants associated with
multiple binary traits. However, we observe that the proposed
methods, HoK, HoO, HeK, HeO, and BT, with higher
correlations of phenotypes or with higher dimensions of
phenotypes, more easily have the infection of empirical type I
errors at a smaller nominal level (Appendix S5: Tables S5-S6
and Appendix S6: Table S7), although these method under
such situations have higher empirical power rates.
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6. Limitation

The proposed multivariate trait association methods have their
limitations. First, these proposed methods cannot simulta-
neously include the continuous traits and binary traits in anal-
ysis. Thus, future studies are needed to extend the idea of the
proposed multivariate trait association methods for simulta-
neously considering continuous traits and binary traits in anal-
ysis. Second, the multivariate trait association methods, based
on higher correlations of phenotypes or higher dimensions of
phenotypes, easily suffer from the problem of the inflated type
I errors, especially when the binary traits are considered
(Appendix S5: Tables S5-S6 and Appendix S6: Table S7).
Although the JGEE model provides an efficient algorithm for
estimating the structure of the working within-cluster and
multivariate-response correlations, a large-scale pedigree
study always suffers from a more complex and high-
dimensional structure of the within-cluster and multivariate-
response correlations in pedigree database analysis. Hence, in
the future, a more effective algorithm for estimating the
complicated and high-dimensional (or higher correlational)
structure of the working within-cluster and multivariate-
response correlations is necessary to be proposed, especially
when the analysis focuses on the binary traits. Third, in
comparison with the null distribution of the homogeneous
kernel statistic, the null distribution of the heterogeneous
kernel statistic follows a larger degree of freedom test, which
easily causes such a heterogeneous test to suffer from the
problem of the type I error inflation. Therefore, overcoming
the problem of the type I error inflation from the
heterogeneous test is an essential part of the future work.
Fourth, the proposed methods, which have a high
computational cost especially for binary data, are inappropriate
for analyzing large-scale high-dimensional data in practice.
Thus, a more effective algorithm for reducing computational
cost is needed to be proposed in further research. Moreover,
the software of the proposed methods is computationally
inconvenient and particularly inadequate for the mass GWAS
data in practice. Therefore, the software of the proposed
methods, which is convenient to be used, is a further work in
the future. Fifth, our current work focuses mainly on the low-
and common-frequency variants. Extension of the proposed
methods to the rare variants deserves further works.
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