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Abstract The thalamus is an essential relay station in the

cortical–subcortical connections. It is characterized by a

complex anatomical architecture composed of numerous

small nuclei, which mediate the involvement of the thala-

mus in a wide range of neurological functions. We present a

novel framework for segmenting the thalamic nuclei, which

explores the orientation distribution functions (ODFs) from

diffusion magnetic resonance images at 3 T. The differen-

tiation of the complex intra-thalamic microstructure is

improved by using the spherical harmonic (SH) represen-

tation of the ODFs, which provides full angular character-

ization of the diffusion process in each voxel. The clustering

was performed using the k-means algorithm initialized in a

data-driven manner. The method was tested on 35 healthy

volunteers and our results show a robust, reproducible and

accurate segmentation of the thalamus in seven nuclei

groups. Six of them closely matched the anatomy and were

labeled as anterior, ventral anterior, medio-dorsal, ventral

latero-ventral, ventral latero-dorsal and pulvinar, while the

seventh cluster included the centro-lateral and the latero-

posterior nuclei. Results were evaluated both qualitatively,

by comparing the segmented nuclei to the histological atlas

of Morel, and quantitatively, by measuring the clusters’

extent and the clusters’ spatial distribution across subjects

and hemispheres. We also showed the robustness of our

approach across different sequences and scanners, as well as

intra-subject reproducibility of the segmented clusters us-

ing additional two scan–rescan datasets. We also observed

an overlap between the path of the main long-connection

tracts passing through the thalamus and the spatial
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distribution of the nuclei identified with our clustering

algorithm. Our approach, based on SH representations of

the ODFs, outperforms the one based on angular differences

between the principle diffusion directions, which is con-

sidered so far as state-of-the-art method. Our findings show

an anatomically reliable segmentation of the main groups of

thalamic nuclei that could be of potential use in many

clinical applications.

Keywords Thalamic nuclei � Segmentation � Orientation

distribution function � Spherical harmonics

Introduction

The thalamus, which is involved in the regulation of sev-

eral sensorimotor and cognitive functions, acts as a relay

station between cortical and subcortical areas. Many neural

signals directed towards the cortex are routed through the

thalamus via long ascending fiber tracts, while short fibers

connect the thalamus to deep gray matter structures and

cerebellum. The thalamus has a complex architecture,

made of small cytoarchitectonically subdivided nuclei

(Sherman and Guillery 2002), which are connected to each

other by intra-thalamic fibers. These nuclei mediate the

thalamus’s involvement in a wide range of neurological

functions and, therefore, are of key importance in many

neurodevelopmental and neurodegenerative disorders.

The automatic segmentation of the thalamic nuclei

in vivo using magnetic resonance imaging (MRI) has been

limited by the difficulty of obtaining high-resolution images

with sufficient contrast and by the lack of appropriate MRI-

based features (Gringel et al. 2009; Tourdias et al. 2014).

The majority of the published studies for thalamic nuclei

segmentation are based on information derived from dif-

fusion-weighted MR imaging (DWI). These approaches use

local diffusion properties, such as the full diffusion tensor

(Duan et al. 2007; Jonasson et al. 2007; Rittner et al. 2010;

Wiegell et al. 2003) and principal diffusion directions

(Kumar et al. 2015; Mang et al. 2012; Ye et al. 2013; Ziyan

et al. 2006; Ziyan and Westin 2008), global diffusion

properties utilizing long-distance projections of each

nucleus to the cortex (Behrens et al. 2003; O’Muirc-

heartaigh et al. 2011), or a combination of both local and

global diffusion properties (Stough et al. 2014). These

approaches are of potential interest, but they present several

drawbacks. Some of them use data acquired with a rela-

tively low number of diffusion gradient directions (Jonas-

son et al. 2007; Kumar et al. 2015; Mang et al. 2012;

Wiegell et al. 2003), while others can only identify few

nuclei within the thalamus (Stough et al. 2014; Ye et al.

2013). Importantly, most methods require a prior knowl-

edge for the primer initialization and give an outcome that is

very sensitive to it (Behrens et al. 2003; O’Muircheartaigh

et al. 2011; Stough et al. 2014; Wiegell et al. 2003; Ye et al.

2013; Ziyan et al. 2006; Ziyan and Westin 2008). Overall,

robustness and consistency could not be properly evaluated

because most of these methods have been tested in only a

few subjects (Behrens et al. 2003; Duan et al. 2007; Rittner

et al. 2010; Wiegell et al. 2003; Ye et al. 2013; Ziyan et al.

2006; Ziyan and Westin 2008).

Tractography-based approaches (Behrens et al. 2003;

O’Muircheartaigh et al. 2011) represent an interesting

alternative to the aforementioned local-based ones. They

provide functionally reliable clusters (Johansen-Berg, et al.

2004), although these clusters do not necessarily corre-

spond to cytoarchitectonic delineation (Morel et al. 1997).

Moreover, they are of limited use if the subject has

abnormal white matter status or in the presence of large

focal brain lesions, like tumors or vascular lesions. In such

cases, fiber reconstruction algorithms can easily fail to

identify the connectivity patterns.

The primary objective of this work is to introduce a

novel segmentation framework for delineating the thalamic

nuclei. The originality of our method is the use of the

complete orientation distribution functions (ODFs) rather

than a summary statistics, using diffusion MR images at

3 T. The use of spherical harmonics (SH) for the ODFs

representation provides full angular characterization of the

diffusion process at each voxel.

The framework was tested on 35 healthy volunteers. The

diffusion data were acquired using a diffusion-weighted

imaging (DWI) sequence widely used in a clinical setting,

with the aim of potentially providing a useful tool in

everyday clinical practice.

The evaluation of the results was performed both quali-

tatively, by an experienced neuroradiologist who compared

them to a histological atlas, and quantitatively, by mea-

suring clusters’ extent and clusters’ spatial distribution

across subjects and hemispheres. We further assessed the

reproducibility of our findings using a scan–rescan analysis

as well as the robustness of our method across different MR

scanners and sequence parameters. At last, we compared

our results with the organization of the long connections

between each thalamic nucleus and its projections depicted

by diffusion MR-based tractography. Our approach could

be of potential interest for studying brain anatomy in

healthy subjects and for clinical purposes in patients with

subcortical white matter lesions or tumors where global

thalamo-cortical tractography cannot be performed.

Materials and methods

The local institutional review board approved the study and

all participants gave written informed consent.
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Data

The core of the research project (build-up of the segmen-

tation pipeline, qualitatively and quantitative evaluation of

the results) was built using subjects whose demographic

characteristics are described in section Dataset 1. We fur-

ther assessed robustness across different sequences and

scanners, and intra-subject reproducibility of the thalamic

clusters using two additional datasets (Dataset 2 and

Dataset 3).

Dataset 1

Thirty-seven healthy subjects with no history of neuro-

logical illnesses, aged 20–70 years (mean ± std, 42.5 ±

12 years), were recruited. The exclusion criterion was

the presence of white matter alterations visible on fluid-

attenuated inversion recovery (FLAIR) images examined

by an experienced neuroradiologist. Two subjects were

excluded because of technical problems during MRI

acquisition leading to a final dataset of 35 control sub-

jects. All subjects were scanned in a 3-T Siemens Trio

scanner (Siemens AG, Erlangen, Germany) using a

32-channel head coil. The protocol included a sagittal

T1-weighted gradient-echo sequence (MPRAGE), 160

contiguous slices, 1-mm isotropic voxel, repetition time

(TR) 2300 ms, echo time (TE) 2.98 ms, field of view

256 mm as a basis for segmentation. FLAIR contrast

images were acquired with a voxel size of

0.9 9 0.9 9 2.5 mm3, flip angle 150�, TR 9500 ms, TE

84 ms, 32 axial slices. Diffusion-weighted images were

acquired using a spin-echo echo-planar imaging sequence

(64 gradient directions, b value 1000 s/mm2, voxel size

2 9 2 9 2.5 mm3, 52 axial slices, TR 6700 ms, TE

89 ms, field of view 192 9 192 mm) plus 1 volume

without diffusion weighting (b value 0 s/mm2, i.e. b0) at

the beginning of the sequence as anatomic reference for

motion and eddy current correction.

Dataset 2

Six healthy males (30.2 ± 6.2 years) were imaged with a

3-T Prisma Siemens scanner (Siemens AG, Erlangen,

Germany). For all of them, an identical diffusion sequence

was acquired twice the same day using the following

parameters: TR/TE = 7800/78 ms, flip angle = 90�, 60

gradient directions with b value = 2000 s/mm2, voxel size

of 2 x 2 x 2 mm3, 60 axial slices and 10 volumes without

diffusion weighting. Additional MPRAGE was obtained

with TR/TE = 2300/2 ms, flip angle = 9�, voxel size of

1 9 1 9 1.2 mm3, 160 axial slices.

Dataset 3

The third dataset was composed of two elderly essential-

tremor patients (2 males, 86 years of age) treated with

Gamma Knife thalamotomy. The images were acquired at

two different time points: the day before the treatment and

6 months after using a 3-T Prisma Siemens scanner. The

parameters for the diffusion sequence were similar to those

used for Data 1: TR/TE = 7100/84 ms, flip angle = 90�,
64 gradient directions with b value = 1000 s/mm2, voxel

size of 2.2 x 2.2 x 2.2 mm3, 62 axial slices and 10 volumes

without diffusion weighting. The corresponding MPRA-

GEs on both dates were obtained with TR/TE = 2300/

2 ms, flip angle = 9�, voxel size of 1 9 1 9 1.2 mm3, 160

axial slices. Both patients underwent Gamma Knife surgery

on their left thalamus, and consequently, we performed

analyses only on their right thalamus.

Pre-processing

Diffusion-weighted images were first filtered using an

isotropic Gaussian kernel (r = 0.8 mm3) and then ana-

lyzed with FSL (http://www.fmrib.ox.ac.uk/fsl/index.

html). The pre-processing of the diffusion dataset (64

gradient directions) involved motion and eddy current

correction. In this step, each diffusion-weighted image was

registered to the b0 image (no diffusion encoding) using a

12-parameter affine transformation. This transformation

accounts for motion between scans and residual eddy

current distortions present in the diffusion-weighted ima-

ges. The diffusion tensor was then estimated (Mori and

Zhang 2006) and the three eigenvalues of the tensor were

used to compute the fractional anisotropy (FA) map for

each subject on a voxel-by-voxel basis (Pierpaoli and

Basser 1996). This scalar measure of white matter fiber

integrity was used to refine the segmentation of the thala-

mus (see section ‘‘Thalamus extraction’’ for details).

In addition, the T1-weighted image was automatically

segmented in the subject’s native space in gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF)

using the unified segmentation approach (Ashburner and

Friston 2005) implemented in SPM8 (Wellcome Trust

Centre for Neuroimaging: http://www.fil.ion.ucl.ac.uk/

spm/) running under Matlab 7.11 (MathWorks Inc, Sher-

born, MA, USA). The T1-weighted image was registered to

the diffusion space using a rigid-body transformation with

6 degrees of freedom and Mattes Mutual Information as

cost function (Johnson et al. 2007). The same transforma-

tion was then applied to the CSF probability map. The CSF

image, together with the FA image, were used to increase

the accuracy of the automatic thalamus extraction as

described in the following paragraph.
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Thalamus extraction

The processing steps to obtain an accurate mask of the

whole thalamus are summarized in Fig. 1. First, we per-

formed cortical and subcortical parcellation of the T1-

weighted images with the FreeSurfer software (http://sur

fer.nmr.mgh.harvard.edu). The subcortical parcellation

includes the pre-processing of the MRI data (bias correc-

tion, intensity normalization) and the subcortical labeling

of the tissues classes (Fischl et al. 2002, 2004). Second, the

labels corresponding to the right and the left thalamus were

identified, converted to binary masks, and registered to the

diffusion space by applying the previously estimated

transform (details in ‘‘Pre-processing’’ section). Third, the

registered binary masks of the thalamus were then refined

using the CSF and FA maps. To exclude partial volume

contaminations, we only considered voxels with CSF

probability value lower than 0.05. In addition, to avoid

partial volume of the internal capsule in the proximity of

the thalamus, voxels within a 2-mm distance from the

border of the mask with FA values greater than 0.55 were

also excluded. All these steps were performed in each

subject’s diffusion space.

Reconstruction of the orientation distribution

functions (ODFs)

The orientation distribution functions (ODFs, Eq. 1) were

computed using q-ball imaging in constant solid angle

(Aganj et al. 2010) using the Qboot tool available in

FSL:

ODFCSA uð Þ / FRT D2
bln � ln

S uð Þ
S 0ð Þ

� �� �
ð1Þ

where FRT is the Funk Radom transform, and D2
b the

Laplace–Beltrami operator. The diffusion signal S was

modeled by means of the real and symmetric spherical

harmonic (SH) basis as in Descoteaux et al. 2007:

ln �ln
S uð Þ
S 0ð Þ

� �
¼

Xlþ1ð Þ lþ2ð Þ=2

j¼1

cjYj uð Þ þ ebstr ð2Þ

with cj the coefficient of the jth SH basis function Yj, l the

maximum SH basis order, and ebstr the Bootstrapped

residual.

For each subject, the Qboot algorithm was applied by

setting the maximum number of ODF peaks to be detected

to 2 using 50 samples for residual bootstrapping (Whitcher

et al. 2008), as in the default settings of the Qboot com-

mand in FSL. The maximum SH basis order was

instead set to 6 (l = 6). Results of the Qboot bootstrapping

were samples of ODF shapes for each voxel, and the mean

coefficients of each voxel served as inputs to the clustering

algorithm.

The SH basis allows a full angular characterization of

the ODFs (Fig. 2) by means of real-SH vectors. Therefore,

it was possible to assess similarities of diffusion properties

across ODFs using simple distance metrics (Wassermann

et al. 2008).

Clustering of the thalamic nuclei

Clustering was performed using a modified unsupervised

k-means algorithm. A schematic overview of our method

is shown in Fig. 3. Inputs were mean SH coefficients

and voxel position. The number of clusters to be seg-

mented was set to seven based on a preliminary analysis

that used a lower number of subjects aimed at deter-

mining the maximum number of clusters that would

provide a robust segmentation pattern across subjects.

Additionally, previous studies subdivided the thalamus

in seven nuclei (Behrens et al. 2003; O’Muircheartaigh

et al. 2011).

The decision metric for the final clustering was a com-

bination of the Euclidean distance of the voxels position

and of the Euclidean distance calculated from the SH

coefficients (Eq. 3):

jjODF � ODF0jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR
j¼1

cj � c0j
� �2

vuut ð3Þ

To avoid any bias in the k-means clustering, we applied

a scaling factor (SODF) to the SH coefficients to scale the

ODF distances inside the interval of the spatial-distance

values. The scaling factor SODF = 55 was first empirically

estimated on a small group of subjects and then applied to
Fig. 1 Outline of the main pre-processing steps for accurate thalamus

extraction
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the remaining dataset. The contribution of the two features

to the final clustering was equal, i.e. the weight a was set to

0.5.

To avoid dependency of the results on the initialization

method, we first ran 5000 randomly initialized k-means,

using only the position as the input feature, and then used

the average centroid over the 5000 results as the initial

setting for the clustering algorithm.

Evaluation of the results

To assess the robustness of the outcome, we studied the

average spatial distribution of the resulting clustering.

Clustering results were all registered to the Montreal

Neurological Institute (MNI) space using a combination of

rigid, affine, and B-spline transformations (with 5 as

maximum allowed displacement of the control grid along

Fig. 2 Visualization of the

ODFs in a slice of the thalamus.

The yellow contour in

a delineates the thalamus, while

b provides a close-up view of

the ODFs shapes inside the

thalamic area identified by the

light-blue box

Fig. 3 Schematic overview of the clustering framework. Segmenta-

tion of the seven thalamic nuclei has been performed using a k-means

clustering algorithm with two equally weighted features: the spatial

position of the voxels inside the thalamus (x, y, z) and the mean ODF

coefficients (Ci, i [ [1, 28]) expressed in the SH basis of maximum

order 6. k-means is initialized in a data-driven fashion
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each axis) implemented in 3D Slicer (http://www.slicer.

org). We then created a weighted average map in which

each voxel was defined with the label value represented by

the majority of subjects in that voxel (we will further refer

to it as weighted mean map by majority voting or just mean

segmentation map).

The assessment of the thalamic nuclei clustering is

extremely challenging due to the absence of a gold stan-

dard, and this limitation is shared by all previously pro-

posed techniques. Moreover, none of the methods in the

literature evaluated reproducibility across different time

points or different diffusion sequences. To this end, four

different approaches for evaluating the anatomical consis-

tency of our results were used.

(a) Qualitative evaluation

An experienced neuroradiologist (PM) visually assessed

the quality of the segmentation results and further com-

pared them to Morel histological atlas (Morel et al. 1997).

(b) Quantitative evaluation

i. Symmetry between the left and the right thalamus. To

test the symmetry between results of the left and right

thalamus, we statistically compared the volume and the

spatial distribution of the centroids of each segmented

cluster between the left and the right hemisphere using

a non-parametric Wilcoxon signed-rank test. All anal-

yses were performed on the subjects’ diffusion space.

For each hemisphere, each cluster volume was nor-

malized by the size of the thalamus to take into account

the inter- and the intra-individual size variability. The

distribution of the centroids was calculated using a

distance map representing the relative position of the

centroids’ coordinates to the closest contour of the

thalamus mask.

ii. Intra-subject reproducibility. We assessed intra-sub-

ject variability using scan–rescan data from Dataset 2

and Dataset 3. For each subject, we performed the clus-

tering on both time points scans separately. The resulting

clusters obtained from each dataset were brought to the

same image space by applying a rigid 6-parameter trans-

formation, which was estimated with 3D Slicer (Johnson

et al. 2007). Finally, clusters of scan–rescan time points

were quantitatively compared using:

– Dice’s coefficient for assessing the overlap

– Euclidean distance between the centroids

– Modified Hausdorff distance for evaluating the sim-

ilarity between the cluster contours. The modified dis-

tance has been shown to be more robust to outliers than

the traditional Hausdorff distance (Dubuisson and Jain

1994).

(c) Comparison with thalamic long connections

The behavior of our algorithm, which uses local informa-

tion derived from DWI, was compared to the organization

of the long fibers connections between the thalamus and its

afferent and efferent projections. We used probabilistic

tractography (computed with probtrackx from FSL pack-

age) to highlight those pathways. Based on anatomy (Jones

1985), we first identified, for each group of thalamic nuclei,

the regions characterizing its afferent and efferent con-

nections. The mask of the whole left thalamus was main-

tained as a constant seed region in the tractography, while

target masks were chosen according to the regions repre-

senting the two endpoints of each specific pathway of

interest.

The results of the tractography showed the portion of the

thalamus whose fibers were connected to the target masks.

We then compared the location of those subparts of the

thalamus with our clustering results. For each cluster, we

defined the frequency of success (FS) as the percentage of

subjects in which the tract of interest overlapped the

expected cluster.

For each cluster in each subject, probabilistic streamli-

nes were computed using the modified Euler integration

(Cordova and Pearson 1988), by drawing 7000 individual

samples using a value of 0.5 mm for step length and 0.2 for

curvature threshold. To reduce potential bias from spurious

tracts, we have excluded voxels having probabilistic

streamlines value below 5% of the maximum. All the

streamlines between the respective that survive this

threshold were considered as part of the tracts of interest

and included in a mask.

(d) Comparison with state-of-art methods based on local

diffusion properties

Up to date, the angular difference (AD) between the

principle directions of the diffusion tensor was considered

as the most reliable local feature for thalamic nuclei par-

cellation (Ziyan et al. 2006). To assess our contribution and

the advantage of using SH representations of the ODFs

over existing techniques, we compared the results of our

pipeline with those obtained using AD as feature. First, we

computed the diffusion tensor at each voxel with FSL

diffusion toolbox, and then, instead of using the Euclidean

distance between the ODF coefficients inside the clustering

framework, we calculated the angular difference between

the main eigenvector of the diffusion tensor (Kumar et al.

2015; Mang et al. 2012; Ziyan et al. 2006). In order to have

both distances in the same range of values within the k-

means algorithm, we scaled AD after computing it by a

factor of 6, which was empirically determined. Comparison

between ODF and AD features is done at one time point
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(using Morel’s atlas for validation in two different axial

slices) as well as with scan–rescan setting.

Results

The thalamic nuclei clustering in Dataset 1 was highly

reproducible and characterized by a robust pattern of spa-

tial distribution. Only one subject out of the 35 deviated

from this pattern. In fact, he presented an intensity spike in

ODF coefficients’ values as an artifact of the reconstruction

that anomalously biased the clustering. Therefore, this

subject was removed from further analysis. The mean

segmentation map that represents the spatial distribution

pattern is shown in Fig. 4, while Fig. 5 gives an example of

five individual results.

(a) Qualitative evaluation

For each subject, the expert evaluated the spatial distribu-

tion and extent of the clusters segmented with our algo-

rithm, and while comparing them to Morel’s atlas, he

labeled each cluster by its anatomical correspondence (see

Figs. 4, 6, 7). Six out of seven clusters could be uniquely

identified as a known anatomical nucleus or group of

nuclei, and we, therefore, assigned the name of the domi-

nant nucleus to each of them in each respective group. The

seventh cluster instead, was characterized by two pre-

dominant nuclei, the central lateral (CL) and the lateral

posterior (LP), as well as by a portion of the anterior part of

the medial pulvinar (PuM). The anatomical partitions

derived from our clustering were labeled as follows:

anterior group (A), ventral anterior group (VA), medio-

dorsal group (MD), ventral latero-ventral group (VLV),

ventral latero-dorsal group (VLD), pulvinar (Pu) and CL–

LP–PuM group (see Figs. 4, 6, 7).

Based on the qualitative comparison with the histolog-

ical atlas, one subject did not pass the expert evaluation,

since the spatial distribution of the segmented clusters

deviated from the one of the other 33 cases. We assume

that such an outcome is due to large neuroanatomical

variation, but since it represented an outlier, we decided to

exclude this subject from further evaluation analyses.

(b) Quantitative evaluation

i. Symmetry between the left and the right thalamus. We

observed an important symmetry between the results on the

left and on the right thalamus across all subjects, which

was confirmed by our statistical analysis. As shown in

Tables 1 and 2, respectively, neither the normalized vol-

umes nor the centroids distribution of the corresponding

cluster over hemispheres were significantly different.

ii. Intra-subject reproducibility. The resulting clustering

from Dataset 2 and Dataset 3 presented the same seg-

mentation pattern as observed for the 33 subjects in Dataset

1. Similarly, the same pattern was observed in the scan–

rescan analysis in both datasets. In particular, for all the 14

inspected thalami, the average Dice’s coefficient value per

cluster was always higher than 0.8, while centroid’s and

Hausdorff distance were lower than the original spatial

resolution of the diffusion images used. Table 3 gives a

summary of these results, while Fig. 7 and Figs. SM1 and

SM2 in the supplementary material show a visual illus-

tration of them, together with additional comparisons with

Morel’s atlas.

Fig. 4 Rendering of the weighted mean clustering map by majority

voting. The map is superposed on a T1-weighted image in the

Montreal Neurological Institute (MNI) space in sagittal (a) and

transversal (b) views. Panel c represents the mean ODF characteristic

for each cluster. Each averaged ODFs were reconstructed on a

representative subject and superposed on the weighted mean cluster-

ing map. Thalamic nuclei are color-coded as follows: brown for the

anterior group (A), maroon for the ventral anterior group (VA), light

pink for the medio-dorsal group (MD), red for the ventral latero-

ventral group (VLV), blue for the ventral latero-dorsal group (VLD),

green for the pulvinar (Pu), and cyan for the cluster representing the

central lateral nucleus, the lateral posterior and a portion of the medial

part of the pulvinar (CL–LP–PuM)
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(c) Comparison with thalamic long connections

According to the anatomy (Jones 1985), we reconstructed

six specific pathways, one for each nucleus characterized

by a unique anatomical distribution, i.e. A, VA, MD, VLD,

VLV, and Pu. The respective pairs of target masks that

define the specific pathway for each cluster are summarized

in Table 3.

This approach included all clusters except CL–LP–PuM

since it is composed by more than one dominant nucleus;

thus, its specific pathway could not be uniquely identified.

The estimated average FS for all clusters was 92.4%

with minimum value of 81.8% for the VA cluster and

maximum of 100% for the pulvinar. More details about FS

values for each cluster, respectively, are given in Table 4.

An illustration of the motor tract passing through the

VLV cluster is given in Fig. 8. Examples of the recon-

struction of two other tracts are shown in Fig. SM3 of the

supplementary material.

(d) Comparison with state-of-art methods based on local

diffusion properties

Unlike the results given by our ODF-based approach, the

AD-based segmentation clustered nuclei whose spatial

distribution could not be uniquely assigned to a specific

Fig. 5 Individual results of the thalamic nuclei segmentation. Spatial distribution of the segmented nuclei are shown in axial view for five

different cases and superposed on each subject’s MPRAGE image

Fig. 6 Comparison of the

results of our clustering

algorithm with the Morel’s

histological atlas. a shows a

sagittal view of the Morel atlas.

b–d show instead the spatial

distribution of the thalamic

nuclei segmented with our

framework in the same sagittal

slice for three different cases in

the Talairach space. Each color

gives the anatomical

correspondence of each group

of nuclei
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anatomical group, according to the Morel’s atlas (see

Fig. 7; Figs. SM1 and SM2 from the supplementary

material). We further noticed that the clusters distribution

obtained from Dataset 2, characterized by a diffusion

acquisition at high b value, had less smooth boundaries,

noisy contours, and isolated voxels.

In the scan–rescan framework, we observed lower intra-

subject reproducibility of the AD-based segmentation

compared to the ODF-based one. These observations were

then confirmed with the quantitative measures showed in

Fig. 9. More precisely, the average Dice coefficients per

cluster from the AD-based segmentation were between 0.5

Fig. 7 Resulting clustering

from the scan–rescan analysis

compared with two different

axial slices from the Morel’s

atlas (D 4.5 and D 10.8 top and

bottom row, respectively)

Table 1 Statistical comparison

of the normalized volumes of

the thalamic nuclei across

hemispheres

Volume

Wilcoxon signed-rank test Pu A MD VLD CL–LP–PuM VA VLV

p value 0.77 0.55 0.5 0.28 0.14 0.63 0.25

Median values (mm)

Left 0.1319 0.1599 0.1571 0.1239 0.1248 0.1540 0.1371

Right 0.1331 0.1618 0.1606 0.1193 0.1317 0.1513 0.1326

Table 2 Statistical comparison

of the centroids distribution of

the thalamic nuclei across

hemispheres

Centroids’ border distance

Wilcoxon signed-rank test Pu A MD VLD CL–LP–PuM VA VLV

p value 0.75 0.4 0.36 0.49 0.39 0.79 0.24

Median values (mm)

Left 2 2.2361 2.1180 2 2 2.2361 2

Right 2 2.2361 2.2361 2.2361 2.2361 2.2361 2
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and 0.8, while the average distance between the corre-

sponding centroids reached 4 mm.

Discussion

We presented a novel segmentation framework based on

local diffusion properties and spatial features for thalamic

nuclei clustering in diffusion MRI. Unlike most of the

existing methods, which are limited by the low angular

resolution of DWI (Duan et al. 2007; Jonasson et al. 2007;

Mang et al. 2012; Rittner et al. 2010; Wiegell et al. 2003;

Ye et al. 2013; Ziyan et al. 2006; Ziyan and Westin

2008), ours provides a robust and accurate diffusion-based

segmentation by the inclusion of the orientation distribu-

tion functions (ODFs) from MR images at 3 T. Our major

contribution is the use of spherical harmonics for the

Table 3 Quantitative measures

of similarity between the scan–

rescan clusters

Measure Dice coefficients Centroids’ distance (mm) Hausdorff distance (mm)

Cluster Mean Variance Mean Variance Mean Variance

Pu 0.93 0.0007 0.56 0.08 0.17 0.0025

A 0.90 0.0024 0.86 0.34 0.24 0.0036

MD 0.84 0.0080 1.36 1.08 0.28 0.0055

VLD 0.87 0.0018 0.98 0.26 0.27 0.0043

CL–LP–PuM 0.83 0.0101 1.41 1.24 0.28 0.0053

VA 0.89 0.0016 0.79 0.28 0.26 0.0038

VLV 0.89 0.0031 0.66 0.26 0.22 0.0019

Table 4 Summary of the pairs of target masks chosen for the reconstruction of the pathways characteristic of each group of nuclei

Cluster Target 1 Target 2 FS (%)

A Anterior cingulate cortex Fornix 97

VA Premotor cortex (Broadman area 6) Substantia nigra 81.8

MD Middle frontal sulcus Amygdala 90.9

VLD Posterior singular cortex Fornix 87.9

VLV Precentral gyrus Red nucleus (left) and superior cerebellar peduncle (right) 97

Pu Inferior angular gyrus Calcarine sulcus 100

The frequency of success (FS) was defined as the percentage of subjects for which there was an overlap between the cluster and the thalamic part

of the corresponding tract

Fig. 8 Reconstruction of thalamic long connections. Sagittal (a) and

coronal (b) 3D views of the motor fiber tracts passing through the

cluster VLV (in red). Probabilistic tracts (in white) were reconstructed

using the whole thalamus mask and the following seed regions (in

yellow): left precentral gyrus, left red nucleus, and right superior

cerebellar peduncle
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ODFs representation that provide full angular characteri-

zation of the diffusion processes in each voxel, and,

therefore, a better differentiation of the complex intra-

thalamic microstructure (Jones 1985). We proved the

robustness of our approach across sequences, scanners and

acquisitions at different time points. We further demon-

strated its outperformance compared to AD-based

clustering.

The segmentation was performed using the k-means

algorithm. Unlike the state-of-the-art methods published

so far, the initialization made in a data-driven fashion

(primer centroids extracted from 5000 initial randomly-

initialized k-means runs) adds another strong point to our

framework since it is a user-independent procedure.

Moreover, such initialization might be a contributing

factor to the high reproducibility of the final clustering

results.

We segmented the thalamus in seven independent

groups of nuclei with a success rate of 97.1% of the tested

35 cases. Six clusters are characterized with unique

anatomical distribution, while the importance of the sev-

enth cluster, the CL–LP–PuM, comes from the nuclei

grouped within. More precisely, CL is part of the

intralaminar nuclei, which are characterized by various

connections to frontal and parietal cortices, and potentially

involved in arousal mechanisms (Saalmann 2014), while

LP together with the pulvinar take part in attention pro-

cesses to visual stimuli (Swenson 2006). The choice of the

number of nuclei was based on a preliminary analysis

aiming at identifying the number of clusters that provide a

robust segmentation pattern and was further supported by

the existing approaches used in the literature. Thalamic

nuclei segmentation using thalamo-cortical projections

(Behrens et al. 2003) used seven cortical targets to draw

probability distribution of connections from voxels within

the thalamus to those regions that have been shown to

correspond to known connection areas of major thalamic

nuclear groups. On the other hand, the myelo- (Magnotta

et al. 2000) and cytoarchitectonical (Morel et al. 1997)

atlases, which, instead, provide histological information

about the structural organization of the thalamus, give a

more complete and detailed picture of the thalamic nuclei

even though they are built on very limited number of

specimens, and therefore, they do not account for any

anatomical variability. Nevertheless, as in the Morel atlas

(Morel et al. 1997), all nuclei can be spatially grouped into

seven main groups. In addition, the number of clusters used

in our study seemed to be a good trade-off between spatial

resolution of the ordinary DWI acquisition and anatomical

accuracy of the clustering. For instance, a recent work

(Kumar et al. 2015) attempted to segment the thalamus in

21 different clusters but only five of them appeared to be

consistent across subjects. Collectively, these considera-

tions suggest that the robustness of the segmentation

method is preserved solely for a small number of clusters

when utilizing classical diffusion sequences.

The developed framework was tested in a main dataset

of 35 healthy volunteers, which is a relatively large dataset

compared to the data used for testing the majority of the

existing methods. Validation also remains a challenge for
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all previously published methods. By employing four dif-

ferent evaluation approaches to assess the results (qualita-

tive comparison of the segmented clusters to the

cytoarchitectonic atlas, quantitative analysis of cluster

spatial extent and volume across hemispheres, as well as

intra-subject reproducibility and correspondence of the

thalamic clusters distribution to thalamic long connec-

tions), we ensured thorough validation of our algorithm.

A high degree of symmetry of nuclei volume and spatial

distribution is in accordance with previous studies using

fiber-tracking connectivity-based clustering (Behrens et al.

2003), functional information derived from resting-state

BOLD signal (Hale et al. 2015; Kim et al. 2013; Zhang

et al. 2010), and histological reports (Eidelberg and Gal-

aburda 1982). In fact, the reported cerebral asymmetries in

the brain are mainly related to its functional activity. For

instance, language functions are historically known to be

left-lateralized, while those involved in spatial orientation

and emotional control are predominantly associated with

the right hemisphere (Rimol et al. 2006; Toga and

Thompson 2003). In our study, since we recruited only

right-handed subjects, we could expect possible inter-

hemispheric differences between the groups of nuclei

involved in motor control (i.e. the VLV) because of the

largely known motor-related lateralization of the brain (Gut

et al. 2007). To the best of our knowledge, there is no

evidence of strong structural left–right asymmetries in the

spatial organization of the thalamic nuclei, and our findings

are in line with that. Another reason for the absence of

hemispheric asymmetries can be attributed to the low

spatial resolution of the DWI acquisition in comparison to

the small size of the thalamus. This represents a limitation

of our study that is shared with all the previous published

research on the same topic.

The findings from the core data (Dataset 1) were also

observed in the analyses of the additional two datasets,

proving the reproducibility of the outcome over different

diffusion sequences and different scanner machines.

Moreover, in a scan–rescan scenario, with very high Dice

values considering the relative small size of the clusters,

we show strong reproducibility of the results over different

time points, and therefore, we reinforce the validation of

our findings. The reproducibility of the test-retest analysis

is also proven by both centroids and borders distances,

which are always smaller than the original spatial resolu-

tion of the used diffusion data.

We also performed a long-connection tractography-

based analysis to further evaluate the robustness of our

clustering algorithm and the ability to identify appropriate

anatomical pathways described in the literature (Jones,

1985). We observed a high frequency of success (FS) for

the expected overlaps, 92.4% in average, which further

supports the anatomical accuracy of the spatial distribution

of the segmented clusters. We want to emphasize the fact

that such evaluation has no intent of comparing fiber-

tracking-based clustering with our local diffusion property-

based clustering. Instead, to provide additional anatomical

value to our results, we tested the hypothesis that the main

thalamo-cortical fibers characteristic of a nucleus should

pass through it.

Our clustering method, which is based on local diffusion

properties, is a robust tool for thalamic nuclei segmentation

that closely matches histological atlases. We showed that

our method outperforms recent state-of-the-art methods

based on local diffusion properties, or more precisely, the

angular difference (AD), in terms of reproducibility and

parcellation matching closely with the known anatomical

architecture of the thalamus. Moreover, the AD-based

segmentation outcome presented less smooth cluster

boundaries for diffusion data acquired with b values of

2000 s/mm2. We assume this is due to the limitations of the

tensor modeling that fails to represent properly the addi-

tional diffusion information, presumably coming from the

intra-voxel compartments (Baumann et al. 2012) that such

data provide.

Our results differ from cortical connectivity-based

approaches results (Behrens et al. 2003; O’Muircheartaigh

et al. 2011), which generally found overlapping connec-

tions to multiple cortical areas as well as great inter-subject

variability. Several factors may have contributed to this

result. First, the cortical target ROIs used for tractography

were large and characterized by fuzzy borders, which

favored the existence of multiple cortical connections from

each connectivity-defined thalamic region. Second, the

diffusion tractography is sensitive to major pathways, and

therefore, smaller pathways, especially if crossing other

tracts, are not always detected. Third, the thalamus is a

very complex structure, characterized by different cell

types and specific cortical connections (matrix and core

neurons; Jones 2001) which can bias the results of long-

connection fiber tractography. It should also be considered

that the thalamus segmentation by fiber-tracking does not

necessarily correspond to an anatomical subdivision of the

thalamus (Behrens et al. 2003; Deoni et al. 2005;

O’Muircheartaigh et al. 2011; Traynor et al. 2011). This is

particularly true for nuclei connected to the sensorimotor

cortex, whereas good correspondence was found for the

pulvinar, the thalamic nucleus mainly projecting to the

occipital cortex (Shipp 2003). This scenario has also been

replicated in functional-based connectivity studies (Hale

et al. 2015). They revealed distinct features of thalamo-

cortical connectivity (Zhang et al. 2010) when compared to

structural-based ones, showing that these two methodolo-

gies provide complementary information. As with trac-

tography-based approaches, they share the same problems

of overlapping of connectivity and inter-subject variability.
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With the aim of providing a tool of a potential interest in

everyday clinical practice, we estimated the ODFs using a

DWI sequence typically acquired in a clinical setting. As a

drawback, we share the limitation of all the other published

studies so far that are related to the low spatial resolution of

the DWI sequences. With a voxel size of approximately 2 x 2

x 2 mm3, we were not be able to distinguish smaller nuclei or

nuclear groups. Complementary techniques should be

additionally considered to drive the segmentation towards

smaller anatomical subdivisions. These include high angular

acquisition schemes, such as diffusion spectrum imaging

(DSI), which has been demonstrated to better characterize

crossing fibers (Wedeen et al. 2008), and/or the use of high-

field MRI scanner. For instance, it has been shown that

susceptibility-weighted imaging acquired at 7 T (Abosch

et al. 2010), is able to provide complementary information to

those extracted from DWI about thalamic microstructure,

which can help in delineating the different groups of thala-

mic nuclei. Future studies may also include the acquisition of

diffusion images at higher b values ([2000 s/mm2), and/or

the use of scanner with higher gradient systems.

With our approach, we were able to show robust and

anatomically consistent segmentation of the main groups of

thalamic nuclei. Thus, our framework can be of potential

use in many clinical applications. We would like to

emphasize that unlike the cortical connectivity-based

algorithms, relying on local diffusion properties may be an

important asset when studying patients that have moderate

or severe lesions in WM or GM (such as tumors, stroke or

vascular lesions), for whom long-distance fiber-tracking

may fail. Other examples of possible applications can be

related to movement disorders. Our recent findings (Bat-

tistella et al. 2013) in young asymptomatic FMR1 premu-

tation carriers at risk of developing a late-onset movement

disorder called fragile X tremor–ataxia Syndrome

(FXTAS), encourage further evaluation of the motor-con-

trol pathway and in particular, the thalamic ventral inter-

mediate nucleus (Vim) that is part of this network

(included in the VLV group in this study). Similarly, the

VLV delineation is of potential interest to clinical studies

and treatment planning for other movement-related disor-

ders, such as essential tremor, where the central element is

again the Vim (Ohye et al. 2012). The automatic delin-

eation of all seven groups of nuclei also represent a useful

tool for studies related to brain development (Jones 1997)

or to better interpret functional studies.

Conclusion

We propose a novel automated framework for segmenting

the thalamic subparts, which explores the orientation dis-

tribution functions represented in spherical harmonics basis

from diffusion MR images at 3 T. The ability to fully

characterize the crossing fibers, in addition to a data-driven

initialization of the clustering algorithm, provides a robust,

reproducible and an accurate segmentation of seven groups

of thalamic nuclei that outperforms the current state-of-art

based on local diffusion properties. Each segmented nuclei

group has a characteristic spatial distribution, which clo-

sely matches histological atlases, and identifies a major

cortico-thalamic pathway.
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